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1. Introduction 

The reduction of the effects of mechanical vibration fall into the of vibration isolation, design 
for vibration or vibration control (de Silva, 2000). The vibration control is subdivided into two 
group: passive control and active one. The core of the vibration control is to detect the level of 
vibration in a system and to counteract the effects of the vibration, so it needs two devices. 
Hence, the passive devices do not require external power for their operation. Hence, passive 
control is relatively simple, reliable and economical. But it has limitations namely, the 
control force depends entirely on the natural dynamics and it may not be adjust on line. 
Furthermore, in a passive device, there is no supply of power from an external source. It 
leads to the incomplete control, particularly in complex and high-order systems. 
The shortcomings of passive control can be overcome using an active one. In this case, the 
system response is directly sensed on line and on that basis, the specific control actions are 
applied to any locations of the system. But the active control needs external power, namely 
to apply control forces to vibrating system through actuators and to measure vibration 
response using sensors. 
Two different types of actuators can be applied (Shimon et al., 2005). The first, inertial 
actuators, make up a piezoelectric material to vibrate large masses. Their vibrations are used 
to counteract the vibrations of the structure (Jiang et al., 2000). The advantages and 
disadvantages are enumerated in above reference. 
The second type of actuators is a layer of smart or intelligent materials. The sensors also 

belong to these materials; together they are well−known as piezoelectric elements 
(Tylikowski & Przybyłowicz, 2004). It was shown that these elements can offer excellent 
potential for an active vibration reduction of the structure vibrating with low frequencies 
(Croker, 2007; Fuller at al, 1997; Hansen & Snyder, 1997; Kozień, 2006; Przybyłowicz, 2002; 
Wiciak, 2008). As a general, piezoelectric elements are glued to the host structure. It makes 
the advantage, namely their incorporating into the structure is that the actuating mechanism 
becomes part of the structure. Both sensors and actuators are relatively light, compared to 
the structure, and can be made in arbitrary shape. The disadvantage is that they once 
bonded and they cannnot be used again. In recent years the measure of the vibration with 
the sensors are replaced by touch less measures. For this reason, hereafter in research the 
sensors are omitted and only second type actuators will be considered. Nowadays actuators 
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are used to very original structures for example to the satellite boom (Moshrefi-Torbati et al., 
2006) or to sun plate (Qiu et al., 2007). 
To make the reduction more effective, many problems should be solved.  

• dynamic effects (mass loading and stiffness) of the actuators on the structure vibration 
(Charette et al., 1998; Gosiewski & Koszewnik, 2007; Hernandes et al., 2000; Q. Wang & 
C. Wang, 2001) 

• dynamic effects of the glue (between actuators and structure) on the structure vibration 
(Pietrzakowski, 2004; Sheu et al., 2008). 

• actuators’ geometric-technical features (Frecker, 2003; Hong et al., 2007; Wang, 2007), 

• orientation of the actuators on the structure (Bruant et al., 2010; Ip & Tse, 2001; Qiu et 
al., 2007), 

• appropriate actuators distribution on the structure (Bruant et al., 2010), 

• others, but they play a minor part. 
Reviewing the literature, it appears that the actuators distribution play a major part. Now, a 
question arises about an optimal distribution of actuators. In the recent year, a great number 
of papers has been published on this subject. It is obvious that there are a lot of optimization 
techniques; an excellent survey is given in (Bruant et al., 2010). Two main approaches are 
distinguished to this problem. 
First of them is the coupling of the optimization of actuators/sensors locations and controller 
parameters. In this case the following criterions are taken into account for the optimization: 

• quadratic cost function of the measure error and the control energy (Bruant et al., 2001), 

• maximization of dissipation energy during the control (Yang, 2005), 

• spatial 2H  norm of the closed-loop transfer matrix from the disturbance to the 

distributed controlled output (Liu et al., 2006), 

• simultaneous simple H∞  controller (Guney & Eskinat, 2007). 
As can be seen, the optimization criterions are dependent on the choice of controllers. 
Therefore, the optimal location obtained using one controller may not be a suitable choice 
for another one. 
At the latter approach, the optimal location is obtained independently of the controller 
definition. In this case, the following criterions are used: 

• maximization controllability/observability criterion using the gramian matrices (Bruant 
& Proslier, 2005; Jha & Inman, 2003), 

• modal controllability index based on singular value analysis of the control vector 
(Dhuri, & Seshu, 2006), 

• maximization of the control forces transmitted by the actuators to the structure (Q. 
Wang & C. Wang, 2001), 

• using the 2H  norm (Halim & Reza Moheimani, 2003; Qiu et al., 2007). 
In the quoted references, it was not provided the actuators distribution in explicite; only the 
general rules (criterions) were formulated. However, this problem was partially solved; it 
was proved in (Brański & Szela, 2007; Brański & Szela, 2008; Szela, 2009; Brański & Szela 
2010; Brański & Lipiński, 2011) that the most effective actuators distribution was on the 
structure sub-domains with the largest curvatures; such distribution was called quasi-
optimal one. As the research object, a right-angled triangle plate with clamped-free-free 
boundary conditions was taken into account. The quasi-optimal distribution was deduced 
based on the heuristic reasons and the conclusions were confirmed only numerically. 
Furthermore, the problem was solved merely for the separate modes. 
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Basing on the quasi-optimal distribution of the actuators, the protection beam vibration is 
achieved (Brański et al., 2010; Brański & Lipiński, 2011). In this case always the separate 
modes were considered. The problem was solved based on heuristic reasons and was 
confirmed analytically. In the latest own research, the results presented in (Brański et al., 
2010) were substantiated analytically (Brański & Lipiński, 2011). 
In this chapter, the above attitude to the optimal actuators distribution is continued and 
extended. First at all, the optimal problem is formulated. For this purpose, the optimization 
criterion is defined. It is assumed that a measure of the vibration reduction is a reduction 
coefficient (Szela, 2009; Brański & Szela 2010) and here it becomes the objective function. 
This attitude is quite similar to the maximization of the control forces transmitted by the 
actuators to the structure (Q. Wang & C. Wang, 2001). 
Dynamics effects of the glue and actuators are also considered. Furthermore, the solution of 
active vibrations reduction is derived for general solution, not only for separate modes. 
Since analytical solution was attained with separation of variables method, first of all the 
modes of the problem are derived. Next, the orthogonality condition of the modes is derived 
too. 
The simple supported beam is chosen as the research object. The study of beams is very 
important in a variety of practical cases, noteworthy, the vibration analysis of structures like 
bridges, tall buildings, and so on. Loosing a bit on generality, it is considerably easier to 
realize the aim of the paper. It is assumed that the beam is excited with evenly spread and 
harmonic force. The material inner damping coefficients of all elements of the research 
system are taken into account. It seems that all main factors having the influence on the 
beam vibration were considered. 
To solve the problem analytically, a few simplifications are made. Namely, the energy 
provided to the system is in the form of voltage applied to the surface of the actuators. 
Assuming that the charge is homogenously distributed, as a result of piezoelectric effect, the 
actuators interact with the beam with moments for couple of forces homogenously 
distributed along the actuators’ edges. Next, these moments are replaced with the couple of 
forces and finally, they are counteracted the vibrations. 
All problems were considered only theoretically; no calculations are run. It seems that 
presented considerations will be the base to many numerical simulations and experiments. 
To the author’s knowledge, the theoretical description of the optimal actuators distribution 
on even simple structure like the beam, up to now have not been brought up. 

2. Active beam vibration reduction with additional elements 

In this problem, the additional elements make the concentrated masses and actuators and all 
constitute the mechanical set beam-actuators-masses. Adding actuators (and the glue at the 
same time) is the technical necessity but they introduce to the mechanical set the additional 
dynamics effects namely, local stiffness and concentrated masses. As far as concentrated 
masses are concerned, adding them is substantiated as follows. The proposed optimal 
distribution of the actuators needs asymmetrical beam vibrations and these ones may be 
ensured by at least one concentrated mass. 

2.1 Uniform beam vibration with damping 

There are four theories (models) for the transversely vibrating uniform beam (Han et al., 
1999): Euler-Bernoulli, Rayleigh, shear and Timoshenko. The first of them, called the 
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classical beam theory, is applied here. It is simple and provides reasonable results for 
formulated problem. 
 

 

ℓ

u

x

f(x)

0

 

Fig. 1. The geometry of the simple supported beam 

Let be the beam as depicted in Fig. 1. The Bernoulli-Euler equation governs transverse 
vibration (or bending or lateral vibration) of the beam has a following standard form 
(Kaliski, 1986; Pietrzakowski, 2004), 

 ( )4 4 2
t tEJD u μEJD D u ρS D u f+ + = −  (1) 

where u u(x, t)=  – beam deflection at the point x  and the time t , f f(x,t)=  – load force, 
4 4 4D (.) (.) / x= ∂ ∂ , tD (.) (.) / t= ∂ ∂ ; hereafter the rest symbols are jointly explained. 

To solve Eq. (1) explicitly, four boundary conditions, at the ends of the beam, are needed. In 
general, boundary conditions represent displacement, slope, moment and shear 
respectively. Here, it is assumed that the beam is simple supported, then both displacement 
and the bending moment equal zero 

 u(0, t) 0,= 2D u(0,t) 0=  (2) 

 u( , t) 0,= 2D u( ,t) 0=  (3) 

To solve over determined problem, one needs to know initial conditions. But here, the 
harmonic steady state plays a major part, so that the initial conditions are omitted. 

2.2 Beam vibration with concentrated masses 

To solve the intended problem, Eq. (1) must be rounded out. First of all, to obtain 

asymmetric modes and consistently asymmetric general vibration, a few concentrated 

masses are added to the beam (Low & Naguleswaran, 1998; Majkut, 2010; Naguleswaran, 

1999).  They are marked by { }rm ,  and their distribution is described with set of coordinates 

{ }rx , see Fig. 2, hence 

 r r 1 1 2 2 r rr
m (x x ) m (x x ) m (x x ) ... m (x x ) ...δ δ δ δ− = − + − + + − +  (4) 

where  rr 1,2,...,n= , (.)δ  − Dirac’s delta function. 

 

 

0 ℓ

x

x2
x

rx1

m 2 mrm1 ... ...

 

Fig. 2. Distribution of the concentrated masses 
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Furthermore, the dynamic effects of the actuators and glue on the beam vibration are 

introduced. The location and length of separate actuators, and the glue layers 

simultaneously, are denoted commonly with coordinates { }sx  and { }s  respectively and 

they are arranged as depicted in Fig. 3. 
 

 

0

x

x x2

2

xs

s... ...1

1

ℓ ℓ ℓ

ℓ
 

Fig. 3. Distribution of actuators and glue layers 

For simplicity, let { }P E, J,h, ,S,ρ µ=  means the physical and geometrical parameters of the 

beam, actuators and glue, i.e. {Young's modulus, surface moment of inertia, thickness, mass 

density, surface of the rectangular cross-section, inner damping factor} respectively. 

Furthermore all parameters are supplemented with following index 

{ } { }b,a,g [b]eam,[a]ctuator,[g]lueϑ = = , for example S bhϑ ϑ=  means the surface of the 

rectangular cross-section, b  − beam / glue layer width. Moments of inertia are calculated 

relatively of y -axis, see Fig. 4, where the neutral axis displacement d  is neglected , hence 
3

b bJ (bh )/12= , 3 2
g g g b gJ (bh )/12 S (h 2 h 2)= + + , 3 2

a a a b g aJ (bh ) /12 S (h 2 h h 2)= + + + .  
 

 

y

b

ha

hb d

hg

 

Fig. 4. Cross-sections of the set beam−actuator−glue 

The parameters of the set beam-actuators-glue may be written as 

 
0

b s 1s 2s b ss s
P P P H(x x ) P P H= + − = +   (5) 

where ss n1,2,...,= , s a gP P P= + , 
0

1s 2s 1s 2sH H(x x ) H(x x ) H(x x )= − = − − − , 1sH(x x )−  − 

Heaviside step function in point 1sx  and so on,  { } { }1s 2s s s s sx ,x x 2 ,x 2= − +  . 

For sn  aktuators ( sn  glue layers) and rn  concentrated masses, Eq. (1) takes the form 

( ) ( ) ( ) ( ) ++++++  uDHSSuDDHJEJEuDHJEJE 2
ts

0

ssbbt
4

s

0

sssbbb
4

s

0

ssbb ρρµµ
 

2
r r tr

m (x x )D u fδ+ − = −  (6) 

The Eq. (6) may be written down quite similar like Eq. (1), namely 

 ( ) ( )4 4 2
t r tEJD u EJD D u S D u fµ ρ α+ + + = −  (7) 
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where hereafter 

0

b b s ss
EJ E J E J H ,= + 0

b b b s s ss
EJ E J E J Hµ µ µ= + , 

 
0

b b s ss
S S S H ,ρ ρ ρ= + r r rr

m (x x )α δ= −  (8) 

On the ground of the EJ , Sρ  and rα  form, Eq. (7) can not be understood in a classical 

manner. To solve it, some methods may be applied. One of them is presented in (Ercoli & 

Laura, 1987; Kasprzyk & Wiciak, 2007; Majkut, 2010); another attitude may be found in 

(C.N. Bapat & C. Bapat, 1987) and it is applied here. 
 

 

0

x

xs x rx1s

mr

x2s

sℓ

 

Fig. 5. Geometry of the set beam−one actuator−one mass 

At the latter attitude, the beam is divided into some uniform elements. The division may not 

be coincidental. To clearly explain this problem, for simplicity consider a set beam-one 

actuator (and glue)-one concentrated mass, Fig. 5. The division is imposed out of the change 

of physical properties namely, properties of the actuators (and glue) and concentrated 

masses. So, the beam is divided into jj 1,2,...,n 4= =  elements. All elements may be 

considered separately and the solution to Eq. (7) can be expressed as 

 jj
u(x, t) u (x, t)=   (9) 

where ju (x,t)  is the solution on j -element and it is fulfilled the following equation 

 ( ) ( )4 4 2
j j j j j j t j j j r t j jE J D u E J D D u S D u fµ ρ α+ + + = −  (10) 

To find ju (x,t)  with the separation of variables method, the eigenvalues and eigenfunctions 

for each element are needed. 

2.3 Eigenvalues and eigenfunctions problem 

In this problem it is assumed that ( , ) 0jf x t =  and j 0µ = , hence based on Eq. (10) one obtains 

 4 2
j j j j j t jE J D u S D u 0ρ+ =  (11) 

where j jE J  and j jSρ  may be different on the separate elements, but here, as depicted in 

Fig. 5, is 

 1 1 3 3 4 4 b bE J E J E J E J ,= = = 2 2 b b a a g gE J E J E J E J= + +  (12) 

 1 1 3 3 4 4 b bS S S S ,ρ ρ ρ ρ= = = 2 2 b b a a g gS S S Sρ ρ ρ ρ= + +  (13) 

The boundary conditions for the j −element consist of boundary conditions of the problem 

and coupling conditions between neighboring elements. The concentrated mass rm  is 
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considered in coupling conditions between third and forth elements and therefore it is 

omitted in Eq. (11). 
Let the solution be represented by a product of spatial and temporal functions 

 j ju (x,t) X (x) T(t)=  (14) 

Substituting (14) into (11) gives 

 4 2
j j j j j j tE J D X T S X D T 0ρ+ =  (15) 

or 

 
4 2

j j j 2t

j j j

E J D X D T

S X T
ω

ρ
= − =  (16) 

hence 

 4 4
j j jD X X 0λ− =  (17) 

 2 2
tD T T 0ω+ =  (18) 

where the dispersion relationship is given by 

 
2

j j4 2
j

j j j

S

E J

ρ ω
λ ω

γ
= =  (19) 

The Eq. (17) is very important and the solution to it is 

 j j 1 j j 2 j j 3 j j 4 jX (x) A K ( x) B K ( x) C K ( x) D K ( x)λ λ λ λ= + + +  (20) 

where Krylov functions are defined as, (Kaliski, 1986), 

( )1K (z) ch(z) cos(z) 2 ,= + ( )2K (z) sh(z) sin(z) 2= − ,  

 ( )3K (z) ch(z) cos(z) 2 ,= − ( )4K (z) sh(z) sin(z) 2= +  (21) 

 

 

0

xu2 u4u3u 1

e 2 e 4e 3e 10 0 0 0

m r

ℓ
 

Fig. 6. Geometry of the set beam-one actuator-one mass in local coordinates 

The boundary conditions in local coordinates, jx [0,e ]∈ , to the separate j -element have the 

form, Fig. 6, 

• boundary conditions at the left end of the 1st−element 

 1X (0) 0,= 2
1D X (0) 0=  (22) 
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• coupling conditions between 1st and 2nd−elements 

1 1 1 2 2X ( e ) X ( 0),λ λ= 1 1 1 2 2DX ( e ) DX ( 0)λ λ= , 

 2 2
1 1 1 1 1 2 2 2 2E J D X ( e ) E J D X ( 0),λ λ= 3 3

1 1 1 1 1 2 2 2 2E J D X ( e ) E J D X ( 0)λ λ=  (23) 

• coupling conditions between 2nd and 3rd−elements 

2 2 2 3 3X ( e ) X ( 0),λ λ= 2 2 2 3 3DX ( e ) DX ( 0)λ λ= , 

 2 2
2 2 2 2 2 3 3 3 3E J D X ( e ) E J D X ( 0),λ λ= 3 3

2 2 2 2 2 3 3 3 3E J D X ( e ) E J D X ( 0)λ λ=  (24) 

• coupling conditions between 3rd and 4th−elements 

3 3 3 4 4X ( e ) X ( 0),λ λ= 3 3 3 4 4DX ( e ) DX ( 0),λ λ= 2 2
3 3 3 3 3 4 4 4 4E J D X ( e ) E J D X ( 0)λ λ=  

and 

3 2 3
3 3 3 3 3 r 3 3 3 4 4 4 4E J D X ( e ) m X ( e ) E J D X ( 0)λ ω λ λ+ =  

or 

 3 2 3
3 3 3 3 3 r 4 3 4 4 4 4E J D X ( e ) m X ( 0) E J D X ( 0)λ ω λ λ= +  (25) 

• boundary conditions at the right end of the 4th−element 

 λ =4 4 4( ) 0,X e λ =2
4 4 4( ) 0D X e  (26) 

Since 1 2 3 4λ λ λ λ≠ ≠ ≠  then, to calculate them, the Eq. (19) must be used. It is convenient to 

express { }2 3 4, ,λ λ λ  as a function 1λ , hence 

 4 4 4 4 2
1 1 2 2 3 3 4 4λ γ λ γ λ γ λ γ ω= = = =  (27) 

or 

 ( )4 4
2 1 1 2λ λ γ γ= , ( )4 4

3 1 1 3λ λ γ γ= , ( )4 4
4 1 1 4λ λ γ γ=  (28) 

Substituting Eq. (20) into boundary conditions (22) it appears that 1A 0= , 1C 0= . In the 

same way, the rest of conditions given by Eqs. (23) − (26) lead to the set of algebraic 

equations and it may be written in the matrix form 

 =A x 0  (29) 

The matrix A  is too large, to presented it in explicit form. Hence, its elements fall into 

blocks so that the matrix A  can be written as 

 

′ ′′ 
 

′′ ′′′ 
=  ′′′ ′′′′ 
 ′′′′ 

1 2

1 2

1 2

1

A A 0 0

0 B B 0
A

0 0 C C

0 0 0 D

 (30) 
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In the current boundary problem, the separate blocks take the form 

 

2 4

1 3 1 1 2

2 2 2
1 1 1 4 1 1 1 2 2 2 2

3 3 3
1 1 1 1 1 1 1 3 2 2 2

1 2 3 4

2 2 2 3 2 4 2 1

2 2 2 2
2 2 2 3 2 2 2 4 2 2 2 1 2 2 2 2

3
2 2

K K 1 0 0 0

K K 0 0 0

E J K E J K 0 0 E J 0

E J K E J K 0 E J 0 0

K K K K

K K K K

E J K E J K E J K E J K

E

λ λ λ

λ λ λ

λ λ λ

λ λ λ λ

λ λ λ λ

λ

′ ′ −

′ ′ −

′ ′ −

′ ′′ ′ ′ − 
= 

′′ ′′ ′′ ′′ ′′  
′′ ′′ ′′ ′′

′′ ′′ ′′ ′′

1 2

1

A A

0 B

0

3 3 3
2 4 2 2 2 1 2 2 2 2 2 2 2 3J K E J K E J K E J Kλ λ λ

 
 
 
 
 
 
 
 
 
 
 
 
 ′′ ′′ ′′ ′′ 

 (31) 

 

3

2
3 3 3

3
3 3 3

1 2 3 4

3 2 3 3 3 4 3 1

2 2 2 2
3 3 3 3 3 3 3 4 3 3 3 1 3 3 3 2

3 3 3 3
3 3 3 4 3 3 3 1 3 3 3 2 3 3

1 0 0 0

0 0 0

0 0 E J 0

0 E J 0 0

K K K K

K K K K

E J K E J K E J K E J K

E J K E J K E J K E J

λ

λ

λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

−

−
′′

−

′′ ′′′ − 
= 

′′′ ′′′ ′′′ ′′′ ′′′  
′′′ ′′′ ′′′ ′′′

′′′ ′′′ ′′′ ′′′

′′′ ′′′ ′′′

1

1 2

1

B

B B

0 C

0

3 3K

 
 
 
 
 
 
 
 
 
 
 
 
 ′′′ 

 (32) 

 

4

2
4 4 4

2 3
r 4 4 4

1 2 3 4

3 4 1 2

1 0 0 0

0 0 0

0 0 E J 0

m E J 0 0

K K K K

K K K K

ν

λ

λ

ω λ

− 
 

− 
′′′ ′′′ ′′′′ −   =   ′′′′ − −    

 ′′′′ ′′′′ ′′′′ ′′′′
 

′′′′ ′′′′ ′′′′ ′′′′  

1

1 2

1

C
C C

0 D

0

 (33) 

where the symbols in matrices are given by 

{ } { }1 2 3 4K K ,K ,K ,Kυ = , 

 1 1K K ( e ),υ υ λ′ = 2 2K K ( e ),υ υ λ′′ = 3 3K K ( e ),υ υ λ′′′ = 4 4K K ( e )υ υ λ′′′′=  (34) 

The unknowns are collected in column matrix 

 [ ]
T

1 1 2 2 2 2 3 3 3 3 4 4 4 4B ,D ,A ,B ,C ,D ,A ,B ,C ,D ,A ,B ,C ,D=x  (35) 

To solve of the homogeneous matrix equation (29), one assumes that 1det ( ) 0λ =A  and it 

gives the set { }1νλ , 1,2,...,nν = . Based on Eq. (28) one can calculate { }2 3 4, ,ν ν νλ λ λ  and 

finally, based on Eq. (19), the frequency { }νω  of the system beam-actuator-mass. 

www.intechopen.com



  
Acoustic Waves – From Microdevices to Helioseismology 

 

406 

Now, the unknowns put down in column matrix, Eq. (35), should be determined. Let the 

main matrix elements A  be written as two suffix quantities Aαβ , where α  and β  label the 

rows and columns respectively. Let Mαβ  be the minor of the Aαβ  element. The general 

solution to Eq. (29) is 

 1 2 3
1 1 2 1 2 3B : D : A : ... ( 1) M : ( 1) M : ( 1) M : ...α α α

α α α
+ + += − − −  (36) 

Substituting { }jνλ  and unknowns x  to Eq. (20), the ν −eigenfunctions (ν −modes) assigned 

to the j −element are obtained. The solution to Eq. (10) is given by 
 

 j j j jj j j
X(x) X (x) X ( x) X (x) X (x)ν ν νν ν ν

λ= = = =     (37) 

where 
j j

(...) (...)
ν ν

=    and the separate modes are equal 

 j j 1 j j 2 j j 3 j j 4 jX (x) A K ( x) B K ( x) C K ( x) D K ( x)ν ν ν ν νλ λ λ λ= + + +  (38) 

2.4 Orthogonality of modes 

Orthogonality condition of the uniform beam modes may be found in (Kaliski, 1986; de 
Silva, 2000). First of all, based on twice integration by parts, one has 

 ( )4 3 2 2 2

0 00
X (x)D X (x)dx X (x)D X (x) DX (x)D X (x) D X (x)D X (x)dxν µ ν µ ν µ ν µ= − + 

 
 (39) 

The separate modes X (x)µ , X (x)ν , fulfill the following modal equations 
 

 4 2EJD X (x) S X (x)µ µ µω ρ=  (40) 

 4 2EJD X (x) S X (x)ν ν νω ρ=  (41) 

Multiplying above equations by X (x)ν  and X (x)µ  respectively, integrate both in range o 

integration x [0, ]∈  , use Eq. (39), subtract the second result from the first one, one obtains 

(for simplicity an argument (x)  is omitted) 
 

 ( ) ( ) ( )2 2 3 2 3 2

0 0
S X X dx EJ X D X DX D X X D X DX D Xν µ ν µ µ ν µ ν ν µ ν µω ω ρ  − = − − − 


 (42) 

For standard boundary conditions, the right-hand-side equals zero. 
The procedure outlined above can be used to the problem presented in Fig. 6, but Eq. (39) 

must be applied to the separate j −element, namely 
 

 
( )

jj

j

ee
4 3 2

j j j j j j0 0

e
2 2

j j0

X (x)D X (x)dx X (x)D X (x) DX (x)D X (x)

                                   D X (x)D X (x)dx

ν µ ν µ ν µ

ν µ

= − +

+




 (43) 

Considering both boundary conditions of the problem and coupling conditions between 

neighboring elements, Eqs. (22)−(26), instead of Eq. (42) one has 
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( )( 1 2 3 4e e e e
2 2

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 40 0 0 0
S X X dx S X X dx S X X dx S X X dxν µ ν µ ν µ ν µ ν µω ω ρ ρ ρ ρ− + + + +     

)r 4 4 4 4m X (0)X (0) E Jν µ+ = ⋅  

( ) ( )3 2 3 2
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4X (e )D X (e ) DX (e )D X (e ) X (e )D X (e ) DX (e )D X (e )µ ν µ ν ν µ ν µ

 ⋅ − − −   (44) 

Because of Eq. (26), the right-hand-side is zero, hence 

( )( 1 2 3 4e e e e
2 2

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 40 0 0 0
S X X dx S X X dx S X X dx S X X dxν µ ν µ ν µ ν µ ν µω ω ρ ρ ρ ρ− + + + +     

 )r 4 4m X (0)X (0) 0ν µ+ =  (45) 

 

 

0 j = 2 j = 3

...

...j = 1

m
1

m
3

m
2

... ℓ
 

Fig. 7. Geometry of set with jn −elements 

The orthogonality condition, Eq. (45), may be generalized in a simple way. Let the system 

beam-actuators-masses be divided into jn −elements as depicted in Fig. 7. In this case one has 

 ( ) ( ) j j j j j

2 2
j j j j j j j n 1 n n n nj j
S X X dx m X (0)X (0) m X (e )X (e ) 0ν µ ν µ ν µ ν µω ω ρ +

 − + + =     (46) 

Since the term 2 2
ν µω ω−  is canceled for µ ν= , the general orthogonality condition is given by 

 ( ) j j j j jj j j j j j j n 1 n n n n 2j j

0,
S X X dx m X (0)X (0) m X (e )X (e )

,
ν µ ν µ ν µ

ν

ν µ
ρ

β ν µ
+

≠
+ + = 

=
   (47) 

The Eq. (47) in particular case is used in deriving the solution to the forced vibration 
problem. 

2.5 Forced vibrations with damping 

A point departure for further consideration is Eq. (7); for j −element one has 

 ( )4 4 2
j j j j j j t j j j t j jE J D u E J D D u S D u fµ ρ+ + = −  (48) 

The solution to Eq. (48) is forced vibrations with damping. Let be the load force in the form 

 j j ff (x, t) f (x)exp(i t)ω=  (49) 

where 1 2i ( 1)= − , fω  – excited frequency. 
Applying separation of variables method, the solution to Eq. (48) is assumed as 

 j jf fu (x,t) X (x)exp(i t)ω=  (50) 

Substituting Eqs. (49) and (50) to Eq. (48) one obtains 
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 4 2
j j f jf f jf j

j j

1
(1 i )D X (x) X (x) f (x)

S
γ µ ω ω

ρ
+ − = −  (51) 

The solution of the above equation is given by 

 jf j jX (x) C X (x)ν νν
=   (52) 

where jC ν  − constants, jX (x)ν  − Eq. (38). 

After some calculation, the constants jC ν  are expressed by 

 j j j j2 2
j j j

1 1 1
C I C I

S
ν ν ν ν

ν νρ α β
∗= =  (53) 

where 

 j 2 2
j j j

1 1 1
C

S
ν

ν νρ α β
∗ = , 

2 2 2
j j f f

1 1

(1 i )ν να µ ω ω ω
=

+ −
, j j jj

I f (x) X (x)dxν ν= −   (54) 

In the end, the problem of the forced j −element beam vibration with damping, excited with 

the force jf (x)  is solved; in the harmonic steady state it is given by 
 

 f jf j jj j
X (x) X (x) C X (x)ν νν

= =   (55) 

In current problem, two form of the forces have the practical meaning namely, the force 

with constant amplitude j0 0f (x) f=  and the force acting at discrete point ja if (x ) . The former 

may be interpreted as the spread excitation forced, for example with plane acoustic wave, 

but the latter is the control force due to actuators, henceforth 

 j 0 ja if (x) f f (x )= +  (56) 

2.6 Interaction between beam and actuators 

It is assumed that the actuator is perfectly bonded to the beam surface. Exciting actuator, the 

interaction between actuator and the beam is appeared. The interaction process is explained 

in (Hansen & Snyder, 1997; Fuller at al, 1997) in detail and references cited therein. 

Assuming the spatially uniform actuator, it provides boundary induction solely in terms of 

the external line moment distributed along its edges (Burke & Hubbard, 1991; Sullivan et al., 

1996). So, the bending moment in y −direction is given by the formula (Hansen & Snyder 

1997), Fig. 8, 

 ( )2 2
x 0 1 2M M x x x x− −= − < − > − < − >  (57) 

where (.)δ. 1 =>< −  and (.)D. 2 δ=>< −  − doublet function, 0M  – line moment amplitude 

 31
0 a

a

d
M C V

h
=  (58) 
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where aC  – constant depending on geometry and mechanical properties of the actuator and 

plate, 31d  − piezoelectric material strain constants, V  – voltage in the direction of 

polarization. 
 

 Mx Mx

x

x1 x2ℓa  

Fig. 8. External line moments of the actuator 

The problem is to determine of the aC , because it depends on the analysis method of the 

mutual interaction between beam-actuator (Hansen & Snyder 1997; Pietrzakowski, 2004). 

Let the static force coupling model is taken into account. If relatively thin actuator compared 

with beam thickness is assumed (so uniform normal stress distribution is accepted) and 

furthermore by ignoring the neutral axis displacement d , see Fig. 4, the constant aC  is come 

down to the form 

 
( )

( )
b b a a b a

a

b b a a

E h E h h h
C

2 E h E h

+
=

+
 (59) 

Since the beam vibration equation is the forces equation then to consider the action of 

actuator with the beam, moments xM  are replaced with two couples of forces, Fig. 9, 

 x a aM f 2=   (60) 

 

 

x

fa

fa

fa

fa
/2ℓ

a

a

 

Fig. 9. External pair of forces of the actuator 

Next, the separate forces are considered in Eq. (56). 

2.7 Beam vibration reduction through actuators 

For the problem presented in Fig. 5, the total load of the beam, described by Eq. (56), is 
given by 

 ( )j 0 js 1s js s js 2sf (x) f f (x x ) 2f (x ) f (x x )δ δ δ= − + − − + +  (61) 

where the symbol jaf  is replace by jsf  in order to express, in the future, the interaction sum 

of actuators and the glue on the beam. 

An expression in brackets is the sum of interacting forces actuator-beam. Hence, the integral 

jI ν , Eq. (54), for jf (x)  expressed by above equation is given by 
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( )j j j 0 j js 1s s 2s jj j j
I f (x) X (x)dx f X (x)dx f (x x ) 2 (x ) (x x ) X dxν ν ν νδ δ δ= − = − + − − + + =    

 0 j js j 1s j s j 2sj
f X (x)dx f X (x ) 2X (x ) X (x )ν ν ν ν

 = − + − +   (62) 

The expression in square bracket constitutes the second-order central finite difference. Since 

the distance between nodes s  is constant, then the difference can be transformed into 

 2
j 1s j s j 2s j s2

s

1
X (x ) 2X (x ) X (x ) D X (x )ν ν ν ν
 − + = 

 (63) 

where 

 2
j s j sD X (x ) (x )ν νκ= ±  (64) 

The j s(x )νκ  is the curvature of the mode jX (x)ν  at the point sx x=  (Brański & Szela, 2007; 

Brański & Szela, 2008). The sign of the j s(x )νκ  is contractual namely, if the bending of the 

beam is directed upwards, the sign is positive and vice versa. Substituting Eq. (64) into 

Eq. (62), one obtains 

 2
j 0 j js s j s j 0 j sj

I f X (x)dx f (x ) I Iν ν ν ν νκ= − + = +   (65) 

Next, substituting Eq. (65) into Eq. (52) through Eq. (53), the reduction vibration is obtained 

 ( )jf j j j j j 0 j s j jf jX (x) C I X (x) C I I X (x) A X (x)ν ν ν ν ν ν ν ν νν ν ν

∗ ∗= = + =    (66) 

Note, that the amplitude jfA ν  is the direct quantity which is liable to the reduction, in 

explicit form is 

 ( )jf j j j j 0 j sA C I C I Iν ν ν ν ν ν
∗ ∗= = +  (67) 

At the same time, together with the vibration reduction amplitude jfA ν , the curvature is 

subjected to the reduction and based on Eq. (66) is 

 2
jf jf jf jf jD X Aν ν νν ν

κ κ κ= ± = = ±   (68) 

Furthermore, the reduction of the jfA ν  leads to the reduction of the shear force jfQ (x)  and 

bending moment jfM (x)  (Brański et al., 2010; Kaliski, 1986; Kozień, 2006), 

 jf j j jf j j jf j j jf jQ (x) E J D (x) E J D (x) E J A D (x)ν ν νν ν
κ κ κ= ± = ± = ±   (69) 

 jf j j jf j j jf j j jf jM (x) E J (x) E J (x) E J A (x)ν ν νν ν
κ κ κ= ± = ± = ±   (70) 

As can be seen, the vibration reduction undergo on the following amplitudes: of the beam 

vibration jfX (x)  − Eq. (66), of the shear force jfQ (x)  − Eq. (69) and of the bending moment 

jfM (x)  − Eq. (70). Hereafter, the notion e.g. “shear force reduction” is used instead of “the 

reduction of the amplitude of the shear force”, and so on. 
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The Eqs (66), (69) and (70) and may be written commonly 

 jf jf j jf j(x) (x) C A (x)ν ν νν ν
Ψ = Ψ = Φ   (71) 

where 

 jf jf jf jf{X ,Q ,M },Ψ = j j j j{X ,D , },ν ν ν νκ κΦ = j j j j jC {1, E J , E J }= ± ±  (72) 

Omitting for simplicity the index "f" , for entire system beam-actuators one has 

 j jj j
(x) (x) (x)νν

Ψ = Ψ = Ψ   (73) 

or 

 j j jj
(x) C A (x) CA (x)ν νν

Ψ = Φ = Φ  (74) 

where 

 ( ) ( )2
0 s s s 0s

A C I C I f (x ) C I Iκ∗ ∗ ∗
Σ= = + = +   (75) 

 (x) { X(x),D (x), (x)}κ κΦ =  (76) 

It is appeared from Eq. (75) that the active vibration reduction depends on the following 
parameters: 

• fω  − excited frequency, it is contained in Cν
∗ , 

• sx  − distribution of the actuators on the beam, 

• s(x )κ  − value of the beam curvature at the point of the actuators distribution, 

• sf  − interacting forces between beam-actuators or more generally − mechanical 

properties of the actuators, 

• s  − actuators lengths or more generally – geometrical properties of the actuators, 

• sn  − number of actuators. 

As mentioned above, the optimal actuators distribution described with { }sx  has an 

important meaning and finding of the { }sx  is the aim of the chapter. 

3. Optimal actuators distribution problem 

Before the optimization problem will be formulated, any coefficients of the vibration 
reduction should be defined. 

3.1 Reduction and effectiveness coefficients 

Let be the difference between any quantities of the beam vibration 

 R(x) (x) (x)ΔΨ = Ψ − Ψ  (77) 

where (x)Ψ , R (x)Ψ  – quantities calculated without and with actuators respectively; (x)Ψ , 

R (x)Ψ  are given together by Eq. (74), where 

 0A C I∗=  (78) 
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and 

 ( )R 0A C I I∗
Σ= +  (79) 

The difference (x)ΔΨ  is interpreted as the quantity of the vibration reduction and it is the 

first measure of this reduction namely, the quantity reduction coefficient. 

The second measure of the vibration reduction is defined as 

 R(x) (x)(x)
R (x)

(x) (x)
ψ

Ψ − ΨΔΨ
= =

Ψ Ψ
 (80) 

It is called as the reduction coefficient and it may be expressed in per cent. Note, that if the 

reduction coefficient equals one, the vibration reduction is total, R (x) 0Ψ = . 

An effectiveness of the vibration reduction is defined as a quotient of some vibration 

reduction measure by an amount of the energy W  provided to the system in order to excite 

actuators. Hence, thirst measure of the vibration reduction may be defined by so called the 

effectiveness coefficient 

 E (x) R (x) WΨ Ψ=  (81) 

The energy W  provided to the system is translated into couples of forces, Fig. 9. Therefore, 

the energy W  may be replaced by forces R ss
f 4 f= , hence 

 RE (x) R (x) fΨ Ψ=  (82) 

The Eqs. (77) – (82) define the appropriate factors of the vibration reduction at the point x . 

In many cases, it is convenient to calculate mean values of these coefficients at whole beam 

domain or at the beam sub-domains. First of them is the mean quantity reduction coefficient 

and it is defined by the formula 

 ( )m i R ii
i

1
(x ) (x )

n
ΔΨ = Ψ − Ψ          ii 1,2,...,n=  (83) 

Consequently, the mean reduction coefficient and the mean effectiveness coefficient are 
defined respectively 
 

 m m mRΨ = ΔΨ Ψ ,                  m i ii
(x ) nΨ = Ψ  (84) 

 m m RE R fΨ Ψ=  (85) 

The coefficients defined above may constitute the base to formulate the optimization 

problem; hereafter the R (x)Ψ  is chosen. 

3.2 Formulation of the optimization problem 

In this chapter, one formulates the following problem: find the optimal actuators 

distribution { }sx  which maximize of the reduction coefficient R (x)Ψ ; hence R (x)Ψ  is 

assumed as an objective function. In this case the maximal value of R (x)Ψ  equals one and it 
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means p-reduction; such instance is considered in (Brański et al., 2010; Brański & Lipiński, 

2011) and it seems that it is possible only in for separate mode. 

Let the energy provided to the actuators be constant and hence, the sf  is always constant. 

Now, for clarity of the disquisition, rewrite the effectiveness coefficient in explicit form 

 R R(x) (x) CA (x) CA (x)
R (x)

(x) CA (x)
Ψ

Ψ − Ψ Φ − Φ
= =

Ψ Φ
 (86) 

Working out on above assumption, the R (x)Ψ  will be maximal, if R (x)Ψ  is minimal. Hence, 

the optimal condition ;maxR (x) R (x)Ψ Ψ=  leads to the next condition R R ;min(x) (x)Ψ ≡ Ψ . Note, 

that the R (x)Ψ  depends on the reduction amplitude RA . So, the R R ;min(x) (x)Ψ ≡ Ψ , if the 

amplitude RA  is minimal and instead of the above condition, it leads to 

 R R ;minA A=  (87) 

3.3 Heuristic analysis of the optimization problem 

Note, that the amplitude RA  comprises the factor C 0∗ ≠ , but it is constant and this is the 

factor 0 RI I IΣ+ =  which is changed. In practice, instead of the condition (87), the following 

condition of the reduction must be fulfilled 

 2
R 0 0 s s s mins

I I I I f (x ) IκΣ= + = + =   (88) 

For future considerations the sign of RI  is very important. The vibrations are reduced with 

actuators, if the I  is positive, but must be fulfilled the following condition: R 0I I I 0Σ= + ≥ ; 

RI 0=  assures the total reduction. If this condition is not fulfilled, the actuators excite 

vibrations and thereby they are not accomplished owns role. Note, that the sign of  0I  is 

always negative, see Eq. (65). Then, the sign of I  must be positive and it depends on the 

signs both forces sf  and curvatures s(x )κ . 

From physical point of view, the sign of (x)κ  is changed and as established above; it is 

positive, if the bending of the beam is directed upwards. Then, for many actuators one has 

 2 2 2 s 1
1 1 1 2 2 2 s s ss

I f ( ) (x ) f ( ) (x ) ... f ( 1) (x ) 0κ κ κ+
 = + + − + = − >    (89) 

To obtain the positive sign of I , the signs of sf  should alternates; this problem clearly 

expressed in the following way 
 

 2 2 s 1 2 s 1
1 1 1 2 2 2 s s ss

I ( )f ( ) (x ) ( )f ( ) (x ) ... ( 1) f ( 1) (x ) 0κ κ κ+ +
 = + + + − − + = − − >    (90) 

First at all, it is possible if the signs of s(x )κ  and sf  are the same, namely positive or 

negative, and they take their extremes. To fulfill this requirement, the actuators should be 

specially distributed on the beam. An idea of description of the sign of s(x )κ  is advance 

determined. The value of s(x )κ  is determined by means of the distribution of the actuators; 

they are bended at { }sx . Hence, the distribution has a great significance; this problem was 

solved in (Brański & Szela, 2007; Brański & Szela, 2008; Brański et al., 2010; Brański & Szela 

2010; Szela, 2009). Interpreting Eq. (88) through Eq. (90) it is appear that the actuators ought 
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to be bonded on the beam sub-domains in which the curvatures reach their extremum and 

consequently the highest and lowest values respectively, see Fig. 10. This is so called quasi-

optimal actuators distribution and it is described with Q sx x≡  points, their number is 

Q sn n≡ . 
 

 

x

fs

fs

fs

fs

xs  

Fig. 10. Optimal distribution of the actuators 

As far as signs and values of { }sf  are concerned, it was assumed that the added energy 

exciting actuators is constant. So, the values { }sf  of the separate actuators are known and 

always are constant, while the sign sf  springs from the physical interpretation of the 

interaction beam-actuator. As can be seen in Fig. 10, the forces s2 f  are placed at the point of 

local extreme, namely at the sx , with the opposite direction to the bending of the beam 

X(x) . At the same time, the forces sf  on the actuator edges are in the direction of the beam 

bending and let assume that this sign of sf  is positive. Another way, the vectors sf  and the 

beam bending X(x)  are in the same direction. In such sign convection, both sf  and s(x )κ  in 

Eq. (90) have the same signs and all terms are positive. Furthermore, the actuators 

distribution described with Q sx x≡  ensures the maximum of the reduction coefficient. 
The heuristic analysis described above was substantiated numerically for the separate beam 
and triangular modes and the details may be found in own papers. 

3.4 Analytical analysis of the optimization problem 

The aim of this section is to work out of the analytical method, which will describe such 

distribution of the actuators in order to assure the maximum of the reduction coefficient. It 

is expected that the analytical method will confirm the quasi-optimal distribution which has 

been found above with heuristic method. Therefore the assumptions are the same like in 

heuristic method, namely sn , sf  and s  are settled. 

Let the distribution of actuators be marked with the set of unknown coordinates s{x }  for the 

moment; that are exactly these coordinates s Q{x } {x }≡  of which are looked for. One starts 

from Eq. (88), hence 

 2 2
R 0 0 1 1 1 1 2 2I I I I f (x ) f (x ) ...κ κΣ= + = + + +   (91) 

Since the (x)κ  is the function which changes the sign, it is appropriate to search the points 

sx  which assure the extreme RI (x) , not minimum only. The function RI (x)  can have the 

extreme only at points sx , at which RDI (x)  is equal to zero or 
2 2

1 1 1 1 2 2f D (x ) f D (x ) ... 0κ κ+ + =   does not exist (Fichtenholtz, 1999). Because 0I  is constant 

than a necessary condition for existing extreme value is 
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 R sDI (x ) 0=  (92) 

where R s R sDI (x ) DI (x x )= =  and hence 

 2 2
1 1 1 1 2 2f D (x ) f D (x ) ... 0κ κ+ + =   (93) 

Because of 2
s sf 0≠  then instead of Eq. (93) one has 

 sD (x ) 0κ =  (94) 

From the condition (94), a set of stationary points { }sx  is obtained. The sufficient condition 

for existing extreme demands, in order to the function be determined on either side of the 

point sx  and xD ( )κ  must change sign at this point (turning point); it is sufficient condition 

formulated in the first form. This condition is expressed in the other form 

 2
sD (x ) 0κ ≠  (95) 

If this condition is not fulfilling, then this point should be omitted. 

One still needs to consider the biggest and the lowest values of (x)κ ; they are in 

hypothetical points { }max minx ,x . In order to find them, the values of (x)κ  at the stationary 

points { }sx  are calculated and they are compared to the values calculated at the end points 

of the appropriate interval. In the future consideration, the sn  points among stationary { }sx  

and { }max minx ,x  ones, at which (x)κ  takes in turn its absolute values, are taken into account. 

The problem of the signs of the s(x )κ  and sf  is quite the same as in heuristic analysis. 
Analytical analysis was applied for p-reduction and for the separate beam modes (Brański & 
Lipiński, 2011). As pointed out there, the analytical solution to the optimal actuators 
distribution problem confirms the results obtained with heuristic solution. 

4. Conclusion 

Deriving the shape of (x)κ , the influence both masses and stiffness of the actuators and glue 

on the shape of X(x) , and consistently on the shape of (x)κ , were omitted; if not, an 

adaptation method must be applied. But after determining shape of (x)κ , all these 

parameters were considered. 

As can be note, the actuators optimal distribution is attained assuming that the added 

energy to excite actuators is constant. It is translated into constant sf . Having the optimal 

distribution, the reduction coefficient may be improved by adding more energy or in order 

words, by increasing sf . This way, presented optimal method corresponds to that one 

presented in (Q. Wang & C. Wang, 2001), namely “maximization of the control forces 

transmitted by the actuators to the structure”. 
Based on theoretical considerations, and numerical ones presented in own papers, the 
following conclusion may be formulated. 
1. The optimization problem of the actuators distribution assuring the maximal active 

vibration reduction of the beam, measured with reduction coefficient, may be solved 
both heuristically and analytically. In analyzed problem, it turned out that both 
methods give the same results. 

2. The following algorithm of analytical method may be worked out: 
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• to search of stationary points { }sx  of the beam curvature, 

• to search of { }max minx ,x  points of the beam curvature, 

• Qn  points among stationary { }sx  and { }max minx ,x  ones, at which (x)κ  takes in turn its 

maximum absolute values, are selected, they are denoted by { }Qx , 

• to bond the actuators at the { }Qx  points, 

• to determine the value of the reduction coefficient, 

• to increase the value sf , through the energy increase which excites actuators, until the 

reduction coefficient will attain its maximum. 
It seems that proposed optimization method is very simple and may be useful in many 
technical problems of active vibration reduction. This work is a starting point for many 
computer simulations and experiments. 
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