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SAW Parameters Analysis and  
Equivalent Circuit of SAW Device 

Trang Hoang 
Faculty of Electrical-Electronics Engineering, University of Technology, HoChiMinh City  

VietNam 

1. Introduction 

Surface Acoustic Wave (SAW) devices, using interdigital electrodes, play a key role in 

today’s telecommunication systems and are widely used as electronic filters, resonators, 

delay lines, convolvers or wireless identification systems (ID tags). 

During the last three decades, demands set by the expansion of the telecommunication 

industry and many applications in sensor have resulted in the introduction of a new 

generation of the SAW devices. Consequently, the design of high performance SAW devices 

requires precise and efficient models, simulation tools. Several methods have been proposed 

for modeling, analyzing SAW devices. These include the impulse model, the equivalent 

circuit models, the coupling-of-mode (COM) model, P-matrix model, angular spectrum of 

waves models [1] and the Scattering Matrix approach that was presented by Coldren and 

Rosenberg [2]. While the impulse model is only a first order model, the other models 

include second order effects, e.g. reflections, dispersion, and charge distribution effects. 

Purely numerical methods have also been and are being developed by many authors [3]-

[35], [41]. 

In this chapter, the method for calculating the SAW parameters, including modeling and 

simulation, is given. 

Section 2 gives the calculation of SAW properties and analyses of different SAW device 

structures. 

Section 3 presents the equivalent circuit of SAW delay line based on Mason model. 

The equivalent circuit of SAW delay line based on Couple-Of-Mode theory is presented in 

section 4. 

Based on section 3 and 4, section 5 shows comparison between using the equivalent circuit 

of SAW delay line device based on Mason model and COM theory. This model is useful and 

fast model for designing the SAW device. 

2. Calculation of SAW parameters 

2.1 SAW parameters 

The most important parameter for SAW device design is the center frequency, which is 

determined by the period of the IDT fingers and the acoustic velocity. The governing 

equation that determines the operation frequency is: 

www.intechopen.com



  
Acoustic Waves – From Microdevices to Helioseismology 

 

444 

 f0 = vSAW/ ǌ   (1) 

where 
ǌ is the wavelength, determined by the periodicity of the IDT and vSAW is the acoustic wave 
velocity . For the technology being used in this research: 

 ǌ = p = finger width × 4 (2) 

with the finger width (as shown in Figure 1) is determined by the design rule of the 
technology which sets the minimum metal to metal distance. 
vSAW is surface acoustic wave velocity. 
 

Aperature (W)

period (λ)

Finger

widthFinger

spacing

 

Fig. 1. IDT parameters 

By using matrix method or Finite Element Method (FEM) in section 2.2, the velocity v of 
acoustic wave is derived in two cases: 
- Wave velocity V0 is velocity in case of free surface. 
- Wave velocity Vs is velocity in case of short-circuit surface. 
Therefore, the electromechanical coupling coefficient K is calculated approximately by 
Ingebrigtsen [54] as: 

 2 2 o s

o

V V
K

V

−
=  (3) 

By using the matrix method or FEM and approximation of coupling factor as in (3), the SAW 
parameters in different structures AlN/Si, AlN/SiO2/Si and AlN/Mo/Si are calculated and 
analysed in three next sections. 

2.2 Matrix method and Finite Element Method (FEM). The choice between them 

Matrix method 

The SAW propagation properties on one layer or multilayer structure are obtained by using 
matrix approach, proposed by J.J.Campbell and W.R.Jones [50], K.A.Ingebrigtsen [54], and 
then developed by Fahmy and Adler [31], [32], [33] and other authors  [51], [52], [53]. The 
numerical solution method is based on characterizing each layer by means of a transfer 
matrix relating the mechanical and electrical field variables at the boundary planes. The 
boundary conditions for multilayer are based on the mechanical and electrical field 
variables those quantities that must be continuous at material interfaces. This matrix method 
is used to calculate the wave velocity and therefore, the electromechanical coupling factor. A 
general view and detail of this approach are given as follows and also presented in [50]-[53]. 
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Fig. 2. Multilayer structure 

Constitutive equations: 

 
2 2 2
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+ =
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∂ ∂
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∂ ∂ ∂ ∂
 (5) 

where  

, , ,ijkl ijk jkc e ε ρ  are elastic tensor, piezoelectric tensor, dielectric tensor and mass density, 

respectively, of the considered material.  
U is the particle displacement. 

φ  is the scalar electric potential. 

The boundary conditions are shown in Table 1 
 

Position Mechanical conditions Electrical conditions 

x3=0 1stS
i iU U=  

 1
3 3

stS
i iT T=  

Boundary is open 
1stSφ φ=  , 1stSD D=  

Boundary is short 
1 0

stSφ φ= =     

x3=h1 1 2st nd

i iU U=  

1 2
3 3

st nd

i iT T=  

Boundary is open 
1 2
st nd

φ φ= , 1 2st nd

D D=  

Boundary is short 
1 2 0
st nd

φ φ= =     

x3=h1 + h2 2
3 0

nd

iT =  Boundary is open 
2 2. .

nd nd

D kε φ= −  

Boundary is short 
2 0

nd

φ =     

Table 1. Boundary conditions 
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where D: electronic displacement,  

 k

k

D
x

φ∂
=

∂
 (6) 

The general solution for Ul and φ  (1) and (2) may be written as follows: 

 ( ) ( )
3 1

1

exp[ ( )]
n

m m
l m l

m

U C A ik b x x vt
=

= + −  (7) 

where l =1, 2, 3 

 ( ) ( )
4 3 1

1

exp[ ( )]
n

m m
m

m

C A ik b x x vtφ
=

= + −  (8) 

The coefficients Cm are determined from boundary conditions. 
By substituting (7) and (8) in every layer into the boundary conditions, we have general 
form 
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 (9) 

Phase velocity is determined from the condition: 

 Det(H)=0                  (10) 

(use approximation to solve (10)) 

Figure 3 shows the wave velocity of structure AlN/SiO2(1.3µm)/Si(4µm). 
 

 

Fig. 3. Wave velocity in structure AlN/SiO2(1.3µm)/Si(4µm) with different thicknesses of AlN 
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Finite Element Method (FEM) 

In the design procedure of SAW devices, simple models like Equivalent Circuit Model 
coming from Smith Model and COM Model as presented above are used to achieve short 
calculation time and to get a general view of response of SAW devices. They are a good 
approach for designing SAW devices, for getting the frequency response, impedance 
parameters and transfer characteristics of SAW device. They could allow the designer to 
determine the major dimensions and parameters in number of fingers, finger width, and 
aperture. However, they are subjected to some simplifications and restrictions. 
Field theory is the most appropriate theory for the design SAW devices as it involves the 
resolution of all the partial differential equations for a given excitation. The Finite Element 
Model (FEM) is the most appropriate numerical representation of field theory where the 
piezoelectric behaviour of the SAW devices can be discretized [45], [46]. Besides, nowadays, 
FEM tools also provide 3D view for SAW device, such as COMSOL® [47], Coventor® [48], 
ANSYS® [49].  
The typical SAW devices can include a lot of electrodes (hundreds or even thousands of 
electrodes). In fact, we would like to include as many IDT finger pairs as possible in our 
FEM simulations. This would however significantly increase the scale of the device. 
Typically finite element models of SAW devices require a minimum of 20 mesh elements 
per wavelength to ensure proper convergence. A conventional two-port SAW devices 
consisting of interdigital transducers (IDT) may have – especially on substrate materials 
with low piezoelectric coupling constants - a length of thousands of wavelengths and an 
aperture of hundred wavelengths. Depending on the working frequency, the substrate which 
carries the electrode also has a depth of up to one hundred wavelengths. Taking into account 
that FEM requires a spatial discretization with at least twenty first order finite elements per 
wavelength and that an arbitrary piezoelectric material has at least four degrees of freedom, 
this leads to 8 x 108 unknowns in the three dimensional (3-D) case. Hence, the 3-D FEM 
representation of SAW device with hundreds of IDT fingers would require several million 
elements and nodes. The computational cost to simulate such a device is extremely high, or the 
amount of elements could not be handled by nowadays computer resources. 
Fortunately, SAW devices consist of periodic section. M.Hofer et al proposed the Periodic 
Boundary Condition (PBC) in the FEM that allows the reduction of size of FE model 
tremendously [45], [46].  
A good agreement between FEM and analytic method is obtained via the results in case of 
SAW with AlN thickness of 4Ǎm, wavelength of 8Ǎm presented in Table 2. 
 

 Matrix method FEM Difference between Matrix 
method and FEM (%) 

f0 (MHz) 771.13 775.48 0.56 

fs (MHz) 770.26 774.57 0.56 

v0 (m/s) 6169.02 6203.87 0.56 

vs (m/s) 6162.07 6196.54 0.56 

K (%) 4.74 4.86 2.4 

Table 2. Comparison between matrix method and FEM 

From this table, matrix method and FEM give the same results. However, FEM would takes 
a long time and require a trial and error to find the results. Consequently, to reduce time, 
the matrix method proposed to be used to extract the parameters of SAW devices; FEM is 
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used to get a 3D view and explain some results that can not be explained by equivalent 
circuit. This point will be presented in next sections. 
The three next sections present and analyse SAW parameters in different structures AlN/Si, 
AlN/SiO2/Si and AlN/Mo/Si. 

2.3 Wave velocity, coupling factor in AlN/Si structure 

Figure 4 shows the dependence of Rayleigh wave velocity V0 and Vs on the normalized 
thickness as respect to the wavelength, khAlN of AlN layer in SAW device AlN/Si 
substrate, where normalized thickness is defined by: 

 
2 h

kh
π

λ
=  (11) 

In this graph, when the normalized thickness of AlN, khAlN is larger than 3, the wave 
velocity reaches the velocity of the Rayleigh wave in AlN substrate v(AlN substrate)=6169 (m/s). 
This could be explained that the wave travels principally in AlN layer when khAlN is larger 
than 3, because for low frequency the wave penetrates inside the other layer and this work is 
in the case where the wave are dispersive. It is better to be in the frequency range where the 
Rayleigh wave is obtained to have a constant velocity. 
 

 

Fig. 4. Calculated values of wave velocity V0 and Vs in SAW device AlN/Si substrate 
depend on the normalized thickness khAlN of AlN layer 

 

 

 

Fig. 5. Calculated values of coupling factor K(%) in SAW device AlN/Si substrate depends 
on the normalized thickness khAlN of AlN layer 
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The coupling factor K for this kind of device is shown in Figure 5. When normalized 
thickness of AlN layer is larger than 3, the coupling factor K still remain at 4.74% by that the 
wave travels principally in AlN layer. 
In this configuration, K is at its maximum value of 5.34% when khAlN=0.55. 

2.4 Wave velocity, coupling factor in AlN/SiO2/Si structure 

Wave velocity and coupling factor in structure AlN/SiO2/Si are also presented in Figure  6 
and Figure 7, respectively. 
 

 

Fig. 6. Dependence of wave velocity in SAW device AlN/SiO2/Si substrate on the 
normalized thickness khAlN of AlN layer and khSiO2 

 

 

Fig. 7. Dependence of coupling factor K(%) in SAW device AlN/ SiO2/Si substrate on the 
normalized thickness khAlN of AlN layer and khSiO2 

In this configuration, as results in Figure 6, when 6khAlN < , with the same thickness of 

AlN layer, an increase in thickness of SiO2 would decrease the wave velocity. When 

6khAlN > , the wave velocity reaches the velocity of the Rayleigh wave in AlN substrate 

v(AlN substrate)=6169 (m/s). A same conclusion is formulated also for coupling factor for this 

kind of structure, AlN/SiO2/Si, in Figure 7; when 6khAlN > , K remains at the value of 4.7%. 
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To understand the above behavior, we use FEM method to display displacement profile 
along the depth of multilayer AlN/SiO2/Si. These results obtained from FEM method in 
case of khSiO2=0.7854, khAlN=5 and khAlN=0.2 are compared as in Figure 8. 
 

 

Fig. 8. Displacement profile along the depth of the multilayer AlN/SiO2/Si, khSiO2=0.7854 

From Figure 8, we note that wave travels principally in AlN layer for a khAlN value of 5. By 
this reason, from a khAlN value of larger than 5, the coupling factor K remains at 4.7% and 
wave velocity remains at 6169m/s. For khAlN=0.2, wave travels principally in SiO2 layer 
and Si substrate that are not piezoelectric layer. Consequently, the coupling factor K reaches 
the value of 0%. 
In conclusion, the values of wave velocity and coupling factor depend on wave propagation 
medium, in which constant values of wave velocity and coupling factor indicate a large 
contribution of AlN layer, and coupling factor value of near 0% indicates a large 
contribution of SiO2 layer and Si substrate. 

2.5 Wave velocity, coupling factor in AlN/Mo/Si structure 
For our devices, a thin Mo layer will be also deposited below the AlN layer to impose the 
crystal orientation of AlN. Besides this dependence, the Mo layer also has influences on  
 

 

Fig. 9. Wave velocity AlN/Mo/Si substrate depends on the normalized thickness khAlN 
and khMo 

www.intechopen.com



 
SAW Parameters Analysis and Equivalent Circuit of SAW Device  

 

451 

wave velocity and coupling factor K. These influences are shown in Figure 9 and Figure 10, 
respectively. 
 

 

Fig. 10. Coupling factor K(%) in SAW device AlN/Mo/Si substrate depends on the 
normalized thickness khAlN and khMo 

From Figure 9, the use of Mo layer would increase the wave velocity with any thickness of 
AlN layer and Mo layer. In case of coupling factor K as in Figure 10, the Mo layer, however, 
could decrease K when the khAlN is less than 1.02. When the normalized thickness of AlN 
layer khAlN is in the range from 1.17 to 2.7, the Mo layer would increase the coupling factor 
K. And when the khAlN is larger than 2.7, the Mo has no influence on wave velocity and 
coupling factor. The reason of this effect could be explained by the displacement profile in 
AlN/Mo/Si structure, as shown in Figure 11 for thickness AlN value of khAlN=2.7. We 

could note that when 2.7khAlN ≥ , the first interesting point is that the wave travels 

principally in AlN layer and Si substrate, the second one is that the relative displacement 
U/Umax in Mo layer will be smaller than 0.5. These points would explain the reason why 

when 2.7khAlN ≥  the use of Mo has no influence on wave velocity and coupling factor. 
 

 

Fig. 11. Displacement profile along the depth of the multilayer AlN/Mo/Si, khAlN=2.7 

1.02 
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3. Equivalent circuit for SAW delay line based on Mason model 

3.1 Why Equivalent Circuit model is chosen? 

Actual devices exist in a three-dimensional physical continuum. Their behaviour is 

governed by the laws of physics, chemistry, biology, and electronics. From a general point 

of view, the analysis of devices can be carried out by using some equations of laws of 

physics, chemistry … For example; the analysis of piezoelectric resonators or transducers 

and their application to ultrasonic system can be solved by using the wave equation 

[36],[37]. But through analysis, equivalent electrical circuit representations of devices can be 

extracted. So, they can be readily expressible with Equivalent Electric Circuit. Below is the 

presentation of advantages and disadvantages of equivalent circuit. 
Advantages: 
- There are an immensely powerful set of intellectual tools to understand electric circuits. 
- The equivalent circuit approach has distinct advantages over the direct physical, 

chemical equations approach (such as direct wave equations approach). 
- Many theories, problems of electric circuits have already been solved such as 

microwave network theory, integrated circuit etc. 
- Electric circuit approach is intrinsically correct from an energy point of view [56]. 
- A further advantage of electric circuit model is that it permits efficient modelling of the 

interaction between the electric and non-electric components of a microsystem. Both the 
electrical and mechanical portions of a system are represented by the same means. With 
software like Simulink, the block diagram is easily constructed, easily to build a more 
complex system but when we would like to connect a mechanical element to electrical 
circuits, Simulink can not do that. The analogies between electrical and mechanical 
elements are presented clearly by Warren P.Mason [57], [58]. 

Disadvantages: 
- Care must be taken to make sure whether the boundary conditions are compatible with 

those used in the original derivation of the equivalent circuit [58]. 
In many systems, both commercial and industrial, pressure measurement plays a key role. 
Since pressure is a normal stress (force per unit area), pressure measurement can be done by 
using piezoelectric material which can convert stress into voltage. Equivalent circuits such 
as Mason’s model [36] provide a powerful tool for the analysis and simulation of 
piezoelectric transducer elements. Most of the analogous circuits which have appeared in 
the literature implement transducers as the circuit elements. This model simulates both the 
coupling between the mechanical and electrical systems and the coupling between the 
mechanical and acoustical systems [39]. The mechanical, electrical and acoustic parts of 
piezoelectric transducer can be varied and analysed about behaviour by implementing 
equivalent circuits on computer tools such as Ansoft®, Spice, ADS, etc. For IDT composing 
of N periodic sections, Smith et al [41] developed the equivalent circuit model based on 
Berlincourt et al [40] work about equivalent circuit for Length Expander Bar with parallel 
electric field and with perpendicular electric field and based on the equivalent circuit for 
electromechanical transducer presented by Mason [36]. “Smith model” henceforth will be 
used to indicate this model. From this model, some models for SAW device in literature 
have been implemented. However, these models would include only IDTs [42], [43]. In SAW 
pressure sensor, one of sensitive parts is propagation path. It should be included in the 
model. The hybrid model based on Smith model for SAW pressure sensor which includes 
the IDTs and propagation path have been constructed. 
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Another equivalent model is based on the Coupling-Of-Modes (COM) theory. An excellent 
recent review of COM theory used in SAW devices was written by K.Hashimoto [10]. Based 
on the COM equations, as the force and voltage analogy can be used, the relationships 
between the terminal quantities at the one electrical port and two acoustic ports for an IDT 
have been done. K.Nakamura [44] introduced a simple equivalent circuit for IDT based on 
COM approach that is developed in section 4. 
In conclusion, the equivalent-circuit model is chosen because it can allow fast design. This 
allows the designer to determine the major dimensions and parameters in number of 
fingers, fingers width, aperture, delay line distance, frequency response, impedance 
parameters and transfer characteristics of SAW device. 

3.2 Equivalent circuit for IDT including N periodic sections 

Based on Berlincourt et al [39] about equivalent circuit for Length Expander Bar with 
parallel electric field and with perpendicular electric field and based on the equivalent 
circuit for electromechanical transducer presented by Mason [36], Smith and al [41] have 
developed the equivalent circuit for IDT composed of N periodic sections of the form shown 
in Figure 12. 
 

 

Fig. 12. Interdigital transducer diagram 

One periodic section as shown in Figure 13 (a) can be presented by analogous one-
dimensional configurations: “crossed-field” model as in Figure 13 (b), and “in-line” model 
as in Figure 13 (c). In “crossed-field” model, the applied electric field is normal to the 
acoustic propagation vector; while in “in-line field” model, the electric field is parallel to the 
propagation vector. 
The important advantage of two one-dimensional models is that each periodic section can 
be represented by equivalent circuit of Mason, as shown in Figure 14 for “crossed-field” 
model and Figure 15 for “in-line field” model. The difference between these two equivalent 
circuits is that in “crossed-field” model, the negative capacitors are short-circuited. 
Where: 

 
04 2

θ π ω
α

ω
= =  (12) 
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With periodic section transit angle  

0

2
ω

θ π
ω

=  

 0 2
0

2

s

R
C k

π

ω
=  (13) 

R0 is electrical equivalent of mechanical impedance Z0 [59] 
k: electromechanical coupling coefficient  
C0=Cs/2 with Cs : electrode capacitance per section  
ω0 is center angular frequency  
 

 

Fig. 13. Side view of the interdigital transducer and 2 analogous one-dimensional 
configurations (a) Actual model, (b) “crossed-field” model, (c) “in-line field” model 

 

 

Fig. 14. Mason equivalent circuit for one periodic section in “crossed-field” model 

(a) 

(b) 

(c) 
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Fig. 15. Mason equivalent circuit for one periodic section in “in-line field” model 

One periodic section can be represented by the 3-port network [y] matrix. The [y] matrix of 
one periodic section for 2 models as follows (see Appendix, section Appendix 1), with  
G0=R0-1, R0 is expressd by (13): 
- for the “crossed-field” model: 

 

11 0
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33 0 0
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y jG g
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 (14) 

- for the “in-line field” model: 
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 (15) 

In IDT including N periodic sections, the N periodic sections are connected acoustically in 
cascade and electrically in parallel as represented in Figure 16. 
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Fig. 16. IDT including the N periodic sections connected acoustically in cascade and 
electrically in parallel 

Matrix [Y] representation of N-section IDT for two models, “crossed-field” model and “in-
line” model are in (16) and (17), respectively (the calculation development is presented in 
Appendix, section Appendix 1): 
- In "crossed-field" model:  
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- In "in-line field" model:  
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It was shown in the literature that the crossed field model yielded better agreement than the 
experiment when compared to the in-line model when K is small. In section 2, K is always 
smaller than 7.2%. Besides, in section stated above, the “crossed-field” model is simpler than 
“in-line field” model in term of equations of all element of [Y] matrix. Consequently, the 
“crossed-field” model is selected henceforth for the calculating, modeling the devices. 

3.3 Equivalent circuit for propagation path 

The delay line SAW device could be used for pressure sensor application. The sensitive part 
of this kind of device will be the propagation path. To model the pressure sensor using 
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SAW, it is necessary to construct the model for propagation path. Based on the equivalent 
circuit for electromechanical transducer presented by Mason [36], equivalent circuit of 
propagation path is presented as in Figure 17. 
 

 

Fig. 17. Equivalent circuit of propagation path, based on Mason model 

Where  

 
2

l

v

ω
γ =  (18) 

with v is SAW velocity, l is propagation length. 

3.4 Equivalent circuit for SAW delay line 

Due to the piezoelectric effect, an RF signal applied at input IDT stimulates a micro-acoustic 
wave propagating on its surface. These waves propagate in two directions, one to receiving 
IDT and another to the medium. The approximations as follows are assumed to construct 
the equivalent circuit for SAW delay line: 
- Assume that the IDT radiates the wave into a medium of infinite extent. 

Experimentally, an infinite medium is approximated either by using absorber, such as 
wax, polyimide to provide acoustic termination, or by using a short RF pulse 
measurement. The condition of infinite medium means that no wave reflects back to 
input IDT. This is created for SAW device model by connecting the acoustic 
characteristic admittance Y0 to one terminal of IDT. 

- Assume that the wave propagating to receiving IDT has no attenuation during 
propagation way between two IDTs. So, the propagation path between two IDTs can be 
expressed as the no-loss transmission line. 

Based on these two approximations, the [Y] matrix representation of IDT in section 3.2, and 
propagation path representation in section 3.3, the SAW delay line can be expressed as 
equivalent circuit as in Figure 18. 
 

 

Fig. 18. Equivalent circuit of SAW delay line, based on Mason model 
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Section 3 gives the equivalent circuit of SAW delay line, including IDT input, IDT output 
and propagation path. All of calculation developments are presented in appendix, section 2. 
In this appendix, a new equivalent circuit of IDT including N periodic section plus one 
finger, which we call it “N+1/2”, also are developed and presented. Another representation 
of SAW delay line is [ABCD] matrix representation which also proposed in appendix, 
section Appendix 4. [ABCD] matrix representation has one interesting property that in 
cascaded network, the [ABCD] matrix of total network can be obtained easily by 
multiplying the matrices of elemental networks. 

4. Equivalent circuit for IDT based on the Coupling-Of-Mode theory 

The Coupling-Of-Modes formalism is a branch of the highly developed theory of wave 
propagation in periodic structure, which has an history of more than 100 years. This theory 
covers a variety of wave phenomena, including the diffraction of EM waves on periodic 
gratings, their propagation in periodic waveguides and antennas, optical and ultrasonic 
waves in multi-layered structures, quantum theory of electron states in metal, 
semiconductors, and dielectrics…. Theoretical aspects of the wave in periodic media and 
applications were reviewed by C.Elachi [4], in which it included theories of waves in 
unbounded and bounded periodic medium, boundary periodicity, source radiation in 
periodic media, transients in periodic structures, active and passive periodic structures, 
waves and particles in crystals. An excellent recent review of COM theory used in SAW 
devices was written by K.Hashimoto [10]. 
A simple equivalent circuit for IDT based on COM approach was proposed by K.Nakamura 
[29]. This model would be useful to analyze and design SAW devices. Based on the COM 
equations, the relationships between the terminal quantities at the one electrical port and 
two acoustic ports for an IDT have been done. 

4.1 COM equation for particle velocities 

Consider an IDT including N periodic sections with periodic length of L as shown in Figure 19. 
 

 

Fig. 19. IDT including N periodic sections 

The particle velocities v+(x) and v-(x) of the wave propagating in the +x and –x directions in 
the periodic structure can be expressed as follows with the time dependence exp(jωt) term: 

 ( ) ( ) jkxv x A x e−+ +=  (19) 

 ( ) ( ) jkxv x A x e− −=  (20) 
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Where k is the wave number 

 / SAWk Vω=  (21) 

The amplitude A+(x) and A-(x) obey the following coupled-mode equations [60]: 

 2
11 12

( )
( ) ( )j x j xdA x

jK A x jK e A x j e V
dx

δ δζ
+

+ −= − − +  (22) 

 2
12 11

( )
( ) ( )j x j xdA x

jK e A x jK A x j e V
dx

δ δζ
−

− −+ −= + −  (23) 

Where V is the voltage applied to the IDT,  

ζ is the constant associated with the convention from electrical to SAW quantities, 

K11 and K12 are coupling coefficients, sum of the coupling coefficient coming from the 
piezoelectric perturbation and that coming from the mechanical perturbation. 

 0k kδ = −  , with 0

2
k

L

π
=  (24) 

The solution to (22) and (23) can be expressed as 

 ( )1 2 0
1 2( ) j x j x jk xv x h e ph e q V eβ β ζ− − −+ = + +  (25) 

 ( )1 2 0
1 2( ) j x j x jk xv x ph e h e q V eβ β ζ− −− = + +  (26) 

Where the subscripts 1 and 2 indicate the elementary waves with wavenumbers 0 1k β+  and 

0 2k β+  in the +x direction, and the magnitudes h1 and h2, respectively.  

 2 2
1 2 11 12, ( )K Kβ β δ= ± + −  (27) 

 1 11

12

K
p

K

β δ− −
=  (28) 

 
11 12

1
q

K Kδ
=

+ +
 (29) 

4.2 Equivalent circuit for IDT based on COM theory 

From the equations (25) and (26), the particle velocities at the both ends of the IDT can be 
expressed as: 

 1 2(0)v h ph q Vζ+ = + +  (30) 

 1 2(0)v ph h q Vζ− = + +  (31) 

 ( )1 1
1 2( ) j NL j NLv NL e h e ph q Vβ β ζ−+ = ± + +  (32) 
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 ( )1 1
1 2( ) j NL j NLv NL e ph e h q Vβ β ζ−− = ± + +  (33) 

The upper and lower signs in (32) and (33) correspond to the cases N=i and N=i+0.5, 
respectively, where i is an integer. Consequently, the total particle velocities at the two 
acoustical ports can be expressed as: 
- Particle velocity at port 1 (x=0): 

 1 1 2(0) (0) (1 )( ) 2v v v p h h q Vζ+ −= + = + + +  (34) 

- Particle velocity at port 2 (x=NL): 

 1 1
2 1 2( ) ( ) (1 )( ) 2j NL j NLv v NL v NL p e h e h q Vβ β ζ−+ −   = − + = + + +     (35) 

The two forces at two acoustic ports are considered to be proportional to the difference of v+ 
and v-. For the simplicity, these forces can be expressed as follows: 

 1 1 2(0) (0) (1 )( )F v v p h h+ −= − = − −  (36) 

 1 1
2 1 2( ) ( ) (1 )( )j NL j NLF v NL v NL p e h e hβ β−+ −  = − = ± − −   (37) 

From these equations, h1 and h2 are the terms of F1 and F2 as follows: 

 
1 1

1 1

2

1 1 22 2(1 )( 1) (1 )( 1)

j NL j NL

j NL j NL

e e
h F F

p e p e

β β

β β
=

− − − −
  (38) 

 
1

1 12 1 22 2

1

(1 )( 1) (1 )( 1)

j NL

j NL j NL

e
h F F

p e p e

β

β β
=

− − − −
  (39) 

The current I at the electrical ports can be expressed as: 

 

1 2

1 1

1 2

0

1 2

1 2

(1 )( ) 2

(1 ) ( 1) ( 1) 2

NL
j x j x

s

j NL j NL
s

I p h e h e q V dx j NC V

h h
j p e e q NLV j NC V

β β

β β

η ζ ω

η ζη ω
β β

− −

−

 = + + + + 

   
= + − + − + +  

   


 (40) 

where η  is the constant associated with the convention from SAW to electrical quantities, 

therefore associated with the coupling factor K. 
Cs is the capacitance for one electrode pair. 
By substituting equations (38) and (39) in (34), (35) and (40), the following equations can be 
obtained: 

 1 2

(1 ) (1 )
( 2 )

(1 ) (1 )
s

p p
I j NC q NL V F F

j p j p

η η
ω ζη

β β

+ +
= + +

− −
  (41) 

 1 1 2

1 11 1
2

1 tan 2 1 sin 2

p p
v q V F F

p j p j
ζ

θ θ

+ +
= +

− −
  (42) 
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 2 1 2

1 11 1
2

1 sin 2 1 tan 2

p p
v q V F F

p j p j
ζ

θ θ

+ +
= +

− −
   (43) 

Where 

 /2NLθ β=  (44) 

 1 2β β β≡ = −  (45) 

From these equations, the matrix as follows can be obtained: 

 1 1

2 2

(1 ) (1 )
( 2 )

(1 ) (1 )

1 11 1
2

1 tan 2 1 sin 2

1 11 1
2

1 sin 2 1 tan 2

s

p p
j NC q NL

j p j p
I V

p p
v q F

p j p j
v F

p p
q

p j p j

η η
ω ζη

β β

ζ
θ θ

ζ
θ θ

 + +
+ 

− −     + +   =     − −        + +
 

− −  





 

 (46) 

In the acoustic wave transducer using piezoelectric effect, the force and voltage analogy can 
be used. Therefore, the COM-based circuit of IDT as matrix in (46) can be considered as the 
reciprocal circuit. The reciprocity theorem states that if a voltage source E acting in one 
branch of a network causes a current I to flow in another branch of the network, then the 
same voltage source E acting in the second branch would cause an identical current I to flow 
in the first branch. By using this theorem in this case, replacing V and F1 together, the same 
value I requirement leads the following equations: 

 
(1 )

2
(1 )

p
q

j p

η
ζ

β

+
=

−
 (47) 

 2 jη ζ=  (48) 

From (46), (47), and (48), the matrix as in (46) becomes: 

 

2

0 0 0

1 1

0 0 0
2 2

0 0 0

2 2 2

1 1

2 tan 2 sin 2

1 1

2 sin 2 tan 2

Tj C
j Z j Z j Z

I V

v F
j Z jZ jZ

v F

j Z jZ jZ

φ φ φ
ω

θ θ θ

φ

θ θ θ

φ

θ θ θ

 
+ 

        =             
 
  





 

 (49) 

Where 

 0

1 1

1

p
Z

p qβ

−
= =

+
 (50) 

 2NL j NLφ η ζ= =  (51) 

 T sC NC=  (52) 
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Consequently, the simple equivalent circuit obtained for IDT with N electrode pairs is 
shown in Figure 20: 
 

 

Fig. 20. Equivalent circuit IDT based on COM theory 

4.3 Equivalent circuit for propagation path based on COM theory 

In SAW devices, the propagation path should be taken into account. It is necessary to 
determine the equivalent circuit for a propagation path of distance l between 2 IDTs. This 
propagation path is a uniform section of length l, with a free surface or a uniformly 
metallized surface. In this case, K11=K12=0, and ǃ=δ. 
Consequently, from equations (38) and (39), h1 and h2 can be expressed as: 

 
2

1 1 22 21 1

j l j l

j l j l

e e
h F F

e e

β β

β β
= −

− −
 (53) 

 2 1 22 2

1

1 1

j l

j l j l

e
h F F

e e

β

β β
= −

− −
 (54) 

And, the particle velocities are expressed as: 

 0 1( )
1 1( ) j k x jkxv x h e h eβ− + −+ = =  (55) 

 0 1( )
2 2( ) j k x jkxv x h e h eβ+− = =  (56) 

If the v1, v2, F1, and F2 are defined as: 

 1 (0) (0)v v v+ −= +  (57) 

 2 [ ( ) ( )]v v NL v NL+ −= − +  (58) 

 1 (0) (0)F v v+ −= −  (59) 
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 2 ( ) ( )F v NL v NL+ −= −  (60) 

Then, by expressing h1 and h2 in terms of F1 and F2 based on equations (53) and (54), the v1 
and v2 become as follows:  

 
2

1 1 2 1 22 2

1 2

1 1

j l j l

j l j l

e e
v h h F F

e e

β β

β β

+
= + = −

− −
 (61) 

 
2

2 1 2 1 22 2

2 1

1 1

j l j l
jkl jkl

j l j l

e e
v h e h e F F

e e

β β

β β
− +

= + = −
− −

 (62) 

Using the relation between complex number and trigonometry, the v1 and v2 can be 
expressed as follows: 

 1 1 2' ' ' '
0 0

1 1

tan 2 sin 2
v F F

jZ jZθ θ
= −  (63) 

 2 1 2' ' ' '
0 0

1 1

sin 2 tan 2
v F F

jZ jZθ θ
= − +  (64) 

Consequently, the equivalent circuit for propagation path can be represented by the π-
circuit of Figure 21: 
 

 

Fig. 21. Equivalent circuit of propagation path based on COM theory 

Based on Mason model, the equivalent circuit of propagation path was presented in Figure 
17, which has star form. In Figure 21, the circuit has triangle form. By using triangles and 
stars transformation theory published by A.E. Kennelly, equivalent circuit of propagation in 
these two figures is the same. Consequently, the approachs that are based on Mason model 
and COM theory can get the same equivalent circuit of propagation path. 

4.4 Equivalent circuit for SAW delay line based on COM theory 

Based on section 4.2 and 4.3, equivalent circuit of SAW delay line based on COM theory is 
presented in Figure 22. 
In this model, some parameters must to be calculated or extracted. SAW velocity v, 
piezoelectric coupling factor K could be calculated from section 2. The periodic length L (or 
wavelength ǌ) is determined by design and fabrication. 
The parameters K11 and K12 are coupling coefficients. They are sum of the coupling 
coefficient coming from the piezoelectric perturbation and that coming from the mechanical 
perturbation, and their equations for calculation are complicated [55].  Exact equations for 
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K11 and K12 were given by Y.Suzuki et al [55], but it seems so complex that their usefulnesses 
could be limited. However, from this work of Y.Suzuki et al [55], we propose the K11 and K12 
could be expressed as follows: 

 K11= O11K2k0 (65) 

 K12= O12K2k0 (66) 

Where k0 is stated by (24) 0

2
k

L

π
=  and K is piezoelectric coupling factor. 

O11 is so-called self-coupling constant of finger, and O12 is so-called coupling constant 
between fingers. O12 could also presents the reflective wave between two fingers. 
 

 

Fig. 22. Equivalent circuit of SAW delay line based on COM theory 

 

 

Fig. 23. Effect of O12 on S21(dB), N=50, vSAW=5120m/s, ǌ=8Ǎm, K=0.066453, O11=0 

Figure 23 shows the effects of O12 on S21(dB) of SAW device N=50, vSAW=5120m/s, ǌ=8Ǎm, 
K=0.066453 when O11=0. S21 is the transmission coefficient in the scattering matrix 
representation [28]. 

(a) 
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Figure 24 shows the effects of O11 on S21(dB) of SAW device N=50, vSAW=5120m/s, ǌ=8Ǎm, 
K=0.066453 when O12=0. So, O11 coefficient shifts the center frequency of SAW device, the 
positive value of O11 reduces the center frequency f0 of device, the negative on will increase the f0. 
 

 

Fig. 24. Effect of O11 on S21(dB), N=50, vSAW=5120m/s, ǌ=8Ǎm, K=0.066453, O12=0 

The effect of K11 and K12 could be explained by their measurement method [61]. K11 could be 
derived from the measurement of frequency response, therefore the usefulness of its 
calculation could be limited. Meanwhile, K12 can be extracted from FEM. It is shown in 
literature that K12 depends on the thickness of finger with respect to the wavelength. In our 
work, the ratio thickness/wavelength (its maximum value is 300nm/8Ǎm) is too small that 
its effect can be ignored. In conclusion, in our work, value of K11 and K12 are 0. 

5. Comparison of equivalent circuit of SAW device based on Mason model 
and COM thoery 

Figure 25 presents the comparison between hybrid model and COM model in that  
O11= O12=0, distance between 2 IDTs is 50ǌ. These models could be the same, except that a  
 

 

≈1.58 dB 

 

Fig. 25. Comparison between Hydrid model and COM model (O11=O12=0) 
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small difference in the peak value of S21 (dB) occurs. This difference could be explained by 

using “crossed-filed” model instead of actual model as in Figure 13. 

6. Conclusion 

The model used for SAW pressure sensor based on delay line are presented. For usefulness 

and reduction of time in design process, the equivalent circuit based on COM model, in 

which K11, K12=0 is proposed to be used. 

Acoustic wave properties in different structures of AlN/SiO2/Si, AlN/Si, and AlN/Mo/Si 

are analyzed. The wave velocity, coupling factor could depend on the wave propagation 

medium. 

From analyses of these structures, the range in which there is a weak dependence of the 

wave velocity, coupling factor on the AlN layer thickness could be known. The SAW 

devices should be fabricated in this range to facilitate manufacturing. 

For AlN/Si structure, this range is 3khAlN ≥ . 

For AlN/Mo/Si, if this kind of SAW device is fabricated in the range from 2.7khAlN ≥  to 

facilitate manufacturing, the use of Mo layer is useless. Consequently, to take full  
advantage of using Mo layer in term of wave velocity and coupling factor, it should be 
required to control the fabrication process carefully to obtain the required AlN thickness 

from khAlN=1.02 to khAlN=2.7. 

For AlN/SiO2/Si, this range is 5khAlN ≥  for khSiO2=0.7854, for thicker SiO2 layer, this 

range changes based on Figure 6 and Figure 7. Besides, using SiO2 layer would reduce 
temperature dependence of frequency. To choose the thickness of SiO2 layer, it would 
consider the effect of temperature dependence and analyses of wave velocity, coupling 

factor. 

7. Appendix: Development of calculation for equivalent circuit of SAW device 

7.1 Appendix 1. Equivalent circuit for normal IDT including N periodic sections  

 

 

Fig. Appendix.1. Mason equivalent circuit for one periodic section in “crossed-field” model 
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Fig. Appendix.2. Mason equivalent circuit for one periodic section in “in-line field” model 

One periodic section can be expressed by the 3-port network as follows:  
 

 

Fig. Appendix.3. One periodic section represented by 3-port network, admittance matrix [y] 

 
1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

i y y y e

i y y y e

i y y y e

     
     =     
          

 (Appendix.1) 

By the symmetrical properties of one periodic section (the voltage applied at port 3 will 
result in stress of the same value at port 1 and 2), the [y] matrix in (Appendix.1) becomes 
(Appendix.2) for Figure Appendix.4 and becomes (Appendix.3) for Figure Appendix.5. 
 

1 11 12 13 1

2 12 11 13 2

3 13 13 33 3

i y y y e

i y y y e

i y y y e

     
     = −     
     −     

(Appendix.2)  

Fig. Appendix.4.  
3-port network 
representation of one 
periodic section, with 
the change of sign 
between Y13 and Y23 to 
ensure that acoustic 
power flows 
symmetrically away 
from transducer 

1 11 12 13 1

2 12 11 13 2

3 13 13 33 3

i y y y e

i y y y e

i y y y e

     
     = − −     
     −     

(Appendix.3)

 

Fig. Appendix.5.  
3-port network 
representation of one 
periodic section, with 
the no change of sign 
between Y13 and Y23 
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Applying circuit theory, definitions of [y] matrix elements are presented: 

 

2 1

3 3

1 1

2 2

1 1
11 12

0 0
1 2

0 0

1 3
13 33

0 0
3 3

0 0

;

;

e e

e e

e e

e e

i i
y y

e e

i i
y y

e e

= =

= =

= =

= =

= =

= =

 (Appendix.4) 

And using trigonometric functions as follows: 

 ( )

2
cot

sin(2 )

1 1
cot

sin(2 ) 2

3cos(2 ) 1 sin(4 ) sin(2 )
(4 )

sin(4 ) sin(2 ) cos(2 )

tg g

tg tg g

tg tg
tg tg

tg tg

α α
α

α α α
α

α α α α α
α α

α α α α α

− = −

− = −

+ − −
= −

+ −

 (Appendix.5) 

The [y] matrix can be obtained for 2 models as follows: 
- for the “crossed-field” model: 

 

11 0

0
12

13 0

33 0 0

cot (4 )

sin(4 )

(2 4 )

y jG g

jG
y

y jG tg

y j C G tg

α

α

α

ω α

= −

=

= −

= +

 (Appendix.6) 

- for the “in-line field” model: 

 

2

0

00
11 0 2

0 0

0

2

0

0
12 0

0 0

0 0

13 0
0

0

0
33

0

1

sin(2 )
cot cot (2 ) 2

cot (2 )

1
cot

sin(2 )

2
2 cot cot (2 )

2
1

2

2
1

G

CG
y jG g g

C G
g

C

G
g

C
y jG

G G
g g

C C

tg
y jG

G
tg

C

j C
y

G

ω α
α α

ω
α

ω

α
ω α

α α
ω ω

α

α
ω

ω

ω

  
 −     = − − −   

    −    

 
− 

 =
  

− −  
  

= −
−

=
−

0

tg
C

α

 (Appendix.7) 
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In IDT including N periodic sections, the N periodic sections are connected acoustically in 
cascade and electrically in parallel as Figure Appendix.6.  
 

 

Fig. Appendix.6. IDT including the N periodic sections connected acoustically in cascade 
and electrically in parallel 

Because the symmetric properties of the IDT including N section like these of one periodic 
section, and from (Appendix.2), (Appendix.3), Figure Appendix.4 and Figure Appendix.5, 
the [Y] matrices of N-section IDT are represented as follows: 
 

 

Fig. Appendix.7. The [Y] matrices and the model corresponsive models 

Since the periodic sections are identical, the recursion relation as follows can be obtained: 

 e1 m=e2 m-1 (Appendix.8) 

 e3 N= e3 N-1= e3 N-2=...= e3 2= e3 1=E3 (Appendix.9) 

 i1 m=i2 m-1 (Appendix.10) 

With m is integer number, m=1,2, …, N-1, N 
The total transducer current is the sum of currents flowing into the N sections. 

 ( ) ( )

( ) ( )

3 3 1 3 2 3 N 1 3 N

13 1 1 13 2 1 33 3 1 13 1 2 13 2 2 33 3 2

13 1 N 1 13 2 N 1 33 3 N 1 13 1 N 13 2 N 33 3 N

I i  i .  i  i

   y e y e  y e  y e y e  y e ...

       y e y e  y e  y e y e  y e

−

− − −

= + +… + +

= − + + − + +

+ − + + − +

 (Appendix.11) 
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By applying (Appendix.8), (Appendix.9) and boundary conditions (e11 = E1, e2N=E2), 
(Appendix.11) becomes: 

 I3= y13e1 1-y13e2 N+ Ny33E3 =  y13E1-y13E2+ Ny33 E3 (Appendix.12) 

From Figure Appendix.7, the Y13 and Y33 can be expressed as:  

 Y13=y13 (Appendix.13) 

 Y33= Ny33 (Appendix.14) 

Because the N periodic sections are connected acoustically in cascade and electrically in 
parallel, the model as in Figure Appendix.5 should be used to obtain the [Y] matrix of N-
section IDT. 
From (Appendix.3) for one section, the i1 and i2 can be expressed 

 i1= y11e1+y12e2+ y13 e3, i2= -y12e1-y12e2+ y13 e3 (Appendix.15) 

Equations (Appendix.15) can be represented in matrix form like [ABCD] form in electrical 
theory as follows: 

 [ ]2 1

3
2 1

[ ]
e e

K L e
i i

   
= +   

   
 (Appendix.16) 

Where 

 [ ]

11

12 12

2 2
11 12 11

12 12

1y

y y
K

y y y

y y

 
− 

 =
 −

− 
  

 (Appendix.17) 

 [ ]

13

12

11 13 12 13

12

y

y
L

y y y y

y

 
− 

 =
 +
 
 

 (Appendix.18) 

By applying (Appendix.16) into N-section IDT as in Figure Appendix.6 and using 
(Appendix.9), the second recursion relation is obtained as follows: 

 [ ] 1

3
1

[ ]m m

m m

e e
K L E

i i
−

−

   
= +   

   
 (Appendix.19) 

Where m is integer number, m=1,2, …, N-1, N 

Starting (Appendix.19)(Appendix.19) by using with m=N, and reducing m until m=1 gives 
the expression: 

 [ ] [ ]0

3
0

N

N

e e
Q X E

i i

   
= +   

   
 (Appendix.20) 
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Where   

 [ ] [ ]
N

Q K=  (Appendix.21) 

 [ ] [ ]
1

1

02

[ ]
N

n

n

X
X K L

X

−

=

 
= = 
 

  (Appendix.22) 

Solving (Appendix.20) and using the boundary conditions (e0= E1, i0=I1) gives: 

 11 1
1 1 2 3

12 12 12

1Q X
I E E E

Q Q Q
= − + −  (Appendix.23) 

Consequently,  

 11
11

12

Q
Y

Q
= −  (Appendix.24) 

 12

12

1
Y

Q
=  (Appendix.25) 

 1
13

12

X
Y

Q
= −  (Appendix.26) 

The Y13 is known by (Appendix.13), so (Appendix.26) and matrix [X] don’t need to be 
solved. 
To solve (Appendix.24) and (Appendix.25), matrix [Q] should be solved. 
In “crossed-field” model, matrix [Q] can be represented in a simple form as follows: 

 [ ] 0

0

cos(4 ) sin(4 )

sin(4 ) cos(4 )

jR
K

jG

α α

α α

− 
=  − 

 (Appendix.27) 

 [ ]
2 0

0

cos(8 ) sin(8 )

sin(8 ) cos(8 )

jR
K

jG

α α

α α

− 
=  − 

 (Appendix.28) 

 [ ]3 0

0

cos(12 ) sin(12 )

sin(12 ) cos(12 )

jR
K

jG

α α

α α

− 
=  − 

 (Appendix.29) 

 . . . . . . etc. Consequently, matrix [Q] will be given:  

 [ ] [ ] 0

0

cos( 4 ) sin( 4 )

sin( 4 ) cos( 4 )

N N jR N
Q K

jG N N

α α

α α

− 
= =  − 

 (Appendix.30) 

From (Appendix.24) and (Appendix.35), Y11 and Y12 in “cross-field” model can be expressed: 

 11 0 cot ( 4 )Y jG g N α= −  (Appendix.31) 

 0
12

sin( 4 )

jG
Y

N α
=  (Appendix.32) 
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In conclusion, matrix [Y] representation of N-section IDT is: 
- In "crossed-field" model, from (Appendix.6), (Appendix.13), (Appendix.14), 

(Appendix.31) and (Appendix.32):  

 

11 0

0
12

13 0

33 0 0

cot (4 )

sin(4 )

(2 4 )

Y jG g N

jG
Y

N

Y jG tg

Y jN C G tg

α

α

α

ω α

= −

=

= −

= +

 (Appendix.33) 

- In "in-line field" model, from (Appendix.7), (Appendix.13), (Appendix.14), 
(Appendix.24) and (Appendix.25): 

 

11
11

12

12

12

13 0
0

0

0
33

0

0

1

2
1

2

2
1

Q
Y

Q

Y
Q

tg
Y jG

G
tg

C

j NC
Y

G
tg

C

α

α
ω

ω

α
ω

= −

=

= −
−

=
−

 (Appendix.34) 

Where [Q] can be calculated from (Appendix.17) and (Appendix.21). 

7.2 Appendix 2: Equivqlent circuit for “N+1/2” model IDT 

In case IDT includes N periodic sections (like in section 3.2 plus one finger (in color red) as 
shown in Figure Appendix.8 that we call “N+1/2” model IDT. 
 

 

Fig. Appendix.8. “N+1/2” model IDT 

The equivalent circuit for this model is shown in Figure Appendix.9 and the matrix [Yd] 
representation is shown as in Figure Appendix.10 (letter “d” stands for different from model 
[Y] in section 3.2. 
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Fig. Appendix.9. Equivalent circuit of “N+1/2” model IDT 

 

 

Fig. Appendix.10. [Yd] matrix representation of “N+1/2” model IDT 

The form of matrix [Yd] is: 

 [ ]
11 12 13

21 22 23

31 32 33

Yd Yd Yd

Yd Yd Yd Yd

Yd Yd Yd

 
 =  
  

 (Appendix.35) 

The elements of [Yd] matrix for “crossed-field” model are given as follows: 

 11 0 2

1
cot (4 )

sin (4 )(cot (2 ) cot (4 ))
Yd jG g N

N g g N
α

α α α

  
= − 

+  
 (Appendix.36) 

 0
12

sin(2 )[cot (4 )cos(2 ) sin(2 )]
cos(2 )

sin(4 ) cos(2 ) cot (4 )sin(2 )

jG g N
Yd

N g N

α α α α
α

α α α α

 − 
= − 

+  
 (Appendix.37) 

2 2

13 0

( 2 cot (4 )sin sin(2 ))sin(2 ) 2sin

sin(4 )(cos(2 ) cot (4 )sin(2 )) sin(4 )

tg g N
Yd jG tg

N g N N

α α α α α α
α

α α α α α

 − + + 
= + − 

+  
 (Appendix.38) 

 21 0

1

sin(4 )(cos(2 ) cot (4 )sin(2 ))
Yd jG

N g Nα α α α
= −

+
 (Appendix.39) 

 22 0

cot (4 )cos(2 ) sin(2 )

cos(2 ) cot (4 )sin(2 )

g N
Yd jG

g N

α α α

α α α

−
=

+
 (Appendix.40) 
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2

23 0

2 cot (4 )sin (2 ) sin(2 )

cos(2 ) cot (4 )sin(2 )

tg g N
Yd jG

g N

α α α α

α α α

− + +
=

+
 (Appendix.41) 

 31 0Yd jG tgα= −  (Appendix.42) 

 32 0 sin(2 )Yd jG α= −  (Appendix.43) 

 { }33 0 0(2 1) sin(2 ) (4 1)Yd j C N jG N tgω α α= − + + +  (Appendix.44) 

7.3 Appendix 3: Scattering matrix [S] for IDT 
The scattering matrix [S] of a three-port network characterized by its admittance matrix [Y] 
is given by [3]: 

 1
3 32 ( )S Y Y −= Π − Π +  (Appendix.45) 

Where 3Π  is the 3x3 identity matrix. 
After expanding this equation, the scattering matrix elements for a general three-port 
network are given by the following expressions: 

 
{

}

11 33 11 22 11 22 12 21

13 31 22 21 32 23 32 11 12 31

1
(1 )(1 )

       [ (1 ) ] [ ( 1) ]

S Y Y Y Y Y Y Y
M

Y Y Y Y Y Y Y Y Y Y

= + − + − + +

+ + − + − −

 (Appendix.46) 

 [ ]12 12 33 13 32

2
(1 )S Y Y Y Y

M
= − + −  (Appendix.47) 

 [ ]13 13 22 12 23

2
(1 )S Y Y Y Y

M
= − + −  (Appendix.48) 

 [ ]21 21 33 23 31

2
(1 )S Y Y Y Y

M
= − + −  (Appendix.49) 

 
{

}

22 33 11 22 11 22 12 21

13 31 22 21 32 23 32 11 12 31

1
(1 )(1 )

       [ ( 1) ] [ ( 1) ]

S Y Y Y Y Y Y Y
M

Y Y Y Y Y Y Y Y Y Y

= + + − − + +

+ − − + + −
 (Appendix.50) 

 [ ]23 23 11 13 21

2
(1 )S Y Y Y Y

M
= − + −  (Appendix.51) 

 [ ]31 31 22 21 32

2
(1 )S Y Y Y Y

M
= − + −  (Appendix.52) 

 [ ]32 32 11 12 31

2
(1 )S Y Y Y Y

M
= − + −  (Appendix.53) 

 
{

}

33 33 11 22 11 22 12 21

13 31 22 21 32 23 32 11 12 31

1
(1 )(1 )

       [ ( 1) ] [ ( 1) ]

S Y Y Y Y Y Y Y
M

Y Y Y Y Y Y Y Y Y Y

= − + + + − +

+ + − + + −

 (Appendix.54) 
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where  

 
3

33 11 22 12 21 23 32 11 12 31

13 31 22 21 32

det( )

(1 )[(1 )(1 ) ] [ (1 ) ]

         [ (1 ) ]

M Y

Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y

= Π +

= + + + − − + − −

− − −

 (Appendix.55) 

For model IDT including N identical sections, these equations can be further simplified. In 
case of  Figure Appendix.7 (b): 

 

11 22

21 12

31 13

23 32 13

Y Y

Y Y

Y Y

Y Y Y

=

=

=

= = −

 (Appendix.56) 

Therefore, Sij’s take the following form 

 ( ){ }2 2 2
11 22 33 11 12 13 11 12

1
(1 )(1 ) 2S S Y Y Y Y Y Y

M
= = + − + + +  (Appendix.57) 

 2
12 21 12 33 13

2
(1 )S S Y Y Y

M
 = = − + +   (Appendix.58) 

 13 31 13 11 12

2
(1 )S S Y Y Y

M
= = − + +  (Appendix.59) 

 23 32 13S S S= = −  (Appendix.60) 

 { }2 2 2
33 33 11 12 13 11 12

1
(1 )[(1 ) ] 2 (1 )S Y Y Y Y Y Y

M
= − + − + + +  (Appendix.61) 

Where 

 2 2 2
33 11 12 13 12(1 )[(1 ) ] 2 (1 )M Y Y Y Y Y= + + − − +  (Appendix.62) 

7.4 Appendix 4: Equivalent circuit for SAW device base on Mason model, [ABCD] 
Matrix representation 
7.4.1 Appendix 4.1: [ABCD] Matrix representation of IDT 

In SAW device, each input and output IDTs have one terminal connected to admittance G0. 
Therefore, one IDT can be represented as two-port network. [ABCD] matrix (as in Figure 
Appendix.11) is used to represent each IDT, because [ABCD] matrix representation has one 
interesting property that in cascaded network, the [ABCD] matrix of total network can be 
obtained easily by multiplying the matrices of elemental networks.  
 

 

Fig. Appendix.11. [ABCD] representation of two-port network for one IDT 
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To find the [ABCD] matrix for one IDT in SAW device, the condition that no reflected wave 
at one terminal of IDT, and the current-voltage relations by [Y] matrix in section are used as 
follows:  
 

 

Fig. Appendix.12. Two-port network for one IDT 

 
1 11 12 13 1

2 12 11 13 2

3 13 13 33 3

I Y Y Y V

I Y Y Y V

I Y Y Y V

     
     = −     
     −     

 (Appendix.63) 

And  I1=-G0V1 (Appendix.64) 

From these current-voltage relations, the V3 and I3 are given: 

 
2 2

11 12 11 0 0 11
3 2 2

12 13 11 13 13 0 12 13 11 13 13 0

Y Y Y G G Y
V V I

Y Y Y Y Y G Y Y Y Y Y G

− + +
= −

+ + + +
 (Appendix.65) 

2 2 2 2
13 12 13 11 13 0 11 33 13 33 0 11 12 11 0

3 2

0 11 12 13 11 13 13 0

2
11 33 13 33 0

2

12 13 11 13 13 0

( ) ( )( )

( )( )

      

Y Y Y Y Y G Y Y Y Y G Y Y Y G
I V

G Y Y Y Y Y Y G

Y Y Y Y G
I

Y Y Y Y Y G

− + + + − + − +
= −

+ + +

− +
−

+ +

 (Appendix.66) 

From (Appendix.65) and (Appendix.66), equivalence between port 3 in Figure Appendix.12 
equals to port 1 in Figure Appendix.11, and consideration of direction of current I2 in Figure 
Appendix.11 and Figure Appendix.12, [ABCD] matrix representation for two-port network 
of IDT in obtained: 

 
2 2

11 12 11 0

12 13 11 13 13 0

Y Y Y G
A

Y Y Y Y Y G

− +
=

+ +
 (Appendix.67) 

 0 11

12 13 11 13 13 0

G Y
B

Y Y Y Y Y G

+
=

+ +
 (Appendix.68) 

2 2 2 2
13 12 13 11 13 0 11 33 13 33 0 11 12 11 0

0 11 12 13 11 13 13 0

( ) ( )( )

( )( )

Y Y Y Y Y G Y Y Y Y G Y Y Y G
C

G Y Y Y Y Y Y G

− + + + − + − +
=

+ + +
 (Appendix.69) 

 
2

11 33 13 33 0

12 13 11 13 13 0

Y Y Y Y G
D

Y Y Y Y Y G

− +
=

+ +
 (Appendix.70) 

In case of “crossed-field” model, the [ABCD] can be further simplified: 
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[ ]
sin(4 ) cos(4 )

1 cos(4 ) sin(4 )

N j N
A

tg N j N

α α

α α α

−
=

− −
 (Appendix.71) 

 
0

A
B

G
=  (Appendix.72) 

[ ]0 0

sin(4 )
(2 cot 4)(cot(4 ) )

1 cos(4 ) sin(4 )

N
D N C Z N j tg

N j N

α
ω α α α

α α
= + + +

− −
 (Appendix.73) 

 0

1
C G D

B
= − +  (Appendix.74) 

One interesting property of [ABCD] of “crossed-field” mode is: 

 AD-BC=1 (Appendix.75) 

This means [ABCD] matrix is reciprocal.  
In SAW device, the ouput IDT is inverse of input IDT. By the reciprocal property of [ABCD], 
the [ABCD] matrix of output IDT can be easily obtained: 

 Aoutput= Dinput (Appendix.76) 

 Boutput= Binput (Appendix.77) 

 Coutput= Cinput (Appendix.78) 

 Doutput= Ainput (Appendix.79) 

in which N is replaced by M (number of periodic sections in output IDT) 
Consequently, the [ABCD] matrix of output IDT is: 

[ ]0 0

sin(4 )
(2 cot 4)(cot(4 ) )

1 cos(4 ) sin(4 )
out

M
A M C Z M j tg

M j M

α
ω α α α

α α
= + + +

− −
 (Appendix.80) 

 
[ ]0

sin(4 ) cos(4 )1

1 cos(4 ) sin(4 )
out

M j M
B

G tg M j M

α α

α α α

−
=

− −
 (Appendix.81) 

 
[ ]
sin(4 ) cos(4 )

1 cos(4 ) sin(4 )
out

M j M
D

tg M j M

α α

α α α

−
=

− −
 (Appendix.82) 

 0

1
out out

out

C G A
B

= − +  (Appendix.83) 

At the center frequency f0, the [ABCD] matrix becomes infinite since ǂ=0.5π(f/f0)= 0.5π. 
However, [ABCD] elements may be calculated by expanding for frequency very near 
frequency f0.  
By setting: 

 0

02 2 2 2

f f x

f N

π π π
α

−
= + = +  (Appendix.84) 
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Where   0

0

f f
x N

f
π

−
=  (Appendix.85) 

By using the limit of some functions as follows: 

 
0 0

lim[sin(4 )] lim[sin(2 )] 2
x x

N x xα
→ →

= ≈  (Appendix.86) 

 
0 0

lim[cos(4 )] lim[cos(2 )] 1
x x

N xα
→ →

= ≈  (Appendix.87) 

 
0 0

2
lim[ ] lim[ cot( )]

2x x

x N
tg

N x
α

→ →
= − ≈ −  (Appendix.88) 

The [ABCD] matrix of input IDT is obtained: 

 
2

4

x j
A

j N

−
≈  (Appendix.89) 

 
0

21

4

x j
B

G j N

−
≈  (Appendix.90) 

 0
0 0 0

4
2 4

2

NG
C fC x NG j fC

x j
π π

 
≈ − − + 

− 
 (Appendix.91) 

 0 0 0 02 4D fC Z x N j fC Zπ π≈ − −  (Appendix.92) 

7.4.2 Appendix 4.2: [ABCD] matrix representation of propagation path 

Based on equivalent circuit star model of propagation path in section 3.3, [ABCD] matrix 
representation of propagation way can be obtained clearly: 

 cos2path pathA D θ= =  (Appendix.93) 

 sin 2path pathB C j θ= =  (Appendix.94) 

With  
fl

v

π
θ =  (Appendix.95) 

Where l is the length of propagation path between two IDTs. 
So, [ABCD] matrix representations of input IDT, propagation way and output IDT are 
obtained. They are cascaded as Figure Appendix.13: 
 

 

Fig. Appendix.13. Cascaded [ABCD] matrices of input IDT, propagation way and output IDT 
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And the [ABCD] equivalent matrix of SAW device is shown in Figure Appendix.14 
 

 

Fig. Appendix.14. [ABCD] matrix of SAW device 

[ABCD] matrix of delay line SAW is 

 
path pathdevice device in in out out

path pathdevice device in in out out

A BA B A B A B

C DC D C D C D

      
=       

      
 (Appendix.96) 

 device in path out in path out in path out in path outA A A A B C A A B C B D C= + + +  (Appendix.97) 

 device in path out in path out in path out in path outB A A B B C B A B D B D D= + + +  (Appendix.98) 

 device in path out in path out in path out in path outC C A A D C A C B C D D C= + + +  (Appendix.99) 

 device in path out in path out in path out in path outD C A B D C B C B D D D D= + + +  (Appendix.100) 

Where [ABCD]in is calculated from (Appendix.71), (Appendix.72), (Appendix.73) and 
(Appendix.74). 
[ABCD]out is calculated from (Appendix.80), (Appendix.81), (Appendix.82) and (Appendix.83). 
[ABCD]path is calculated from (Appendix.93) and (Appendix.94). 
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