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1. Introduction  

The influence of energy dissipation on the properties of bulk elastic waves in crystals is not 

at all reduced to trivial decrease in their amplitudes along propagation. In anisotropic media 

the situation is much more complicated than it looks like at first glance, at least for such 

specific directions of propagation as acoustic axes. The latter are defined as directions 0m  

along which a degeneracy of the phase speeds of two isonormal waves occurs (Fedorov, 

1968; Khatkevich, 1962a, 1964). The corresponding points of the contact of the degenerate 

sheets of the phase velocity surface P may be tangent or conical (Alshits & Lothe, 1979; 

Alshits, Sarychev & Shuvalov, 1985) (Fig.1).  
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Fig. 1. Schematic plot of the section fragment of the three sheets of the phase velocity surface 

( )ǂv m  (α = 1, 2, 3) containing one tangent and two conical points of degeneracy 

Taking into account that formally the wave attenuation may be described as an imaginary 

perturbation of the phase speed, one could expect due to the damping either a shift or a split 

of the acoustic axis, of course if it is not created by a symmetry. As we shall see below, for an 

acoustic axis of general position it is just splitting what is realized, and with quite a radical 

transformation of the local geometry of the phase velocity surface. The other possible reason 

for sensitivity of the wave properties to a small attenuation is related to a polarization 

aspect. Indeed, it is known (Alshits & Lothe, 1979; Alshits, Sarychev & Shuvalov, 1985) that 

the acoustic axes indicate on the unit sphere of propagation directions 2 1=m  the singular 

points in the vector fields of polarizations which are characterized by the definite vector 
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rotation around these points on ±2Ǒ or ±Ǒ, i.e. by  the Poincarè indices n= ±1 or ±1/2 (Fig.2). 

It is clear that a split of such singular points must be quite catastrophic for the 

corresponding polarization distribution. And that really occurs.  
 

  n = 1  n = -1  n = 1/2  n = -1/2 

 

Fig. 2. Singular polarization distributions around the two types of tangent degeneracy 

points n=±1 and the two types of conical degeneracies n=±1/2 

The above peculiarities are associated with space distribution of wave characteristic rather 
than with individual properties of bulk elastic waves. Meanwhile, as we shall see, in 
absorptive crystals the individual wave properties close to degeneracy directions also 
manifest quite unusual features, such as an almost circular polarization, in contrast to a 
quasi-linear one in the non-degenerate regions.  
The theory of acoustic axes in non-absorptive anisotropic media is quite complete. For a 
review we address readers to the paper by Shuvalov (1998). The theory gives the general 
criteria of the degeneracy occurrence and describes all possible types of acoustic axes 
classifying them with respect to a local geometry of the degenerate velocity sheets and to 
specific features of the vector polarization fields around the degeneracy directions. This 
classification (Alshits & Lothe, 1979; Alshits, Sarychev & Shuvalov, 1985) includes more 
types than we presented in Figs. 1 and 2. However, apart from a line degeneracy known in 
hexagonal crystals, the rest additional types relate to the model media with accidentally 
coinciding or vanishing material constants (or some their combinations). Such media are 
beyond our interest in this paper. Note in addition that conical acoustic axes may exist in 
real crystals even in quite non-symmetric directions and always exist along the symmetry 
axis 3. In contrast, tangent degeneracies are realized in practice only due to a high symmetry 

of the crystals and are known only along symmetry axes ∞ and 4. As was shown in (Alshits 
& Lothe, 1979; Alshits, Sarychev & Shuvalov, 1985) , all the “model“ acoustic axes together 
with any tangent or line degeneracies are unstable and must disappear, split or be 
transformed into other types under any small triclinic perturbation of the elastic moduli 

tensor ĉ . The only stable type of acoustic axes is the conical type. Under any real 

perturbation ˆǅc a conical degeneracy never split or disappear, but can only shift.  

The wave attenuation can be interpreted as a perturbation of the tensor ĉ , however not real 

but imaginary. As was mentioned in (Alshits, Sarychev & Shuvalov, 1985), under such a 
non-hermitian perturbation even a conical degeneracy may lose its stability. Later Shuvalov 
& Chadwick (1997) rigorously investigated the stability of different acoustic axes with 
respect to a weak thermoelastic coupling. Their conclusion was: all types of degeneracies are 
unstable including a conical acoustic axis which splits into a pair. The same problem for 
viscoelastic and thermo-viscoelastic media has been studied by Shuvalov & Scott (1999, 
2000) with similar conclusions.  
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It is evident that the considered physical mechanisms of the damping definitely do not 

disturb symmetry of the crystal and therefore cannot shift or split degeneracies along 

symmetry axes ∞, 4 and 3. It means that any really existing tangent degeneracies and 

conical degeneracies along symmetry axes 3 must be stable under the damping 

perturbation. This statement was proved by Alshits & Lyubimov (1998) for viscoelastic 

media. 

In this chapter we shall consider the attenuation in terms of viscoelasticity following to the 

approach of the papers (Alshits & Lyubimov, 1998, 2011). We shall analyse in detail the 

mentioned above geometrical peculiarities and polarization singularities related to a pair of 

the so-called singular acoustic axes representing a new type of stable degeneracy and arising 

as a result of the considered split of a conical acoustic axis. On this basis we shall develop an 

extension of the classical theory of internal conical refraction (Barry & Musgrave, 1979; De 

Klerk & Musgrave, 1955; Fedorov, 1968; Khatkevich, 1962b; Musgrave, 1957) for an 

absorptive crystal. As will be shown, the damping provides very radical and non-trivial 

modifications of fundamental features of the phenomenon. 

2. Statement of the problem and general relations  

Let us consider the viscoelastic medium characterized by the density ρ and the tensors of 

elastic moduli ĉ  and viscosity ǈ̂ . The dynamic displacement field ( , )tu r  in such medium is 

described by the known equation (Landau & Lifshitz, 1986) 

 i ijkl l,kj ijkl l,kjǒu c u ǈ u= −  ,    (1) 

where the vectors u  and u  are the velocity and acceleration fields and the usual notation 

..., ...k k/ x≡ ∂ ∂  is accepted. For the bulk wave 

 exp[ ( )]( ,t) C ik - vt= ⋅u r A m r     (2) 

propagating along the wave vector  k=k m with the amplitude C, the frequency ǚ kv= , the 

phase speed v and the polarization A, eqn. (1) is transformed into Christoffel`s equation 

 2ˆ ˆ( )Q iQ ǒv′ ′′− =A A     (3)    

where Q̂′  and  Q̂′′  are the real symmetric matrices 

 i ljk ijklQ m c m′ = ,       ijk ijkl lQ m mω η′′ = .    (4) 

Note, that the imaginary addition Qi- ′′ˆ  to the usual acoustic tensor Q̂′ , in contrast to the 

latter, is dependent on the frequency. Eqn. (3) determines the three complex eigenvectors 

ǂA   and the three corresponding complex eigenvalues 2
ǂǒv  (α = 1, 2, 3), i.e. the three phase 

speeds ǂv  as functions of the direction m: 

 ǂ ǂ ǂi′ ′′= +A A A ,           ǂ ǂ ǂv v iv′ ′′= − .   (5) 

Below the frequency will be supposed to be real. Hence, by (5), the value ǂk  should contain 

an imaginary addition determining the decay of the wave along its propagation: 
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 1 ǂ
ǂ ǂ ǂ

ǂ ǂ ǂ ǂ

vǚ ǚ
k k ik i

v iv v v

 ′′
′ ′′≡ + = ≈ + 

′ ′′ ′ ′−  
.    (6) 

The complex phase speeds of eigenwaves are found from the equation  

 2
ˆ ˆ

ǂ ǂ
ǂ

ǂ ǂ

(Q iQ )ǒv
′ ′′−

=
⋅

A A

A A
.  (7) 

The polarization vectors ǂA as eigenvectors of the symmetric matrix Qi-Q ′′′ ˆˆ  for non-

degenerate directions m of propagation must be mutually orthogonal 

 ǂ ǃ ǂǃǅ⋅ =A A ,       ǂ ǃ≠ .   (8) 

As regards to their normalization, we cannot use the customary condition 2 1ǂ =A , bearing 

in mind the possibility of a circular polarization for which  2 0ǂ =A . Instead, the normalizing 

factor will be chosen so that 

 2 2 2| | 1ǂ ǂ ǂ′ ′′= + =A A A .    (9) 

For a further development let us divide the basic eqn. (3) on the real and imaginary parts 

 

2 2

2 2

ˆ ˆ ( ) ,

ˆ ˆ ( ) .

ǂ ǂ ǂ ǂ ǂ ǂ ǂ ǂ

ǂ ǂ ǂ ǂ ǂ ǂ ǂ ǂ

Q Q ǒ v v 2ǒv v

Q Q ǒ v v 2ǒv v

′ ′ ′′ ′′ ′ ′′ ′ ′ ′′ ′′+ = − +

′ ′′ ′′ ′ ′ ′′ ′′ ′ ′′ ′− = − −

A A A A

A A A A
    (10) 

Multiplying these equations by  ǂ,ǃ′A  or ǂ,ǃ′′A  (α ≠ β) and combining the results one obtains 

 ˆ ˆ
ǂ ǂ ǂ ǂ ǂ ǂ2ǒv v Q Q ,′ ′′ ′ ′′ ′ ′′ ′′ ′′= ⋅ + ⋅A A A A     (11) 

 2 2 ˆ ˆ( ) ,ǂ ǂ ǂ ǂ ǂ ǂǒ v v Q Q′ ′′ ′ ′ ′ ′′ ′ ′′− = ⋅ + ⋅A A A A     (12) 

 2 2 2 2 ˆ ˆ( ) ( )ǂ ǂ ǂ ǂ ǂ ǂ ǂ ǂǃ ǃ ǃ ǃ ǃ ǃ ǃ ǃǒ v v v v Q Q 2ǒ v v v v .′ ′ ′′ ′′ ′′ ′ ′ ′′ ′ ′′ ′′ ′′ ′ ′′ ′ ′′ ′′ ′′− + − ⋅ = ⋅ + ⋅ − + ⋅A A A A A A A A   (13) 

Eqns. (11)-(13) are exact. The first two of them show that the imaginary part of the phase 

speed ǂv′′  being linear in small viscosity ǈ̂  is small compared to ǂv′ independently of the 

direction m. In accordance with Eqn. (13), one can also conclude that ǂ ǂA A′′ ′<<  however not 

for any m, but only far enough from acoustic axes, when the difference ǂǃv v′ ′−  is not small. 

In this case the value | |ǂ ǂA′′ ′′= A  is also linear in ǈ̂  and therefore small. Let us decompose the 

vector ǂ′′A  on the two components: ǂ ǂ ǂ
⊥′′ ′′ ′′= +A A A ||, where ǂ ǂ

⊥′′ ′⊥A A  and ǂ ǂ′′ ′A A|||| .  Thus, 

the ellipticity /ǂ ǂA Aε ⊥′′ ′=  of the wave polarization due to the damping is also small almost 

everywhere beyond small domains around acoustic axes. Let us estimate this ellipticity to 

the first order in ǈ̂ .  

Being perpendicular to ǂ′A , the vector ǂ
⊥′′A  may be expressed in leading approximation as a 

superposition of two isonormal vectors ǃ′A  and Ǆ′A  which are almost orthogonal to ǂ′A , 

 ( ) ( ) ( ) ( )ǂ ǂ ǂ ǂ ǂǃ ǃ ǃ ǃ ǃ ǃ ǃ ǃ
⊥ ⊥ ⊥′′ ′′ ′ ′ ′′ ′ ′ ′′ ′ ′ ′′ ′ ′≈ ⋅ + ⋅ ≈ ⋅ + ⋅A A A A A A A A A A A A A .   (14) 
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In view of eqn. (13) this gives far from degeneracies 
 

 
2 2 2 2

ˆ ˆ

( ) ( )

ǂ ǃ ǂ Ǆ
ǂ Ǆǃ

ǂ Ǆ ǂǃ

Q Q

ǒ v v ǒ v v
⊥

′ ′′ ′ ′ ′′ ′⋅ ⋅
′′ ′ ′= +

′ ′ ′ ′− −

A A A A
A A A .   (15) 

In fact, for considered non-singular directions the component ǂ′′A || is physically 

unimportant. Indeed, the vector amplitude of the wave (2) in the accepted linear 

approximation is equal  
 

 ( ) (1 ) ( )
1

ǂ
ǂ ǂ ǂ ǂ ǂ ǂ ǂ

i
C C i i C iǆ C i

iǆ

⊥
⊥ ⊥′′ 

′ ′′ ′′ ′ ′ ′ ′′= + + = + + ≈ + 
+ 

A
A A A A A A A|| ||

|| ,   (16) 

 

where the notations ′′ ′= /ǂ ǂǆ A A|| ||  and (1 )C C iǆ′ = + ||  are introduced.  

With (15) and (9), the wave ellipticity is readily estimated as | |ǂ ǂǆ A ⊥ ⊥′′ ′′≈ = A . For similar 

non-singular directions the speeds ǂv′′  and ǂv′  determined by eqns. (11) and (12) may be 

expressed in the same leading approximation as  
 

 
ˆ

ǂ ǂ
ǂ

ǂ

Q
v

2ǒv
′ ′′ ′⋅

′′ =
′

A A
 ,           ˆ2

ǂ ǂ ǂǒv Q′ ′ ′ ′= ⋅A A .    (17) 

On the other hand, eqn. (15) demonstrates the tendency to increasing ellipticity ε when the 

wave normal m approaches the degeneracy direction ( ǂ ǃv v′ ′=  or   ǂ Ǆv v′ ′=  ) and one of the 

denominators in (15) decreases becoming singular. Of course, in the vicinity of the 

degeneracy it is necessary to replace eqns. (15) and (17) by some other relations. 

3. General formalism for the neighbourhood of an acoustic axis  

In fact, eqns. (15) and (17) quite hold for the description of the non-degenerate wave branch 

even along the direction where two other branches are degenerate. In the further 

development we shall choose for the non-degenerate wave characteristics the number 3ǂ = . 

In this notation, by eqn. (15), the vector 3′′A must be small addition to 3′A . In view of the 

orthogonality condition (8) this allows us in the leading approximation to replace the 

complex polarization vectors 1,2A  by their projections on the plane orthogonal to the vector  

3′A . This must work even close to acoustic axes where the imaginary components of 1,2A  

might be comparable in the length with their real counterparts. We are following here the 

ideology developed in the theory of acoustic axes for the case of zero damping (Alshits & 

Lothe, 1979; Alshits, Sarychev & Shuvalov, 1985).  

Thus, let 0m  is the direction of the acoustic axis in the crystal with the “switched off” 

attenuation. By definition, along 0m  there must be  1 2 0v v v= ≡  and, apart from the non-

degenerate wave with the speed 3v  and the polarization 03A , any polarization in the 

degeneracy plane 03D ⊥ A  is permissible (Fig.3).  

Let us choose in the D  plane an arbitrary pair of unit orthogonal vectors 01A  and 02A  

forming with 03A  the orthonormal right-handed basis 01 02 03{ , , }A A A  (Fig. 3). 

Now “switch on” the damping and consider eqn. (3) close to 0m  at  0 ǅ= +m m m : 
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 2
0 0 0

ˆ ˆ( )( )( ) ( )ǂ ǂ ǂǂǅ c iǚǈ ǅ ǒ v ǅv+ − + = +m m m m A A .    (18) 

 

 
03

A

02
A

01
AD 

0
m

 

Fig. 3. Allowed polarizations along the acoustic axis 0m  at “switched off” attenuation 

In the linear approximation eqn. (18) is transformed to 

 2
0 0 0

ˆ ˆ( ) ( )ǂ ǂ ǂǂ ǂQ ǅQ ǒ v 2v ǅv+ = +A A ,     (19) 

where 

 0 0
ˆ ˆ ( )Q Q′= m ,      ′′= + −0 0 0

ˆ ˆˆ ˆǅQ cǅ ǅ c iQm m m m ,        0 0
ˆ ˆ ( )Q Q′′ ′′= m .    (20) 

The complex polarization vectors  ǂA  may be decomposed in the basis 01 02 03{ , , }A A A  as  
 

 0ǂ ǂǃ ǃa=A A ,    (21) 

where ǂ, ǃ = 1, 2, 3 and the summation over ǃ is assumed. Substituting the linear 
superpositions (21) at ǂ = 1 and ǂ = 2 into eqn. (19) one obtains 
 

 

2 2
1 0 1 1 0 03 13 03

2 2
2 0 2 2 0 03 23 03

ˆ 2 ( ) ,

ˆ 2 ( ) .

ǅQ ǒv ǅv ǒ v v a

ǅQ ǒv ǅv ǒ v v a

= + −

= + −

A A A

A A A
   (22) 

 

Eqns. (22) show that the coefficients 13a  and 23a  must be linearly small. So, indeed in the 

leading approximation one can replace the polarization vectors 1A  and 2A  by their 

projections on the D-plane 
 

 1 11 01 12 02a a≈ +A A A ,         2 21 01 22 02a a≈ +A A A .   (23) 

Multiplying eqns. (22) by 1A  or 2A  we obtain the two linear systems determining the 

coefficients ǂǃa  in (23): 
 

 
11 0 1 11 12 12

12 11 22 0 1 12

( ) 0,

( ) 0;

ǅQ 2v ǒǅv a ǅQ a

ǅQ a ǅQ 2v ǒǅv a

− + =


+ − =
      

11 0 2 21 12 22

12 21 22 0 2 22

( ) 0,

( ) 0;

ǅQ 2v ǒǅv a ǅQ a

ǅQ a ǅQ 2v ǒǅv a

− + =


+ − =
   (24) 

where 

 0 0
ˆ 1,2ij i jǅQ ǅQ , i, j= ⋅ =A A .    (25) 
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The conditions for the existence of nontrivial solutions of the systems (24) give the common 

quadratic equation determining both 1ǅv and  2ǅv  

 2
11 0 22 0 12( 2 )( ) 0ǅQ v ǒǅv ǅQ 2v ǒǅv ǅQ− − − =     (26) 

with the roots determining the unknown additions 1,2ǅv  to the degenerate speed 0v : 

 1,2 0ǅv ǅ is R′′= ⋅ −s m  .      (27) 

Here the notations are introduced 

 2 2( ) ( )R ǅ ip ǅ iq′′ ′′= ⋅ − + ⋅ −p m q m ;    (28) 

 
0

01 01 02 02 0 01 02 02 01 0
0 0

1 1
ˆ ˆ ˆ ˆ( ) , ( )

2 2
c c c c

ǒv ǒv


= ± = +



s
A A A A m q A A A A m

p
;  (29) 

    11 22 12

0 04 2

s Q Q Q
, q ;

ǒv ǒvp

′′ ′′ ′′ ′′±
′′= =

′′
 (30) 

 00 0
ˆ

ij i jQ Q′′ ′′= ⋅A A .    (31) 

The introduced vectors 0s , p and q have the following projections on 0m : 

 0 0 0 0 0, 0v⋅ = ⋅ = ⋅ =s m p m q m .  (32) 

Note, that the vectors 0s , p and q were first introduced by Fedorov (1968) in his theory of 

internal conical refraction. Then the same vectors were used in the theory of acoustic axes 

(Alshits, Sarychev & Shuvalov, 1985). With (27), systems (24) are easily solved which allows 

us to find the polarization vectors 1,2A  (23) (not normalized at this stage): 

 ′′ ′′= − ⋅ − + ⋅ − ±1,2 01 02( ) ( )ǅ iq ǅ ip RA q m A p m A .   (33) 

It is easily checked that 1 2 0⋅ =A A , i.e. the orthogonality property, eqn. (8), is fulfilled. 

Actually, eqns. (27) and (33) contain all necessary information for our further analysis. 

However, in the next section we shall have to make preliminary “step aside”.  

4. On the acoustic axes along directions of high symmetry  

Note, that the above formalism linear in small parameters does not work for the case of 

tangent acoustic axes along which p = q = 0 (Alshits, Sarychev & Shuvalov, 1985) and one 

should keep the higher order terms in all expansions. The above criterion for a tangent 

degeneracy can be satisfied either because of an accidental vanishing of some combinations 

of material parameters (i.e. in model crystals) or due to a high symmetry of the direction 

0m . That is why tangent degeneracies are known in real crystals only along 4- and ∞-fold 

symmetry axes. In the first case the both Poincarè indices n = ± 1 (Fig. 2) are possible, in the 
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latter case only the index n =+1 can occur (Alshits, Sarychev & Shuvalov, 1985). We already 

mentioned that model media are beyond our interest in this paper. As to “symmetrical” 

tangent acoustic axes, their reaction to “switching on” the damping is predictable without 

any calculations. The answer is rather natural: existing due to a symmetry which is not 

disturbed by the attenuation, they keep their directions and linear polarizations of the elastic 

waves propagating along them also retain, though the phase speeds ǂv  of these waves 

certainly take small imaginary components.  

Indeed, the tensors ĉ  and ǈ̂  have completely the same symmetrical structure. It is well 

known, that along the direction 0m  of the symmetry axis ∞ or 4 the tensor 0 0 0
ˆ ˆQ c= m m  has 

eigenvectors 01 02,A A  and 03A  coinciding with the basis vectors of the crystallographic 

coordinate system. Clearly, the tensor 0 0 0
ˆ ˆQ ǚ ǈ′′ = m m  (20) must have the same eigenvectors. 

Hence, the combined complex Christoffel tensor 0 0
ˆ ˆ ˆ ˆQ - iQ Q - iQ′ ′′ ′′=  along the direction 0m  

admits purely real polarizations of three isonormal eigenwaves: one longitudinal 

( 03A parallel to z) and two transverse ( 01A  parallel to x and 02A  parallel to y). It is easy to 

check that the degeneracy along 0m  also retains. In accordance with eqn. (7) 

 

2
1 1331 1331 55 55

2
2 2332 2332 44 44

2
3 3333 3333 33 33

,

,

.

ǒv c iǚ c iǚ

ǒv c iǚ c iǚ

ǒv c iǚ c iǚ

η η

η η

η η

= − = −

= − = −

= − = −

     (34) 

But the symmetry axes ∞ or 4 present only in tetragonal, cubic and hexagonal crystals where  

 44 55c c= ,          44 55ǈ ǈ=   (35)  

and therefore 1 2v v= . Accordingly, the degenerate tensor 0 0
ˆ ˆQ - iQ′′  has the spectral 

representation  

 0 0 44 33 44 33 33 33 03 03
ˆ ˆ ˆ[ ( )] ( )Q iQ c c iǚ ǈ ǈ I c i ǚǈ′′− = − − − + − ⊗A A   (36) 

where Î  denotes the unit tensor and the symbol ⊗ means a dyadic product. So, one can see, 

that any linear combination 01 02ǂ ǃ+A A is also an eigenvector of 0 0
ˆ ˆQ - iQ′′  and any 

transverse wave may propagate along  0m  (Fig.3). Note in addition, that in the considered 

situation the nominator 01 02Q̂′′⋅A A  of the singular term in eqn. (15) vanishes together with 

45ǈ . This explains why our qualitative expectations of increasing imaginary components 

1,2′′A  close to 0m  have not been realized.  

The same arguments are equally applicable for the directions of 3-fold symmetry axes along 

which the conical acoustic axes necessarily occur (Alshits, Sarychev & Shuvalov, 1985) being 

characterized by the polarization singularity with the Poincarè index n = 1 / 2−  (Fig. 2). 

However in this case p ≠ q ≠ 0 and the formalism developed in the previous section does 

work and may be used for the demonstration of the validity of the above considerations. For 

example, in the case of the 3-fold symmetry axis in trigonal crystal one has: 

1331 2332 55 44 0p ǈ ǈ ǈ ǈ′′ ∝ − = − =  and 1332 54 0q ǈ ǈ′′ ∝ = =  but 1331 2332 442 0s ǈ ǈ ǈ′′ ∝ + = ≠ . As a 

result, the phase speed perturbations 1,2ǅv , eqn. (27), have the equal imaginary components 

and the difference between 1ǅv and 2ǅv  remains purely real and vanishes at 0ǅ →m . Thus, 
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again there is neither a split nor a shift of the degeneracy. And in accordance with eqn. (33) 

the degenerate polarization fields 1,2A  in the neighbourhood of the acoustic axis in the 

leading approximation remain linear, i.e. their imaginary components are small and vanish 

at 0ǅ →m .  

But such a trivial situation occurs only along the symmetry axes ∞, 4 and 3. As we shall see, 
any other point of degeneracy, even in a symmetry plane, manifests instability with respect 
to attenuation and singular behaviour of basic wave parameters close to new acoustic axes.  

Let us consider the other “symmetric” case known in real crystals: the line of degeneracy 

which occurs in some transversely isotropic media. According to (Alshits, Sarychev & 

Shuvalov, 1985), along such line: 0× =p q  i.e. the vectors p and q must be parallel or one of 

them should vanish (let Ǆ=q psay). Note that at 0× =p q  the point degeneracy is also 

possible (in model crystals, of course). In this case for its description one should keep in 

expansions the terms of the higher order. But for a line degeneracy the leading 

approximation used above is completely sufficient and eqns. (27) and (33) may be applied 

for an analysis. The condition of the degeneracy 1 2ǅv ǅv=  is equivalent to the requirement 

of the vanishing square root in (27) which brings us to the following system 

 2 2 2 2( ) ( ) 0ǅ ǅ p q′′ ′′⋅ + ⋅ − − =p m q m ,    (37) 

 ( ) ( ) 0p ǅ q q ǅ′′ ′′⋅ + ⋅ =p m m .    (38) 

At Ǆ=q p  this system becomes clearly contradictive, 

2 2 2( ) /(1 )ǅ p q Ǆ′′ ′′⋅ = + +p m ,    

0ǅ⋅ =p m , 

and has no solutions unless the both parameters p′′  and q′′  simultaneously vanish which 

does not occur in hexagonal crystals. Thus the line degeneracy 0ǅ⋅ =p m  under the 

damping perturbation must completely disappear which coincide with the corresponding 

conclusion in (Shuvalov & Chadwick, 1997). But looking at eqns. (27) and (33) one can say 

more. It follows from (27) that at 0ǅ⋅ =p m  the perturbations 1,2ǅv  are purely imaginary. 

This means that real components of the phase speeds 01v  and 02v  coincide as before on the 

same line 0ǅ⋅ =p m .  However, the imaginary components 1,2ǅv′′  are different on this line 

which eliminates the degeneracy. As regards to polarizations, the only peculiarity of the 

polarization field on the line  0ǅ⋅ =p m  is the lack of even a symbolic ellipticity: by (33) it is 

purely linear.  

5. Split of acoustic axes of general positions  

At the switched off attenuation eqn. (27) transforms to the known equation (Alshits, 

Sarychev & Shuvalov, 1985) describing local geometry of sheets of the phase velocity surface 

P: 1,2 0 1,2 0( ) ( ǅ )v v ǅv= + +m m m  in the vicinity of the degeneracy point 1 0 2 0 0( ) ( )v v v= =m m : 

 2 2
1,2 0ǅv ǅ ǅ ǅ= ⋅ ⋅ + ⋅s m (p m) (q m) .   (39) 
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If the vectors p and q are neither vanishing nor parallel to each other, 0× ≠p q , then 

eqn.(39) describes a conical contact of the sheets 1,2( )v m  and simultaneously of the sheets 

1,21 / ( )v m  of the slowness surface S. This is a conical degeneracy of a general type not 

related to symmetry of a crystal. 

As we know, a “switching on” the attenuation causes a small imaginary addition to a phase 

speed of the wave: v v iv′ ′′= − . As a result, apart from the wave surfaces P and S the new 

surface of attenuation, ( )v′′ m , arises. And the real components of the phase speeds 

1,2( )v′ m also manifest important changes providing a topological transformation of the wave 

surfaces P and S. 

Let us return to eqns. (37), (38). At  0× ≠p q  this system describes the split of conical 

acoustic axis due to a damping. The new positions of the degeneracies 1ǅm  and 2ǅm  are 

given by the intersection of the ellipse  

 
2 2

1
ǅ ǅ

r r

⋅ ⋅   
+ =   

   

m p m q
,        2 2r p q′′ ′′= + ,     (40) 

with the straight line 0ǅ ⋅ =m M passing through the end of the vector 0m perpendicularly to 

the vector (Fig. 4) 

   ( sin cos )p q r ǂ ǂ′′ ′′= + = +M p q p q ,  (41)  

where the angle ǂ  is introduced by the expressions 

 sinǂ p / r′′= ,       cosǂ q / r′′= .    (41a) 

 

−
mδ

+
mδ  

M p 

q 

/q|p| ′′  

/p|p| ′′  
(b) 

−
mδ  

+
mδ  M 

p 

q 

(a) 

tε  
θ 

Γ 

 

Fig. 4. Schematic plot of the ellipse, eqn. (40), in the general case (a), and for the case of the 

conical acoustic axis 0m  splitting from the symmetry plane of a crystal (b) 

In accordance with eqn. (32) the both vectors p and q are orthogonal to 0m . Therefore the 

ellipse (40) (Fig.4) belongs to the plane tangent to the unit sphere 1⋅ =m m  at the point  

0=m m  which indicates the center of the ellipse. Thus, “switching on” the damping causes 

the split of the conical axis 0m  into the two singular axes directed along the wave normals 

0 ǅ± ±= +m m m  where 
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 0

0

( )

( )

p qǅ ±

′′ ′′× +
= ±

⋅ ×

m p q
m

m p q
.    (42) 

Note that the projections of ǅ ±m  (42) on p and q vectors look rather simple  

 ,ǅ q ǅ p± ±′′ ′′⋅ = ⋅ = ±m p m q .    (43) 

Let us consider the example of splitting of a conical axis belonging to the symmetry plane S 

of the crystal. It is evident that in this case the polarization vector 03A also belongs to the 

plane S. The other vectors of our basis may be chosen so that, say, the vector 01A is directed 

along the normal to the plane S, and the vector 02A  belongs to the same plane S together 

with the vectors 0m  and 03A  (Fig. 5a). It is easily checked that in the given case due to a 

crystal symmetry, which is not less than monoclinic, there must be 

 ′′ = ×01 01 00, ,q q A p A m|| ||   (44) 

(Fig. 5b). By eqns. (43), (44), the split from the symmetry plane is determined by the vectors 

 01

|p |ǅ
q

±

′′
= ±m A .   (45) 
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Fig. 5. Acoustic axis 0m  in symmetry plane S (a), and its splitting due to the damping (b) 

For the found mutual orthogonality of the vectors p and q ellipse (40) looks very symmetric 
(Fig. 4b). Thus, in the considered particular case the split of the acoustic axis occurs in the 

plane orthogonal to S and the angle ǅǙ  of splitting is proportional to the damping (Fig. 5b) 

 2 2ǅǙ |ǅm | |p | /q± ′′≈ = .    (46) 

6. Local geometry of the velocity surfaces in the vicinity of split axes  

Let us now return to eqns. (27), (28). We shall not divide eqn. (27) on the real and imaginary 

parts. It is more convenient to analyse this equation in its combined form. First of all, let us 

note that the expression under square root in eqn. (28) along the line 0ǅ ⋅ =m M  is purely 

real, being negative between the degeneracy points (i.e. inside the ellipse, eqn. (40) and 

Fig.4) and positive beyond them (i.e. outside the ellipse). But this means that on the part of 

this line which is inside of the ellipse, the square root is purely imaginary. Accordingly, on 

ǅǙ

ǅǙ
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this part of the line the real components of phase speed 1( )v′ m  and 2( )v′ m  must coincide 

which creates the lines of self-intersection of the wave surfaces 1,2( )v′ m  and 1,21 / ( )v′ m . 

Quite similarly, we come to the conclusion that the corresponding sheets of the attenuation 

surface 1,2( )v′′ m  must intersect each other over the line 0ǅ ⋅ =m M  outside the ellipse (40). 

Fig. 6 gives a schematic illustration of such self-intersection of the slowness surface.  
 

−
m  +

m  

 δψ

 

Fig. 6. Self-intersection of the slowness surface 1,21 / ( )v′ m  and split acoustic axes 

Now let us study the above surfaces close to one of the new degeneracies, say, 

0 ǅ+ += +m m m . We are going to find the phase speeds of isonormal waves at the contour Γ 

(Fig. 4a): ( )ǆǅ ǉ+= +m m m . The contour lies in the plane orthogonal to 0m  and its radius is 

supposed to be small: ǆǆ |ǅ | |ǅ |+= <<m m . Denote 

 ( ) ( )ǆǅ ǉ ǆ ǉ=m t ,     (47) 

where t is the unit vector making the angle θ with the vector p: 

   0( ) [ cos ( )sin ]/ǉ ǉ ǉ p= + ×t p m p .    (48) 

Thus, by changing θ  from 0 to 2π, the vector ǆǅm  (47) path-traces the contour Γ around the 

degeneracy point ǅ +m  (Fig. 4a).  

With (47), (48), eqn. (27) gives in the leading approximation over ǆ  at the contour Γ: 

 ε θ +′ ′ ′= − = 1,2 1,2 0( , ) Re[ ( )]ǅv v v ǆ f ǉ ,   (49) 

where  

 ( ) 2 ( )f ǉ i= ⋅ −t N M ,        q p′′ ′′= − +N p q .  (50) 

As is seen from (49), the dependence 1,2( )ǅv ǆ ǆ′ ∝  at 0ǆ→  is characterized by an infinite 

derivative over ε in any section 0ǉ ǉ≠ , where the angle 0ǉ  relates to a transition of the 

vector ǆǅm  through the self-intersection line, 0Re[ ( )] 0f ǉ = . This singularity of the function 
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1,2( )ǅv ǆ′  at the end of the wedge of self-intersection corresponds to a sharpening tip of the 

slowness surface 1,21 / ( )v′ m  and to a plane fan of the normals to this surface at the contour 

Γ when 0ǆ→  (Fig. 7). 
 

 
)()(

12
mm vv ′=′  

 

Fig. 7. The fragment of the internal degenerate sheet )(1/ 2 mv′  of the slowness surface close 

to the singular point at the end of the wedge of the self-intersection and the plane fan of 

normals to the surface at this point 

7. Polarization field singularities around the split acoustic axes  

At the same contour Γ (47) polarization vectors (33) up to normalizing factors are equal  

 1,2 01 02

( )
1

ǆ f ǉ
i

q ip

 
= +   ′′ ′′+ 

A A A .    (51) 

For the further analysis the function ( )f ǉ  here should be concretize to the form 

 2( ) cos sin cosf ǉ A ǉ g ǉ ip ǉ= ⋅ + −p q ,   (52) 

where 

 2A (p iq ) / p′′ ′′= − ,           0 ( )g = ⋅ ×m p q .   (53) 

It is easily checked, that at the rotation of unit vector t, (48), over the whole circuit, i.e. at 

varying θ from 0 to 2Ǒ, the function ( )f ǉ  (52), changes its sign. Indeed, the phase of the 

complex function  

 ( ) ( )exp[ Ψ( )]f ǉ / A R ǉ i ǉ≡    (54) 

must be twice less than the phase of its square  

 2 2exp(2 Ψ) cos sin cosR i ǉ g ǉ ip ǉ= ⋅ + −p q .   (55) 

On the other hand, one can find from (55) the following relations 

 
21Ψ( ) Arctg

2 tg

pǉ
g ǉ

 
= −  

⋅ + p q
,        

2 2

2

cos 2ΨΨ
( cos sin )

gp

ǉ ǉ g ǉ
∂

=
∂ ⋅ +p q

.   (56) 
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θ = 2π 

θ = 0 

θ = 3π/2 

θ = π/2 

Im[f(θ)/A]  

Re[f(θ)/A] 

θ = 2π 

θ = 0 

θ = π/2 

θ = 3π/2 

Im[f(θ)/A] 

Re[f(θ)/A] 
(a) (b) 

 

Fig. 8. The function ( )f ǉ / A  in the complex plane at g > 0 (a) and g < 0 (b) 

This gives (see also Fig. 8) 

 Ψ(2 ) Ψ(0) sgnǑ Ǒ g− = ,    (57) 

 (2 ) (0)f Ǒ f= − .   (58) 

Thus, after the whole turn over the contour Γ around the degeneracy point at ǅ +m  (Fig. 4a)  

one has the identical transformation of the polarization field (51) in itself in the form 

 1 2(2 ) (0)Ǒ =A A ,    2 1(2 ) (0)Ǒ =A A .     (59) 

In other words, each of two orthogonal polarization ellipses rotates exactly on Ǒ/2 being 
transformed into the polarization of the isonormal wave (Fig. 9). And simultaneously the 

complex velocities 1,2 1,2 1,2v v iv′ ′′= −  also are interchanging with their counterparts (Fig. 10). 

 

 

 

Fig. 9. The rotation of the polarization ellipses 1,2A  in the degeneracy plane D when the 

wave normal m is scanning the contour Γ. The case g > 0 is shown when n = ¼. 

The found singularity of the polarization field at the degeneracy point +m  (Fig. 9) may be 

characterized by the Poincarè index defined as the value of the total polarization rotation (in 

the 2Ǒ units) at a complete path-tracing over the contour Γ around this point. The found turn 

of the polarization ellipses is equal π/2, and the direction of the rotation, by eqn. (57), is 

determined by the sign of the parameter g (53). Hence, one has (Alshits & Lyubimov, 1998) 
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 0

1
sgn[ ( )]

4
n = ⋅ ×m p q     (60) 

It is easily verified that the same relation is valid for the second degeneracy point −m . 
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)(1/ 2 mv′  
21
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Fig. 10. The surfaces 1,21 / ( )v′ m  and 1,2( )v′′ m in the vicinity of the acoustic axis +m . The 

transition between the sheets of the surfaces when m is scanning the contour around +m  

Thus the physical equivalence of two pictures at θ = 0 and θ = 2π is realized not by a 
coincidence of the wave characteristic inside each of the branches, as it occurs at zero 
damping, but by the identity of their superpositions. This becomes topologically possible 
due to such a new feature of the slowness surfaces as their self-intersections (Fig. 10). In the 
absence of damping, when the degenerate wave sheets locally have the only contact point, 
one of the branches along any direction is always “faster” than the other. And the related 
polarization cross, contained of isonormal linear non-directed vectors, has non-equivalent 
“differently coloured” crosspieces. Hence for a coincidence of such cross with itself it is 

required its turn on the minimum angle π, instead of π/2, as in the above case (Figs. 9, 10). 

The turn on π/2 is sufficient only when the change of “colours” of crosspieces occurs during 
the turn. 
 

 

 

Fig. 11. The field of elliptic polarizations of degenerate branches in the vicinity of split axes 
of an absorptive crystal for g < 0. The Poincarè indices at small contours are n = -1/4, and 
the combined index at the external contour is n = -1/2 
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That is why (Alshits, Sarychev & Shuvalov, 1985) in the absence of the damping a conical 

axis along 0m  is characterized by the Poincarè index (1 / 2)sgnn g= . This is the minimal 

index for a real polarization field. Its splitting into the two singularities (60) due to 
“switching on” attenuation satisfies the index conservation law. On the other hand, the 

same combined index ±1/2 arises at the path-tracing of the both points ±m  (Fig. 11). 

8. Conical refraction in absorptive crystals  

Internal conical refraction of elastic waves in crystals is a good example of a non-trivial role 
of anisotropy, which may create new phenomena principally impossible in isotropic media. 
The energy flux P of the wave in crystal is, as a rule, non-parallel to its direction m of 
propagation. For any wave normal m the direction of the Poynting vector P is determined 
by the orientation of the normal n to the slowness surface. At the choice of the wave normal 
along a conical acoustic axis each polarization vector in the degeneracy plane D (Fig. 3) 
relates to the definite Poynting vector, i.e. to the definite normal to a cone. Rotation of the 
polarization in the plane D (e.g. in a circularly polarized wave) should create a precession of 
the energy flux P.  
This phenomenon called the internal conical refraction was theoretically predicted and 
experimentally discovered by De Klerk & Musgrave (1955). They found a circular cone of 
refraction along the 3-fold symmetry axis in the cubic crystal Ni. Later on the more general 
cases of the refraction cones of elliptic section were theoretically studied (Barry & Musgrave, 
1979; Khatkecich, 1962b; Musgrave, 1957) and experimentally found (Aleksandrov & 
Ryzhova, 1964). The complete theory of this phenomenon is presented in the monographs 
(Fedorov, 1968; Sirotin & Shaskolskaya, 1983). Below we shall develop an extension of this 
theory for absorptive crystals following to the recent paper (Alshits & Lyubimov, 2011). 

8.1 Conical refraction in the absence of attenuation 

As we have seen, in a crystal without damping along the acoustic axis 0m , apart from the 

non-degenerate wave with the polarization vector 03A , an infinite number of elastic waves 

may propagate with arbitrary polarization in the degeneracy plane D (Fig. 3). Thus in the 

basis 01 02{A ,A }  belonging to the same plane, for any angle β the vector  

 01 02( ) cos sinǃ ǃ ǃ= +A A A     (61) 

determines polarization of the eigenwave propagating along 0m  with the phase speed 0v . 

Certainly, the wave with a circular polarization 01 02i= +A A A  can also propagate along the 

same direction.  

Consider a monochromatic plane wave propagating along the acoustic axis 0m  with the 

polarization A and the phase speed 0v : 

 0( , ) C exp( Φ )t i=u r A ,        0 0 0Φ ( )k v t= ⋅ −m r .  (62) 

The Poynting vector of such wave is equal (Fedorov, 1968)  

 0 0
ˆ(Re ) (Re ) /c v=P u u m  .   (63) 

For linear and circular polarizations one has, respectively, 
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 0linRe ( )cosC β= Φu A ,    (64) 

 cir 01 0 02 0Re [ cosΦ sinΦ ]C= −u A A .    (65) 

In these two cases the Poynting vectors are given by different expressions: 

 2 2 2
0 0lin ( cos2 sin2 )sin ΦC ǒǚ ǃ ǃ= + +P s p q ,  (66) 

 2 2
cir 0 0 0( cos2Φ sin2Φ )C ǒǚ= − +P s p q .   (67)    

Quite similarly one finds the elastic energy densities 2(Re )W ǒ= u : 

 2 2 2
0lin sin ΦW C ǒǚ= ,       2 2

cirW C ǒǚ= .   (68) 

With eqns. (66)-(68), the ray velocities of the considered waves are equal  

 ǃǃW sin2cos2/ 0linlinlin qpsPs ++== ,    (69) 

 
000circircir sin2Φcos2Φ/ qpsPs +−== W .    (70) 

During the period of the circularly polarized wave at a complete turn of the polarization 

vector in the degeneracy plane D, the ray velocity vector cirs  (70) twice circumscribes a cone 

(Fig. 12). At that the end of the vector cirs  twice path-traces the ellipse 

 0 0 0Δ cos2Φ sin2Φ= − = − +s s s p q .     (71) 
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Fig. 12. The cone of the internal conical refraction 

In view of (32), the plane Q of the ellipse is orthogonal to 0m , and the directions of path-

tracing of the vectors ∆s and Reucir are the same when g > 0 and opposite when g < 0. 

For a linearly polarized wave the same refraction cone is described by the vector lins  (69) 

when the angle β changes within the interval 0 ≤ β ≤ 2π (Fig. 12). This particular scheme was 

realized in the first experiments of De Klerk & Musgrave (1955). 
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8.2 The polarization ellipses at the ridge of the wedge of self-intersection 

Consider now the wave characteristics of an absorptive crystal at the ridge of the wedge of 

self-intersection of the slowness surface. For a description of the set of wave normals related 

to the ridge between the two degeneracy points at the slowness surface let us introduce the 

vector sinǏǅ ǅ Ǐ+=m m . At changing ξ from -π/2 to +π/2 the vector Ǐǅm  moves through all 

the ridge from one degeneracy ( -ǅm ) to another one ( )ǅ +m . Substitution Ǐǅ ǅ=m m  into (33) 

gives the polarization vectors at any point of the line of self-intersection. Making use of 

relations (43) one obtains 

     01 02
1,2

(sin sin cos ) [cos sin (sin cos )]

2(1 sin cos )

ǂ Ǐ i ǂ ǂ Ǐ i ǂ Ǐ
ǂ Ǐ

− + +
=

A A
A




,    (72) 

where the normalizing (9) is fulfilled and notations (41a) are used.  

We remind that at the ridge of the wedge the real components of the phase speeds 1,2v  

coincide: 1 2 Ǐv v v′ ′ ′= = . The imaginary components 1,2v′′  coincide only at the end points of the 

ridge, ξ = ±π/2. In view of (6), the real components of the displacement vectors 1,2u take the 

form 

 1,2 1,2 1,2 1,2 1,2 1,2 1,2Re ( , ) exp( )Re[ exp( Φ )] exp( )Ǐ Ǐ Ǐt C k i C k′′ ′′= − ⋅ ≡ − ⋅u r m r A m r U .   (73) 

We introduced here the wave normal Ǐm  and the real phase ΦǏ  at the ridge, 

 0Ǐ Ǐǅ= +m m m ,     ΦǏ Ǐ Ǐk ǚt′= ⋅ −m r ,    (74) 

and the dimensionless displacement vectors 

 1,2 1,2Re[ exp( Φ )]Ǐi=U A .    (75) 

It is essential that in eqn. (73) a trivial damping of the wave 1,2exp( )Ǐk′′∝ − ⋅m r  is separated 

from the vectors 1,2U  describing much more important for us effects of attenuation. 

In the considered stationary problem a choice of the time origin is certainly unessential and 

may be different for isonormal waves, independent from each other. Hence, the vectors 1,2U  

as well as the polarization vectors 1,2A  are defined to the sign. Below this sign will be 

chosen so that our expression would be more compact.   

Note, that at scanning the ridge by the wave normal Ǐm , the elliptic polarization 

determined by eqns. (72), (75) is sharply changing. It is easily checked that this ellipticity 

provides rotations of the vectors 1,2U  along the same directions corresponding to the right-

hand screw along the propagation, until sin 0Ǐ > , and to the left-hand screw, when 

sin 0Ǐ < . At the ridge ends (ξ = ±π/2) where the degeneracies occur, the isonormal waves, 

naturally, coincide: 1 2 0= ≡U U U . In both cases the polarization is circular however with 

different rotation “signs”: 

 
0 01 02/2

0 01 02/2

1
( cosΦ sinΦ ),

2

1
( cosΦ sinΦ ).

2

Ǐ ǏǏ Ǒ

Ǐ ǏǏ Ǒ

=

=−

= −

= +

U A A

U A A

    (76) 
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Here the angle α is excluded from the arguments by the choice of the time origin.  
In any other points of the ridge the polarization ellipses of isonormal waves are different. In 

the middle point ξ = 0 the isonormal waves have linear polarizations orthogonal to each other: 

 
1 01 02 00

2 01 02 00

cos sin sinΦ ,
4 2 4 2

sin cos sinΦ .
4 2 4 2

Ǐ

Ǐ

Ǒ ǂ Ǒ ǂ

Ǒ ǂ Ǒ ǂ

=

=

    
= − + −    

    
    

= − − −    
    

U A A

U A A

   (77) 

One can show that linear polarization retain on a whole line passing through the middle of 

the ridge ( 0=Ǐ ) perpendicular to it (at the unit sphere 1
2

=m  this line passes through 

point 0m  with local orientation along vector M). 

Expressions for the polarization ellipses of isonormal waves at the ridge are remarkably 

simplified in the considered above particular case related to the unperturbed acoustic axis 

0m  situated in the symmetry plane of the crystal. In this case 0q′′ = . Supposing for 

definiteness that 0p′′ > , one can put ǂ  = π/2. Then, instead of (72), the polarization vectors 

of the isonormal waves are equal 

 1 01 02

2 01 02

cos( /2) sin( /2),

sin( /2) cos( /2).

Ǐ i Ǐ
Ǐ i Ǐ

= +

= +

A A A

A A A
   (78) 

And the rotation of the displacement vectors 1,2U  (75) over the ellipses is now described by 

 1 01 02

2 01 02

cos( /2)cosΦ sin( /2)sinΦ ,

sin( /2)cosΦ cos( /2)sinΦ .

Ǐ Ǐ
Ǐ Ǐ

= −

= −

U A A

U A A
   (79) 

These expressions represent ellipses in a parametric form. The lengths of the horizontal and 

vertical semi-axes of the first ellipse are equal |cos(ξ/2)| and |sin(ξ/2)|, respectively. For 

the second ellipse the same length relate to the vertical and horizontal semi-axes. At the 

ridge ends ξ = ±π/2 the above lengths of the semi-axes are equal to each other, and the 

polarization becomes circular. With a displacement of the “observation” point Ǐǅm  from the 

ridge ends to its middle the large semi-axes increase and the small semi-axes decrease to 

zero at ξ = 0. 
Thus, both general expressions (76), (77) and the particular example (79) lead to the same 

picture of polarization distribution at the ridge of wedge of self-intersection. At passing 

along this line the isonormal waves, starting from a circular polarization of definite sign, 

monotonously decrease their ellipticity to zero in the middle of the ridge, where ellipses are 

transformed into non-directed vectors. At the second half of the ridge the ellipticity changes 

its sign and monotonously increases becoming circular at the other degeneracy point. Fig. 13 

illustrates this behavior of polarization at the line of self-intersection of the slowness surface. 

Consider now the kinematics of the motion of the displacement vectors of isonormal waves 

along the polarization ellipses. Express the radius-vectors ( 1,2)ǂ ǂ =U  at the ellipse in polar 

coordinates ( ),ǂ ǂU ϕ : 

 01 02( cos sin )ǂ ǂ ǂ ǂU ϕ ϕ= +U A A .   (80)  
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Certainly, the lengths ǂU  of these radius-vectors at the ellipse depend on the azimuth ǂϕ . 

Comparing eqns. (72), (75) and (80), one has 

 2
1,2

(sin cos )cos2Φ sin cos sin2Φ1
1 cos

2 1 sin cos

Ǐ Ǐǂ Ǐ Ǐ ǂ
U Ǐ

ǂ Ǐ
+ 

= ±  
 




,    (81)  

 1,2

cos sin (sin cos )tgΦ
tg

sin sin cos tgΦ
Ǐ

Ǐ

ǂ Ǐ ǂ Ǐ
ǂ Ǐ ǂ

ϕ
−

=
+


.    (82) 

Differentiating the latter expression with respect to time, it is easy to find the angular 

velocities 1,2ϕ  of the radius-vectors 1,2U  at their ellipses: 

 1,2 2
1,2

sin

2

ǚ Ǐ
U

ϕ = ,    (83) 

where we put ΦǏ ǚ= − . As is seen from (83), the angular velocities differently behave in 

time at different “observation” points at the ridge. Along the acoustic axes (ξ = ±π/2), when 

the isonormal ellipses coincide into one circle (76), the denominator in (83) is equal to 1, and 

the circular motion has a constant angular velocity: 1 2 ǚϕ ϕ= = ±  . Here the upper and lower 

signs relate to different directions of the rotation at ξ = ±π/2 (Fig. 13).  
 

 

2

π
ξ −=  

4

π
ξ −=  

2

π
ξ =  0=ξ  

4

π
ξ =  

 

Fig. 13. Polarization distribution for isonormal waves at the line of self-intersection of the 
slowness surface 

With decreasing |ξ| a non-uniformity of the motion increases and at |ξ|<< 1 acquires a 

singular character, when during the most part of the period the velocities 1,2ϕ  are very 

small, and the azimuth angles 1,2ϕ  related to them are almost fixed. In this regime, the 

vectors 1,2U  pass the most part of the ellipse in a short time with very high velocity. This is 

clearly seen from the analytical formulae related to the discussed above particular case of 

the acoustic axis splitting from the symmetry plane (Fig. 14):   

 
ϕ

ϕ

= −

= −

1

2

tg tg( /2)tgΦ ,

tg ctg( /2)tgΦ ;

Ǐ

Ǐ

Ǐ

Ǐ
    (84) 

 ϕ =
±

1,2

sin

1 cos cos2Φ Ǐ

ǚ Ǐ
Ǐ

.     (85) 
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Eqns. (81)-(85) and Fig. 14 show that the functions 1,2(Φ )Ǐϕ  and 1,2(Φ )Ǐϕ  have the period 

twice less than the period of the wave. This means that the half-turn of the displacement 

vector over the polarization ellipse exhausts all its physically different orientations. 
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Fig. 14. Numerical plot of the azimuths 1,2ϕ  (84) (a) and the coinciding normalized speeds 
sec

1,2 2,1/ ǚ v / gǚϕ ≡  (85), (106) (b) versus the phase ΦǏ  for the series of “observation” points 

at the line of self-intersection of the slowness surface for a particular case of the acoustic axis 

splitting from the symmetry plane. 1 - 5Ǐ =  , 2 - 15 , 3 - 45 , 4 - 75 , 5 - 90  

The other kinematic characteristics of the considered motion could be the so-called sectorial 

velocities defined as area circumscribed by a rotating vectors 1,2U  per unit time: 

 sec 2
1,2 1,2 1,2

1 1
sin

2 4
v U ǚ Ǐϕ= = .   (86) 
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The found expression is valid for unrestricted anisotropy. It is identical for the both 
isonormal waves being independent of the time. However velocity (86) strongly depends on 
the position of the “observation” point at the line of self-intersection. In particular, it 

vanishes in the center of the ridge (ξ = 0), where the polarization becomes linear. 

8.3 Universal refraction cone at the line of self-intersection and kinematics of ray 
velocity precession on this cone 

Let us find the ray velocities of isonormal waves (73) at the ridge of self-intersection of the 

slowness surface 1,21 / ( )v′ m . Substituting (73) into (63) one obtains the energy flux 

 2 2 2 2 2 2
1,2 1,2 1,2 0| exp( )| [ ( ) ( ) 2 ]ǏC k ǒǚ F G G F FG′′= − + − − +P m r s p q   ,  (87) 

where  

 ξ ξsin sin sinΦ cos cosΦF ǂ Ǐ ǂ= −     (88) 

 cos sin sinΦ (sin cos )cosΦǏ ǏG ǂ Ǐ ǂ Ǐ= +  .   (89) 

The energy density in the isonormal waves in the same terms is equal 

 2 2 2 2 2
1,2 1,2 1,2 1,2(Re ) | exp( )| ( )ǏW ǒ C k ǒǚ F G′′= = − +u m r  .    (90) 

Accordingly, the ray velocities of these waves are given by 

 1,2 1,2 1,2 0 1,2 1,2/ cos2Θ sin2ΘW= = − +s P s p q ,   (91) 

where 

 1,2 1,2 1,2Θ Θ ( , ,Φ ), tgΘ /Ǐǂ Ǐ F G= =  .   (92) 

Eqn. (91) is transformed from classic expression (70) for crystals without damping after the 

substitution in the latter 0 1,2Φ Θ→ . This means that in an absorptive crystal at any point of 

the ridge of self-intersection the ends of the ray velocity vectors 1,2s  move along the same 

trajectories, described by the universal ellipse 

 1,2 1,2 1,2Δ cos2Θ sin2Θ= − +s p q .   (93) 

The form of this ellipse is completely determined by the vectors p and q, and is independent 

of the parameters 1,2Θ . In other words, it is insensitive neither to the phase ΦǏ  of the wave, 

nor to the angles α and ξ, related to parameters of damping and to a position of the 

“observation” point. The principal semi-axes of universal ellipse (93), coinciding with ellipse 

(71) for a non-attenuating medium, are equal 

 ( )2 2 2 2 2 2
1,2

1
( ) 4( )

2
ǌ = + ± + − ×p q p q p q .    (94) 

Though the vectors p and q (29) do depend on a choice of the basis 01 02{ }A ,A , one can 

easily check that their combinations 2 2+p q  and ×p q  determining semi-axes (94) are 

invariant with respect to orientation of this basis in the degeneracy plane D (Fig. 3). 
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With identical trajectories of the ray velocities precession at the whole ridge, the kinematics 

of their motion is very sensitive to the position ξ of the “observation” point. It may be 

shown that at the ridge ends ξ = ±π/2 the values 0Θ ( 2)Ǒ /  and 0Θ (- 2)Ǒ /  differ by only 

signs: 

 0Θ ( /2) ΦǏǑ± = ± ,  (95) 

which gives, by (91), 

 
= − +

= − −

0

0

( /2) cos2Φ sin2Φ ,

(- /2) cos2Φ sin2Φ .

Ǐ Ǐ

Ǐ Ǐ

Ǒ

Ǒ

s s p q

s s p q
   (96) 

This shows that the precession of the ray velocity vector along one of split acoustic axes is 

identical with the analogous process for a circularly polarized wave (70) propagating along 

the unsplit acoustic axis in the crystal without damping. Directions of rotation of the ray 

velocities s(±π/2) (96) have different signs. It is easily checked that at g > 0 they coincide with 

corresponding directions of circular polarization (76), and at g < 0 – are opposite to them. 

In spite of the found identity of cones (70) and (96), there is an important difference between 

the related to them pictures of conical refraction. In the crystal without damping the ray 

velocities forming the refraction cone are directed along the appropriate normals to the 

slowness surface at the conical point of degeneracy. And the normals to the analogous 

surface in the vicinity of one of the split axes, as we have seen (Fig. 7), form a plane fan, 

which has nothing to do with a cone of ray velocities (96) (Fig. 12). 

With passing of the “observation” point from the end of the ridge to its center, the motion of 

the ray velocity around universal cone (96) becomes less and less uniform. At the center 

point ξ = 0 the motion deceases at all: the isonormal vectors 1,2s  are “frozen” at definite 

positions. Indeed, at ξ = 0 eqns. (88), (89) and (92) give the values 1,2Θ  independent of time: 

 1,2Θ
2 4

ǂ Ǒ
= ± .    (97) 

The corresponding fixed vectors of ray velocity are equal 

 1,2 0 0(0) ( sin cos ) /ǂ ǂ r= ± + = ±s s p q s M .   (98) 

As it would be expected, this result relates to expression (77) for a linear polarization of 

isonormal waves in the same way, as eqn. (69) to expression (64) from the refraction theory 

for crystals without damping. One can show that in this point (ξ = 0) of the ridge the two 

normals to the slowness surface are parallel not to vectors (98), but to their components 

belonging to the plane 0{ , }m M  orthogonal to the ridge.  

One should note that the fixed in time positions of the ray velocities (98) on ellipse (93) 

depend on the attenuation (the angle ǂ , eqn. (41a)), whereas the universal ellipse does not 

“know” about ǂ . This means that points (98), generally speaking, do not coincide with the 

ends of the principal semi-axes of the ellipse. Of course, in more symmetric situations the 

coincidence may occur, as it happens in the case of the splitting of the acoustic axis from a 

symmetry plane. What is more important that the vectors 1,2 1,2 0(0) -∆ =s s s , as it follows 
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from eqns. (98), (41) and Fig. 4, remain universally orthogonal to the ridge of the wedge at 

any changes of the angle ǂ .  

It is evident that at any small deviation of ξ from zero the fixed vectors (98) acquire some 

increments dependent on the phase ΦǏ . This will renew a motion of the ray velocities 1,2s  

over the cone. However, if not to pass far from the middle point ξ = 0, the most part of the 

period the vectors 1,2s  will retain orientations close to directions (98). And the time-

averaged vectors 1,2s  in these points will be close to directions (98). This means that in the 

middle domain of the self-intersection line of the slowness surface, the refraction will have 

rather a wedge than a cone character.  

In the considered above particular case of the acoustic axis splitting from the symmetry 

plane, one can put /2ǂ Ǒ=  which remarkably simplifies expressions (88) and (89), and 

together with them also the formulae for angle parameters 1,2Θ  (92): 

 1tgΘ ctg( /2)tgΦǏǏ= ,       =2tgΘ tg( /2)tgΦǏǏ .   (99) 

The discussed problem of kinematics of the precession of ray velocities at the line of self-

intersection of slowness surface may be quantitatively described. Introduce the polar 

coordinates ( 1,2 1,2,S ϕ ) of the positions of the ends of the radius-vectors 1,2Δs  at ellipses (93): 

 0
1,2 1,2 1,2 1,2Δ cos sinS

p p
ϕ ϕ

 ×
= + 

 

m pp
s .   (100) 

Comparing (100) with (93) one obtains 

 
2 2 2 2

2 2
1,2 1,2 1,2 2 2

2 G
( sinΘ cosΘ )

q F p G
S

F G

− ⋅ +
= − =

+

p q
q p  


,   (101) 

 2
1,2 1,2ctg ( - ctgΘ ) /p gϕ = ⋅p q .    (102) 

Differentiating the latter equation gives the angular velocities  

 1,2 1,22
1,2

Θg

S
ϕ = −  .      (103) 

Here the derivatives 1,2Θ  are found from (92): 

 1,2 1,22 2 2
1,2

sinΘ 2 (Φ /2)
(Φ /2) Ǐ

Ǐ

FG FG ǚ Ǐ Ǒ
F G U Ǒ

ϕ
−

= = − = − +
+ +

 




  ,  (104) 

where  2
1,2U  and 1,2ϕ  are given by functions (81) and (83) shifted in phase: Φ Φ /2Ǐ Ǐ Ǒ→ + .  

The sectorial velocities 1,2
secv  of the motion of the vectors 1,2Δs  over universal ellipse (93)  are 

found in analogy with eqn. (86): 

 2
1,2 1,2 1,2 1,2 1,2

1 1 Θ (Φ /2)
2 2

sec
Ǐv S g g Ǒϕ ϕ= = − = +  .    (105) 
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Thus, this velocity differs from the angular velocity of the polarization, eqn. (83), only by the 

dimensional factor g and by the retardation π/2. Substituting into (105) the angular velocity 

1,2ϕ  (85) for the considered above symmetric example, one obtains the more compact form 

for the sectorial velocity: 

 1,2 2,1

sin
(Φ ) (Φ )

1 cos cos2Φ
sec

Ǐ Ǐ
Ǐ

gǚ Ǐ
v g

Ǐ
ϕ= ≡ 


.     (106) 

Here it is bearing in mind that the phase shift of the velocity 1,2ϕ  in simplified variant (85) is 

equivalent to the transition at the counterpart branch: 1,2 2,1(Φ /2) (Φ )Ǐ ǏǑϕ ϕ+ =  . The found 

relation (106) allowed us to use in Fig. 14 the same curves for a characterization of both 

angular velocities of polarization and sectorial velocities of ray speeds. The shown 

dependencies adequately reflect the discussed above properties of the ray velocity 

precession at the line of self-intersection of the slowness surface. Angle velocities (103) 

behave in a similar way, especially in the region of small ξ. With closing to acoustic axes ξ = 

±π/2, variations of angular velocities in time are smoothing, but retain finite until p ≠ q, in 

contrast to the velocities 1,2
secv , which tend to constant at these limits. 

9. Conclusions   

Thus, we have found that specific features of the influence of attenuation on the basic wave 

properties are associated with two main qualities of the damping: i) it does not disturb the 

symmetry of a crystal, and ii) formally, it provides an imaginary, i.e. non-hermitian, 

perturbation of the acoustic tensor. Due to the first quality there is almost no influence of the 

damping on the acoustic axes which exist due to symmetry of the crystal (tangent 

degeneracies along ∞ and 4-fold symmetry axes and conical degeneracies along 3-fold axes). 

On the other hand, the conical acoustic axes of any other orientations manifest instability 

with respect to an imaginary perturbation of the acoustic tensor. They split into pairs of 

degeneracies of new type (the so-called singular acoustic axes), which never occurs without 

damping. In the neighbourhood of split acoustic axes the polarization of elastic waves 

proves to be strongly elliptical becoming almost circular close to the degeneracy points. A 

rotation of the polarization ellipses around those points is described by the Poincarè index n 

= ±1/4. The slowness surface acquires lines of self-intersection connecting the split singular 

acoustic axes. Only the end points of these lines correspond to true degeneracies where the 

imaginary components of phase speeds of isonormal waves also coincide. The latter 

coincidence also occurs on the whole equi-damping lines at the attenuation surface. These 

self-intersection lines at the two different surfaces (Fig. 10) after their projection on the unit 

sphere 2 1=m  of propagation directions continue each other at the degeneracy points.  
Topological transformations of wave surfaces and polarization fields create new features of the 
phenomenon of internal conical refraction. Still an extension of the theory may be done in 
terms of the same classic refraction cone bounded by the universal ellipse. As we have seen, in 
crystals without damping the classic picture of conical refraction automatically arises for a 
circularly polarized wave propagating along conical acoustic axis. In an absorptive crystal the 
same cone and universal ellipse as a trajectory of precession of the ray velocity vectors retain at 
the whole self-intersection line of the slowness surface between split degeneracy points.  
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Along singular axes the refraction does not differ from the classical picture: the isonormal 

waves degenerate into one circularly polarized wave with the ray precession of constant 

sectorial velocity secv gǚ=  at the ellipse. A screen “illumination” related to such precession 

would look as a completely drawn ellipse (Fig. 15a). Some increase of intensity in the 

vicinity of large semi-axes max( )S  is explained by a slower motion of the vector 0s  in this 

region (its linear speed at the ellipse is equal sec2v / S ). When the “observation” point 

passes along the ridge of the wedge to its middle, both the precession of the vectors 1,2s  and 

the “illumination” pattern become less and less uniform (Fig. 15b,c). And in the center (ξ = 

0) only two points (Fig. 15d) will turn to be “illuminated”. They relate to the isonormal 

waves with linear polarization: the refraction becomes purely wedge-like. Thus, with 

scanning the ridge by the wave normal m the refraction continuously transforms from 

purely conic to purely wedge type. 
 

 

p 

q 

(а) (b) (c) (d) 

 

Fig. 15. Schematic plot of gradual transition from purely conical refraction (a) along a 
singular acoustic axis to purely wedge refraction in the middle of the ridge (d) for a 
particular case of the acoustic axis splitting from the symmetry plane 

In conclusion, let us discuss the observability of the above beautiful and nontrivial physical 

effects. In principal, there is no threshold level of damping for the split of acoustic axes. Just 

the less damping, the less is the solid angle inside of which all the peculiarities manifest 

themselves. If this angle is less than the angle of the acoustic beam divergence, then we shall 

not observe neither splitting of acoustic axes, nor any accompanied effects. Thus, for the 

observability of our predictions the split angle ǅǙ  (46) must exceed the divergence of the 

beam. The best experimentally realizable collimation of sound beams is limited by the 

diffraction divergence, which is estimated as ~λ/d, where λ is the wave length and d is the 

diameter of the beam. So, with increasing frequency ω the angle ǅǙ  increases and the 

beam divergence, on the contrary, decreases. Thus, we deal here with a frequency 

threshold from below. The order of the splitting angle is determined by the estimate 

2 0ǅǙ ǅm ~ ǚǈ / µ=  (46), where µ is the shear modulus and η is the viscousity. Substituting 

this estimate to the inequality ǅǙ / dλ> , one obtains the following lower threshold for 

the frequency ν = ω/2π  

 s
th 2

c Ǎǎ ǎ ~
Ǒǈd

> ,   (107) 
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where sc  is the sound speed. There are known a series of physical mechanisms of the sound 

attenuation η. Often phonons play in it an important role. The phonon viscosity at room (or 

high) temperature T may be estimated as 

  3
Bph ph(3 )ǈ ~ τ k T / a .   (108) 

Here phτ  is the phonon relaxation time, Bk  is the Boltzmann constant, and a is the lattice 

parameter. Substituting into eqns. (107), (108) sc ~ 53 10⋅  cm/s, µ ~ 1110 2dyn /cm , d ~ 0.5 

cm, T ≈ 300 K, a ~ -83 10⋅  cm, phτ ~ -910 s, we come to the estimate thǎ ~ 100 MHz. Thus, at 

rather high-frequencies, which however belong to experimentally available ultrasound 

range, the properties and effects described in this chapter appear quite observable. 

10. Acknowledgment   

Authors are grateful to A.L. Shuvalov for helpful discussions and to W. Gerulski for the help 
in computations related to the illustrations. The support of the Polish Foundation MNiSW 
(grant No N N 501252334) is gratefully acknowledged. V.I.A. is also grateful to the Kielce 
University of Technology for a hospitality and support. 

11. References  

Aleksandrov, K.S. & Ryzhova, T.V. (1964). Internal conical refraction of elastic waves in 
ammonium dihydrogen phosphate. Kristallografiya, Vol. 9, No. 3 (June 1964) 373-
376, ISSN 0023-4761 [Sov. Phys. Crystallography, Vol. 9, No. 3 (1964) 298-300, ISSN 
1063-7745] 

Alshits, V.I. & Lothe, J. (1979). Elastic waves in triclinic crystals.  Kristallografiya, Vol. 24, No. 
4, 6 (Aug., Dec. 1979) 972-993, 1122-1130, ISSN 0023-4761 [Sov. Phys. Crystallography, 
Vol. 24, No. 4, 6 (1979) 387-398, 644-648, ISSN 1063-7745] 

Alshits, V.I. & Lyubimov, V.N. (1998). Elastic waves in absorptive media: peculiarities of 
wave surfaces and singularities in the polarization fields. In: Dissipation in Physical 
Systems, A. Radowicz (Ed.), pp. 15-43, Politechnika Swietokrzyska, ISSN 0239-4979, 
Kielce. Proceedings of 2nd Workshop on Dissipation in Physical Systems, Borkow, 
Poland, September 1-3, 1997 

Alshits, V.I. & Lyubimov, V.N. (2011). Conical refraction of elastic waves in absorptive 
crystals. Zh. Eksp. Teor. Fiz., Vol. 140, No. 2(8) (Aug. 2011) [JETP, Vol. 113, No. 2 
(2011), ISSN 1063-7761] 

Alshits, V.I.; Sarychev, A.V. & Shuvalov, A.L. (1985). Classification of degeneracies and 
analysis of their stability in the theory of elastic waves in crystals. Zh. Eksp. Teor. 
Fiz., Vol. 89, No. 3(9) (Sept. 1985) 922-938, ISSN 0044-4510 [Sov. Phys. JETP, Vol. 62, 
No. 3 (1985) 531-539, ISSN 1063-7761] 

Barry P.A. & Musgrave, M.J.P. (1979). On elliptical conical refraction of elastic waves in 
tetragonal crystals. Q. J. Mech. & Appl. Math., Vol. 32, No. 3 (March 1979) 205-214, 
ISSN 0033-5614 

De Klerk, J. & Musgrave, M.J.P. (1955). Internal conical refraction of transverse elastic waves 
in a cubic crystal. Proc. Phys. Soc. Lond. B, Vol. 68, No. 2 (Feb. 1955) 81-88, ISSN 
1088-0370 

www.intechopen.com



  
Acoustic Waves – From Microdevices to Helioseismology 

 

48

Fedorov, F.I. (1968). Theory of Elastic Waves in Crystals, Plenum Press, ISBN, New York 
Khatkievich, A.G. (1962a). The acoustic axes in crystals. Kristallografiya, Vol. 7, No. 5 (Oct. 

1962) 742-747, ISSN 0023-4761 [Sov. Phys. Crystallography, Vol. 7, No. 5 (1963) 601-
604, ISSN 1063-7745] 

Khatkievich, A.G. (1962b). Internal conical refraction of elastic waves. Kristallografiya, Vol. 7, 
No. 6 (Dec. 1962) 916-920, ISSN 0023-4761 [Sov. Phys. Crystallography, Vol. 7, No. 6 
(1963) 742-745, ISSN 1063-7745] 

Khatkievich, A.G. (1964). Special directions for elastic waves in crystals. Kristallografiya, Vol. 
9, No.5 (Oct. 1964) 690-695, ISSN 0023-4761 [Sov. Phys. Crystallography, Vol. 9, No. 5 
(1964) 579-582, ISSN 1063-7745] 

Landau L.D. & Lifshitz, E.M. (1986). Theory of elasticity. Pergamon Press, ISBN, London 
Musgrave, M.J.P. (1957). On an elliptic cone of internal refraction for quasi-transverse waves 

in tetragonal crystals. Acta Crystallogr., Vol. 10, No. 4 (Apr. 1957) 316-318, ISSN 
Shuvalov, A.L. (1998). Topological features of polarization fields of plane acoustic waves in 

anisotropic media. Proc. R. Soc. Lond. A, Vol. 454, (Nov. 1998) 2911-2947, ISSN 1471-
2946 

Shuvalov, A.L. & Chadwick, P. (1997). Degeneracies in the theory of plane harmonic wave 
propagation in anisotropic heat-conducting elastic media. Phil. Trans. R. Soc. Lond. 
A, Vol. 355 (Jan. 1977) 156-188, ISSN 1471-2962 

Shuvalov, A.L. & Scott, N.H. (1999). On the properties of homogeneous viscoelastic waves. 
Q. J. Mech. Appl. Math., Vol. 52 (Sept. 1999) 405-417, ISSN 0033-5614 

Shuvalov, A.L. & Scott, N.H. (2000). On singular features of acoustic wave propagation in 
weakly dissipative anisotropic thermoviscoelasticity. Acta Mechanica, Vol. 140, No 
1-2 (March 2000) 1-15, ISSN 

Sirotin Yu.I. & Shaskolskaya, M.P. (1979). Fundamentals of Crystal Physics (in Russian), 
Nauka, Moscow [(1982) translation into English, Mir, ISBN, Moscow] 

www.intechopen.com



Acoustic Waves - From Microdevices to Helioseismology

Edited by Prof. Marco G. Beghi

ISBN 978-953-307-572-3

Hard cover, 652 pages

Publisher InTech

Published online 14, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The concept of acoustic wave is a pervasive one, which emerges in any type of medium, from solids to

plasmas, at length and time scales ranging from sub-micrometric layers in microdevices to seismic waves in

the Sun's interior. This book presents several aspects of the active research ongoing in this field. Theoretical

efforts are leading to a deeper understanding of phenomena, also in complicated environments like the solar

surface boundary. Acoustic waves are a flexible probe to investigate the properties of very different systems,

from thin inorganic layers to ripening cheese to biological systems. Acoustic waves are also a tool to

manipulate matter, from the delicate evaporation of biomolecules to be analysed, to the phase transitions

induced by intense shock waves. And a whole class of widespread microdevices, including filters and sensors,

is based on the behaviour of acoustic waves propagating in thin layers. The search for better performances is

driving to new materials for these devices, and to more refined tools for their analysis.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

V. I. Alshits, V. N. Lyubimov and A. Radowicz (2011). Topological Singularities in Acoustic Fields due to

Absorption of a Crystal, Acoustic Waves - From Microdevices to Helioseismology, Prof. Marco G. Beghi (Ed.),

ISBN: 978-953-307-572-3, InTech, Available from: http://www.intechopen.com/books/acoustic-waves-from-

microdevices-to-helioseismology/topological-singularities-in-acoustic-fields-due-to-absorption-of-a-crystal



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


