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1. Introduction  

Even though the propagation of elastic/acoustic waves in inhomogeneous and layered 
media has been an active research topic for many decades already, new problems and 
challenges continue to be posed even up to now. In fact, during the last few years, renewed 
interests have been witnessed by researchers in the various fields of acoustics, such as 
acoustic mirrors, filters, resonators, waveguides, and other kinds of acoustic devices, in 
relation to wave propagation in periodic elastic media. In acoustics and applied mechanics, 
these developments have been triggered by the need for new acoustic devices in order to 
obtain quality control of elastic/acoustic waves. 
What sort of material can allow us to have complete control over the elastic/acoustic wave’s 
propagation? We would like to discuss and answer this question in this chapter. It is well 
known that the successful applications of photonic band-gap materials have hastened the 
related researches on phononic band-gap materials. Analysis of Acoustic Wave in Homogeneous 
and Inhomogeneous Media Using Finite Element Method explores the theoretical road leading to 
the possible applications of phononic band gaps. It should quickly bring the elastic/acoustic 
professionals and engineers up to speed in this field of study where elastic/acoustic waves 
and solid-state physics meet. It will also provide an excellent overview to any course in 
elastic/acoustic media. 
Previous research on photonic crystals (Johnson & Joannopoulos, 2001, 2003; Joannopoulos 
et al., 1995; Leung & Liu, 1990) has sparked rapidly growing interest in the analogous 
acoustic effects of phononic crystals and periodic elastic structures. The various techniques 
for band structure calculations were introduced (Hussein, 2009). There are many well-
known methods of calculating the band structures of photonic and phononic crystals in 
addition to the reduced Bloch mode expansion method: the plane-wave expansion (PWE) 
method (Huang & Wu, 2005; Kushwaha et al., 1993; Laude et al., 2005; Tanaka & Tamura, 
1998; Wu et al., 2004 ; Wu & Huang, 2004), the multiple-scattering theory (MST) (Leung & 
Qiu, 1993; Kafesaki & Economou, 1999; Psarobas & Stefanou, 2000; Wang et al., 1993), the 
finite-difference (FD) method (Garica-Pabloset et al., 2000; Sun & Wu, 2005; Yang, 1996), the 
transfer matrix method (Pendry & MacKinnon, 1992), the meshless method (Jun et al., 2003), 
the multiple multipole method (Moreno et al., 2002), the wavelet method (Checoury & 
Lourtioz, 2006; Yan & Wang, 2006), the pseudospectral method (Chiang et al., 2007), the 
finite element method (FEM) (Axmann & Kuchment, 1999; Dobson, 1999; Huang & Chen, 
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2011; Wu et al., 2008), the mass-in-mass lattice model (Huang & Sun, 2010), and the 
micropolar continuous modeling (Salehian & Inman, 2010). 
Many studies on phononic band structures from the past decade use the PWE, MST, and FD 
methods to analyze the frequency band gaps of bulk acoustic waves (BAW) in composite 
materials or phononic band structures. Studies adopting the PWE method investigate the 
dispersion relations and the frequency band-gap feathers of the BAW and surface acoustic 
wave (SAW) modes. Other studies use the layered MST to study the frequency band gaps of 
bulk acoustic waves in three-dimensional periodic acoustic composites and the band 

structures of phononic crystals consisting of complex and frequency-dependent Lame′ 
coefficients. Other researchers applied the finite-difference time-domain method to predict 
the precise transmission properties of slabs of phononic crystals and analyze the mode 
coupling in joined parallel phononic crystal waveguides. 
The techniques for tuning frequency band gaps of elastic/acoustic waves in phononic 
crystals are very important, and remain exciting research topics in the physics community. 
The filling fraction, rotation of noncircular rods, different cuts of anisotropic materials, and 
the temperature effect all produce large frequency band gaps in the BAW and SAW modes 
of periodic structures. A previous review paper (Burger et al., 2004) discusses the technique 
used to optimize the unit cell material distribution, achieving the largest possible band gap 
in photonic crystals for a given cell symmetry. Studies over the past decade focus on the 
theoretical and numerical analysis of phononic structures based on circular or square 
cylinders embedded in background materials. In this case, the PWE method can easily 
calculate the dispersion relations by constructing the structural functions with Bessel or Sinc 
functions. However, research on the more complicated problem of waves in the reticular 
and other special periodic band structures has not started until recently. 
This chapter uses the 2D and 3D finite element methods to discuss the wave velocities of 
isotropic and anisotropic materials in homogeneous media. It also considers the tunable 
band gaps of acoustic waves in two-dimensional phononic crystals with reticular geometric 
structures (Huang & Chen, 2011). The concept of adopting a reticular geometric structure 
comes from the variations of similar geometry in bio-structural reticular formation and 
fibers. The PWE method used to calculate the structural functions of densities and elastic 
constants cannot numerically analyze the Gibbs phenomenon. Therefore, this chapter adopts 
the FEM to discuss this special periodic band structure. Changing the filling fraction, scale 
parameters, and rotating angles of reticular geometric structures can tune the frequency 
band gaps of mixed polarization modes. This technique is suitable for analyzing the 
phenomenon of frequency band gaps in special band structures. 

2. Theory  

In this chapter, based on the theorems of solid-state physics and the finite element method 
with Bloch calculations, equation of motion of the acoustic modes in two-dimensional 
inhomogeneous media, phononic band structures, are derived and discussed in detail. In the 
beginning, the concepts of the real space and k space are introduced while the Brillouin 
zone is also addressed in the text. Generalized techniques of Bloch calculations in finite 
element method are used to analyze the acoustic modes in two-dimensional homogeneous 
and inhomogeneous media, phononic band structures, consisting of materials with general 
anisotropy. The mixed and transverse polarization modes and quasi-polarization modes are 
investigated in the text.  
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2.1 Real space and k space  

It is well-known that the analysis of wave motion in infinite periodic structures is difficult in 

real space. For dealing with the periodic structures, the Fourier series and Bloch’s theorem 

are used to expand the periodic parameters such as the density, material constants, 

displacement fields, or potential. Regarding to the transformation of the real space and k 

space, the reciprocal lattice vectors (RLVs) are adopted from the solid-state physics. In 

general, we consider a three-dimensional phononic crystal with primitive lattice vectors 1a , 

2a , and 3a . The complete set of lattice vectors is written as { }1 2 3| l l l= + +1 2 3R R a a a , where 

l1, l2, and l3 are integers. The associated primitive reciprocal lattice vectors 1b , 2b , and 3b  

are determined by (Kittel, 1996)  

 2 ,
( )

ijk j k

i

ε
π

×
=

⋅ ×1 2 3

a a
b

a a a
 (1) 

where ijkε  is the three-dimensional Levi-Civita completely antisymmetric symbol. The 

complete set of reciprocal lattice vectors is written as { }1 2 3| N N N= + +1 2 3G G b b b , where 

N1, N2, and N3 are integers. Figure 1 shows the primitive unit cell in two-dimensional real 

space while the Fig. 2 shows the relationship between the real space and k space. A property 

between the primitive lattice vectors and associated primitive reciprocal lattice vectors is 

2i j ijπδ⋅ =b a , where ijδ  is the kronecker symbol. Note that the associated primitive 

reciprocal lattice vectors are constructed as k space from the concept of crystal diffraction. 
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Fig. 1. Primitive unit cell in real space 
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Fig. 2. Relationship between the real space and k space 

We will find that, in following sections, the discrete translational symmetry of a phononic 
crystal allows us to classify the elastic/acoustic waves with a wave vector k. The 
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propagating modes can be written in “Bloch form,” consisting of a plane wave modulated 
by a function that shares the periodicity of the lattice (Joannopoulos et al., 1995): 

 .i ie e⋅ ⋅= = +k r k r
k k kP (r) u (r) u (r R)  (2) 

The important feature of the Bloch states is that different values of k do not necessarily lead 
to different modes. It is clear that a mode with wave vector k and a mode with wave vector 
k+G are the same mode, where G is a reciprocal lattice vector. The wave vector k serves to 
specify the phase relationship between the various cells that are described by u. If k is 

increased by G, then the phase between cells is increased by G⋅R, which we know is 2πn (n= 
l1N1+l2N2+ l3N3 is an integer) and not really a phase difference at all. So incrementing k by G 
results in the same physical mode. This means that we can restrict our attention to a finite 
zone in reciprocal space in which we cannot get from one part of the volume to another by 
adding any G. All values of k that lie outside of this zone, by definition, can be reached from 
within the zone by adding G, and are therefore redundant labels shown in Fig. 3. This zone 
is the so-called Brillouin zone. 
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Fig. 3. All values of k that lie outside of this zone, by definition, can be reached from within 
the zone by adding G 
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Fig. 4. Brillouin zones in a square lattice 
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By the periodicity of the reciprocal lattice, any reciprocal lattice point which represents a 
wave vector k outside the first Brillouin zone can be found a corresponding point in the first 
Brillouin zone. Therefore, the wave vectors k can always be confined in the first Brillouin 
zone. In the square lattice, only the wave vectors k in the region of the first Brillouin zone 
between aπ−  to aπ  (the lattice constant is a) need to be considered. The Fig. 4 shows the 

first, second, and third Brillouin zones. For more details, it is best to consult the first few 
chapters of a solid-state physics text, such as Kittel, 1996, or consult the appendix of popular 
photonic text like Joannopoulos et al. 1995 and Johnson & Joannopoulos, 2001, 2003. 

2.2 Equation of motion  
This section provides a brief introduction of the theory of analyzing acoustic wave 
propagation in inhomogeneous media like as phononic band structures. The theory in this 
chapter can also be used to discuss acoustic wave propagation in homogeneous media 
because a homogeneous medium is symmetric with respect to any periodicity.  
In an inhomogeneous linear elastic medium with no body force, the equation of motion of 

the displacement vector ( , )tu r  can be written as 

 ( ) ( , ) [ ( ) ( , )],i j ijmn n mu t C u tρ = ∂ ∂r r r r  (3) 

where ( , ) ( , , )z x y z= =r x  is the position vector, t is the time variable, and ( )ρ r  and ( )ijmnC r  

are the position-dependent mass density and elastic stiffness tensor, respectively. The 

following discussion considers a periodic structure consisting of a two-dimensional periodic 

array (x-y plane) of material A embedded in a background material B shown in Fig. 5. It is 

noted that when the properties of materials A and B tend to coincide, the homogeneous case 

is recovered. 
 

x

y

A

B

B A
z

x

y
0

Half space
r 0

a

 

Fig. 5. Periodic structures with square lattice. When the properties of materials A and B tend 
to coincide, the homogeneous case is recovered 

To calculate the dispersion diagrams of periodic structures, this study uses COMSOL 
Multiphysics software to apply the Bloch boundary condition to the unit cell domain in the 
FEM method. Based on the periodicity of phononic crystals, the displacement and stress 
components in the periodic structure are expressed as follows: 

 ( , ) ( , ),i
i iu t e U t⋅= k xx x  (4) 
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 ( , ) ( , ),i
ij ijt e T tσ ⋅= k xx x  (5) 

where 1 2( , )k k=k  is the Bloch wave vector, and 1i = − ; ( , )iU tx  and ( , )ijT tx  are periodic 

functions that satisfy the following relation (Tanaka et al., 2000):  

 ( , ) ( , ),i iU t U t+ =x R x  (6) 

 ( , ) ( , ),ij ijT t T t+ =x R x  (7) 

where R is a lattice translation vector with components of 1R  and 2R  in the x and y 

directions. The relationships between the original variables ( , )iu tx , ( , )ij tσ x , ( , )iu t+x R , 

and ( , )ij tσ +x R  about the Bloch boundary conditions are characterized as: 

 ( )( , ) ( , ) ( , ) ( , ),i i i i
i i i iu t e U t e e U t e u t⋅ + ⋅ ⋅ ⋅+ = + = =k x R k R k x k Rx R x R x x  (8) 

 ( )( , ) ( , ) ( , ) ( , ).i i i i
ij ij ij ijt e T t e e T t e tσ σ⋅ + ⋅ ⋅ ⋅+ = + = =k x R k R k x k Rx R x R x x  (9) 

The Bloch calculations in this study record the variation of the displacements, stress fields, 
and eigen-frequencies as the wave vector increases. By using the FEM, the unit cell is 
meshed and divided into finite elements which connect by nodes, and is used to obtain the 
eigen-solutions and mechanical displacements. The types of finite elements used in this 
chapter are the default element types, Lagrange-quadratic, in COMSOL Multiphysics. In 
order to simulate the dispersion diagrams, the wave vectors are condensed inside the first 
Brillouin zone in the square lattice. According to the above theories, the results of dispersion 
relations in a band structure along the Γ − Χ − Μ − Γ  are characterized and presented in the 
following sections. 
 

 

Fig. 6. Brillouin regions of the square and rectangular lattices 

This chapter considers a periodic homogeneous medium with square lattice and phononic 
structures with square and rectangular lattices. These lattices consist of periodic structures 
that form two-dimensional lattices with lattice spacing R (square lattice) and lattice spacing 
aR (rectangular lattice). The term a is a scale from 0.1 to 2.0 in this chapter. The periodic 
structures are parallel to the z-axis. Figures 6(a) and 6(b) illustrate the Brillouin regions of 
the square lattice and rectangular lattice, respectively. In the square lattice, Fig. 6(a) shows 

www.intechopen.com



Analysis of Acoustic Wave  
in Homogeneous and Inhomogeneous Media Using Finite Element Method 

 

9 

the irreducible part of the Brillouin zone, which is a triangle with vertexes Γ , Χ , and Μ . 
Similarly, Fig. 6(b) shows the irreducible part of the Brillouin zone of a rectangular lattice 

due to the geometric anisotropy, which is a rectangle with vertexes Γ , Χ , Μ , and Y , and 
the same as discussing the material anisotropy (Wu et al., 2004). 
The finite element method divides a unit cell with a three-dimensional model into finite 

elements connected by nodes. The FEM obtains the eigen-solutions and contours of a mode 

shape. To simulate the dispersion diagrams, the wave vectors are condensed inside the first 

Brillouin zone in the square and rectangular lattices. Using the theories above, the following 

section presents the results of dispersion relations in a band structure for the Γ − Χ − Μ − Γ  

square lattice or isotropic materials, and YΓ − Χ − Μ − − Γ  rectangular lattice or anisotropic 

materials. Note that the 2D FEM model calculates the dispersion relations of mixed 

polarization modes, while the 3D FEM model describes the dispersion relations of mixed 

and transverse polarization modes. 

3. Acoustic wave in homogeneous media  

It can be noted that a homogeneous medium is symmetric with respect to any periodicity, 

and it can be shown that the results for an infinite homogeneous medium can be cast in the 

form appropriate for a periodic medium. In this section, we introduce the mixed 

polarization modes and transverse polarization modes in a homogeneous medium. 

Displacement fields (polarizations) are also investigated and used to distinguish the 

different modes in the dispersion relations. The aluminum and quartz are adopted for 

examples and discussed in the section. The wave velocities of different propogating modes 

are also observed and discussed.  

3.1 Isotropic medium  

In Fig. 5, when the properties of materials A and B tend to coincide, the homogeneous case 

is recovered. Consider a periodic structure consisting of aluminum (Al) circular cylinders 

embedded in a background material of Al forming a two-dimensional square lattice with 

lattice spacing R. It means this is a homogeneous medium in a 3D FEM model. Figure 7 

shows the dispersion relations along the boundaries of the irreducible part of the Brillouin 

zone Γ − Χ − Μ − Γ . The vertical axis is the frequency (Hz) and the horizontal axis is the 

reduced wave vector * /k kR π= . Here, k is the wave vector along the Brillouin zone. The 

Young’s modulus E, Poisson’s ratio ν , and density ρ  of the material Al utilized in this 

example are E=70 GPa, ν =0.33, and ρ =2700 kg/m3.  

As the elastic waves propagate along the x axis, the nonvanishing displacement fields of the 

shear horizontal mode (SH), shear vertical mode (SV), and longitudinal mode (L) are uy, uz, 

and ux respectively. It is noted that wave velocity , ,/ 2 *S L S Lc d dk R mω= = , so the slopes of 

dispersion curves in the Γ − Χ  section of Fig. 7 are exactly the straight lines and can be 

explained as the wave velocities of shear (S) and longitudinal (L) modes. Here, mS,L are the 

slopes of shear and longitudinal modes in Fig. 7. It is noted that the wave velocities of shear 

horizontal mode and shear vertical mode are the same in an isotropic material. From the 

results in Fig. 7, the wave velocities of shear and longitudinal modes are 3119 and 6174 m/s. 

As we know, the wave velocities of shear and longitudinal modes in an isotropic material 

can be obtain from 
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1

3122 / ,
2(1 )

S

E
c m s

ρ ν
= =

+
 (10) 

 
(1 )

6031 / .
(1 )(1 2 )

L

E
c m s

ν

ρ ν ν

−
= =

+ −
 (11) 

Note that the FEM method can easily describe the mode characteristics. Figure 8 shows the 
vibration mode shapes of unit cell for shear and longuitudinal modes in X point. In this 
example, Fig. 8(a) is a shear horizontal mode with mode vibrating displacement along the y 
direction when the wave propagates along the x direction ( Γ − Χ  direction). Also, Fig. 8(b) is 
a shear vertical mode with mode vibrating displacement along z direction, and Fig. 8(c) is a 
longitudinal mode with mode vibrating displacement along x direction. The arrows shown 
in Fig. 8 are the polarizations.  
 

 

Fig. 7. The dispersion relations of homogeneous and isotropic material Al along the 
boundaries of the irreducible part of the Brillouin zone Γ − Χ − Μ − Γ  

 

   
 (a)  (b)   (c)  

Fig. 8. (a) shear horizontal mode (b) shear vertical mode, (c) longitudinal mode in the Al 
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3.2 Anisotropic medium  

Similarly, the method in this chapter is used to discuss the wave velocities of acoustic modes 

in an anisotropic material. Consider a periodic structure consisting of quartz circular 

cylinders embedded in a background material of quartz forming a two-dimensional square 

lattice with lattice spacing R. This is also a homogeneous medium. The quartz is a 

piezoelectric and anisotropic material. The density ρ =2651 kg/m3. The elastic constants, 

piezoelectric constants, and relative permittivity of quartz utilized in this example are 

shown in Tables 1-3. The piezoelectric material, quartz, is a complete structural-electrical 

material, and thus all piezoelectric material properties were defined and entered into the 

FEM model. Figure 9 shows the dispersion relations along the boundaries of the irreducible 

part of the Brillouin zone YΓ − Χ − Μ − − Γ  due to the material anisotropy. In the 

calculations, the x-y plane is parallel to the (001) plane and the x axis is along the [100] 

direction of quartz. The vertical axis is the frequency in Hz unit and the horizontal axis is the 

reduced wave vector.  

 
86.7362 6.98527 11.9104 17.9081 0 0 

6.98527 86.7362 11.9104 -17.9081 0 0 

11.9104 11.9104 107.194 0 0 0 

17.9081 -17.9081 0 57.9428 0 0 

0 0 0 0 57.9492 17.9224 

0 0 0 0 17.9224 39.9073 

Table 1. The elastic constants of quartz in GPa unit 

 

-0.19543 0.19543 0 -0.1212 0 0 

0 0 0 0 0.12127 0.19558 

0 0 0 0 0 0 

Table 2. The piezoelectric constants of quartz in C/m2 unit 

 

4.4093 0 0 

0 4.4092 0 

0 0 4.68 

Table 3. The relative permittivity of quartz 

Shown in Γ − Χ  section of Fig. 9, the cross symbols represent the quasi shear horizontal 

(quasi-SH) mode. The square symbols represent the quasi shear vertical (quasi-SV) mode 

and the open circle symbols represent the quasi longitudinal (quasi-L) mode. The wave 

velocities of quasi-SH, quasi-SV, and quasi-L modes along x axis are 3306, 5116, and 5741 

m/s. Similarly, The wave velocities of quasi-SH, quasi-SV, and quasi-L modes along y axis 

( YΓ −  section) are 3922, 4311, and 6009 m/s respectively. 

Figure 10 also shows the vibration mode shapes of unit cell for quasi-SH, quasi-SV, and 

quasi-L modes in X point. The arrows shown in Fig. 10 are the polarizations. In this 

example, the quasi-longitudinal and quasi-transverse waves are almost indistinguishable 

from the truly longitudinal and truly transverse waves of Fig. 8. 
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Fig. 9. The dispersion relations of homogeneous material quartz along the boundaries of the 

irreducible part of the Brillouin zone YΓ − Χ − Μ − − Γ  

 

   
 (a)   (b)     (c) 

Fig. 10. (a) quasi shear horizontal mode (b) quasi shear vertical mode, (c) quasi longitudinal 
mode in the quartz 

From the discussion, it shows that the method adopted in this chapter can be used to discuss 
the wave propagations in isotropic and anisotropic media. 

4. Acoustic wave in inhomogeneous media 

Previous studies on photonic crystals raise the exciting topic of phononic crystals. This 
section presents the results of acoustic waves in inhomogeneous media, Al/Ni periodic 
structures and phononic crystals with reticular geometric structures. It also discusses the 
tunable band gaps in the acoustic waves of two-dimensional phononic crystals with 
reticular geometric structures using the 2D and 3D finite element methods. This section 
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calculates and discusses the band gap variations of the bulk modes due to different sizes of 
reticular geometric structures. Results show that adjusting the orientation of the reticular 
geometric structures can increase or decrease the total elastic band gaps for mixed 
polarization modes.  

4.1 Periodic structure with two media  

It is necessary and worthy to provide evidence supporting the FEM method’s (COMSOL 

Multiphysics) ability to perform Bloch calculations with two media. This chapter compares 

the dispersion relations of Al/Ni band structure using the PWE method with the results of 

using the FEM method. Consider a phononic structure consisting of Al circular cylinders 

embedded in a background material of Ni to form a two-dimensional square lattice with 

lattice spacing R. Figure 11 shows the dispersion relations along the boundaries of the 

irreducible part of the Brillouin zone in Fig. 6(a) with filling ratio 0.6. The vertical axis 

represents the normalized frequency * / tR Cω ω=  and the horizontal axis represents the 

reduced wave number * /k kR π= . Here, Ct and k are the shear velocity of Ni and the wave 

vector along the Brillouin zone, respectively. The Young’s modulus E, Poisson’s ratio ν , 

and density ρ  of the material Ni utilized in this example are E=214 GPa, ν =0.336, and 

ρ =8905 kg/m3. 
The diamond symbols represent the dispersion relations of the transverse polarization 
modes (shear vertical modes), and the cross symbols represent the mixed polarization 
modes (shear horizontal mode coupled with longitudinal mode) in the PWE method. The 
open circles represent the dispersion relations of all modes in the FEM method with a 3D 
model. The results of the FEM method match well with those of the PWE method. In the 
similar cases, when the differences of mass densities and elastic constants between the two 
periodic materials are larger, the convergence of the PWE method is slower and costs more 
CPU time. 
 

 

Fig. 11. Comparison of Bloch calculations between the PWE and FEM methods 
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As the elastic waves propagate along the x axis, the nonvanishing displacement fields of the 
shear horizontal mode, shear vertical mode, and longitudinal mode are uy, uz, and ux 
respectively. For the sequence modes appear, the modes are always the same. When 
representing the whole wave vector space by the first Brillouin zone alone, they appear as 
further branches from higher Brillouin zones. In this example, the phase velocities of the SV0 
mode (diamond symbols) are larger than those of the SH0 mode. The boundary of the 
Brillouin zone X-M of Fig. 11 represents the dispersion of the bulk waves with propagating 
direction varied 0 deg~ 45 deg counterclockwise away from the x direction.  

4.2 Periodic structure with single medium  
Figure 12(a) depicts a two-dimensional phononic crystal with the reticular geometric 
structures of square lattice. These reticular structures are parallel to the z-axis. In a perfect 
two-dimensional phononic crystal, the periodic structure is constant in the z direction and 
the size of the structure is infinite in the x and y directions. To analyze the dispersion 
relations of all bulk acoustic modes in this band structure, the FEM should consider the 3D 
model in Fig. 12(c). The dimensions of the unit cell in Fig. 12(a) are c=d=0.8R and R=h=1 in 
the calculations. 
 

 

Fig. 12. (a) square lattice with lattice spacing R and (b) rectangular lattice with lattice spacing 
aR along x-axis and R along y-axis, (c) a unit cell with reticular structures in a 3D FEM 
model 

The material of the reticular structures in the unit cell in this chapter is aluminum. Figure 
12(c) shows a diagram of the unit square lattice in a 3D FEM model. The periodicity of 
phononic crystals along the z direction is used to calculate the dispersion relations of the 
mixed and transverse polarization modes. The types of finite elements used for the 2D and 
3D cases are the default element types, Lagrange-Quadratic, in COMSOL Multiphysics. 
Figure 13 shows the dispersion relations of the mixed and transverse polarization modes 
along the boundaries of the irreducible part of the Brillouin zone in Fig. 6(b) with the scales 
R=h=1, c=0.8, and a=1.2. The horizontal axis represents the reduced wave number along 

YΓ − Χ − Μ − − Γ  and the vertical axis represents the frequency (Hz). Note that this band 
structure shows no full band gap of the mixed and transverse polarization modes. Adopting 
the 2D FEM model to discuss the mixed polarization modes in this kind of band structure 
shows that there is only one full frequency band gap in Fig. 13, located at 3311 ~ 3400 Hz. 
Figure 13 compares the 3D and 2D FEM models. Open circles represent the dispersion 
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relations of mixed polarization modes in the 2D FEM model, while solid circles represent 
the results of all bulk modes in the 3D FEM model. Figure 14 shows the eigenmode shapes 
with 4×4 supercell of total displacements for M1 and M2 modes indicated in Fig. 13. These 
figures clearly show the phenomena of wave localizations in this reticular geometric 
structure. Note that the FEM method can easily describe the mode characteristics. In this 
chapter, M1 is a shear horizontal mode with mode vibrating displacement along the y 
direction when the wave propagates along the x direction ( Γ − Χ  direction). Also, M2 is a 
shear vertical mode with mode vibrating displacement along z direction, and it does not 
couple with the mixed polarization modes. 
 

 

Fig. 13. The dispersion relations of the mixed and transverse polarization modes along the 
boundaries of the irreducible part of the Brillouin zone with the scales R=h=1, c=0.8, and 
a=1.2 

 

 M1     M2 

Fig. 14. The eigenmode shapes with 4×4 supercell of total displacements for M1 and M2 
modes indicated in Fig. 13 
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The following discussion addresses several parameters of the reticular geometric in this 

chapter. First, the effect of filling fraction is discussed when the parameters c=d varied from 

0.1 to 0.9 in Fig. 12(a). Figure 15 shows the distribution of the total band gaps of mixed 

polarization modes, in which only one total band gap appears at approximately 3560 ~ 3736 

Hz in c=d=0.8. The horizontal axis represents the parameter c, and the vertical axis 

represents frequency (Hz). Figure 15 also shows the 2D diagrams of the reticular geometric 

structures with c=d=0.1, 0.5, and 0.8. 

 

 

Fig. 15. The band gap width with parameters c=d varying from 0.1 to 0.9 when the vertical 
range is selected from 3500 to 4500 Hz 

On the other hand, the scale a in Fig. 12(b) varies from 0.1 to 2.0 along the x direction and 

the width of the unit cell along y direction remains 1.0 in the Bloch calculations. Changing 

the scale a from 0.1 to 2.0 can tune the full frequency band gaps of mixed polarization 

modes. Using detailed calculations of dispersion relations of reticular geometric structures 

with scale a=0.1 to 2.0, Fig. 16 shows the band gap widths with the scale a from 0.1 to 2.0 

when the vertical range ranges from 2400 to 5200 Hz. The horizontal axis ranges from 0 to 

2.0, and the vertical axis represents frequency (Hz). No full frequency band gap exists when 

the scale a are 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 1.5, 1.6, and 1.7. These results clearly show that 

changing the scale a can increase or decrease the full frequency band gap.  

It is noted that the unit cells with a=0.5 and 2.0 are the same in the Bloch calculations. 

However, the dispersion phenomena is similar except for the scalar of the eigenmode 

frequencies in the vertical axis of dispersion relations. In both cases, there is only one total 

band gap of the mixed polarization modes. The location of the band gap ranges from 

approximately 5009 to 5017.4 Hz with a=0.5, while that for a=2.0 ranges from approximately 

2504.5 to 2508.7 Hz.  
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Fig. 16. The band gap widths with the scale a from 0.1 to 2.0 

Finally, the rotating angles of reticular geometric structures were changed to analyze the 
distribution of total band gaps. Figure 17 shows the 2D diagrams of unit rectangular 
lattices in different rotating angles D=30 deg, 45 deg, 75 deg, and 90 deg. In these cases, 
the widths of aluminum remain constant, 0.14R, in the reticular geometric structures with 
different rotating angles in the calculations. Figure 18 shows the band gap widths of 
rectangular lattices with different rotating angles of reticular geometric structures. Based 
on the symmetry of the geometry, the different angles in the Bloch calculations were 
adopted from 15 deg ~ 90 deg. In the calculated results, no band gap is detected from D=5 
deg to 65 deg. 
 

 

Fig. 17. 2D diagrams of unit rectangular lattices in different rotating angles D=30 deg, 45 
deg, 75 deg, and 90 deg 
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Fig. 18. The band gap widths of the rectangular lattices with different rotating angles of 
reticular geometric structures 

5. Conclusion  

This chapter examines and discusses the acoustic waves in homogeneous medium and 
inhomogeneous medium, periodic structures with two media and one medium with 
geometrical periodicity. The wave velocities of shear and longitudinal modes in an isotropic 
material and those of quasi-SV, quasi-SH, and quasi-L modes in an anisotropic material are 
obtained using the finite element method. This method also discusses the tunable frequency 
band gaps of bulk acoustic waves in two-dimensional phononic crystals with reticular 
geometric structures using the 2D and 3D finite element methods. This study adopts the 
finite element method to calculate dispersion relations, avoiding the numerical errors, Gibbs 
phenomenon, from the PWE method. Results show that changing the filling fraction, scale a, 
and the rotating angles of unit lattices in the reticular geometric structures can increase or 
decrease the elastic/acoustic band gaps. The effect discussed in this chapter can be utilized 
to enlarge the phononic band gap frequency and may enable the study of the frequency 
band gaps of elastic/acoustic modes in special phononic band structures.  
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