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1. Introduction 

Understanding the pathogenesis of breast and other cancers requires an improved 
understanding of the local microenvironment in which cancer develops and progresses 
(Hanahan and Weinberg, 2011). Many cell types have been defined as key components of 
the tumor stroma that contributes to tumor growth and metastasis, and modulates the 
response to treatment. In this chapter we will focus on cells of the immune system, critical 
players with dual function comprising cells that can foster a pro-tumorigenic inflammatory 
environment as well as reject tumors (Demaria et al., 2010). Importantly, the therapeutic 
manipulation of the host immune system has a tremendous potential to enhance the 
response of breast cancer patients to treatment. Therefore, it is imperative to understand the 
cross-talk between breast cancer cells and cells of the innate and adaptive immune system. 
Several cell communication systems are involved in this cross-talk, including pro-
inflammatory and immunosuppressive cytokines, chemokines and endogenous danger 
signals, known as damage-associated molecular pattern (DAMP) molecules that bind to 
Toll-like Receptors (TLR). Some of these factors represent interesting targets for 
immunotherapy strategies based on their known ability to stimulate the immune system, 
but in the context of the tumor microenvironment these immune stimulatory agents may 
also produce unwanted pro-tumorigenic effects by binding to receptors ectopically 
expressed on the cancer cells. Others are involved in recruiting to the tumor immune cells 
with regulatory and immune suppressive functions that protect the tumor from immune 
rejection. Clearly, the cross-talk between epithelial cells and the immune system is distorted 
in cancer to promote tumor growth and progression. 
We will review pre-clinical and clinical data in support of the concept that the cross-talk 
between neoplastic and immune cells is a key determinant of tumor behavior and treatment 
outcomes. The mediators of this cross-talk that have been identified in breast cancer will be 
discussed. Ultimately, improved understanding of the potential double-edge sword quality 
of therapies targeting mediators of this cross-talk is essential for a cautious use of immune 
response modifiers to harness the positive (anti-tumor immune reactivity) without 
promoting the negative (tumor growth, immune suppression) effects.  

2. Immune cells infiltrating breast cancer 

The presence of an inflammatory infiltrate in benign breast is not uncommon and may be 
seen in association with a variety of fibrocystic changes or conditions such as mammary  
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duct ectasia. However, for the most part immune cells are not a significant component of the 
normal breast stroma. In contrast, a marked increase in adaptive and innate immune cells 

often accompanies the process of carcinogenesis, with prominent inflammatory infiltrates 
seen around ducts involved by in situ carcinoma, as well as within invasive breast cancers 

(figure 1) (DeNardo and Coussens, 2007). The innate immune system plays a major role in 
maintenance of tissue homeostasis and reacts to tissue disruption, including physiological 

tissue disruption that occurs in the breast during branching morphogenesis at puberty and 
pregnancy, and in post-weaning involution. Macrophages, for example, have been shown to 

be important regulators of these processes (Gyorki and Lindeman, 2008). These 
physiological processes are self-limiting and the inflammation associated with them resolves 

once tissue homeostasis is restored. In contrast, carcinogenesis is a chronic process, often 
characterized by disorderly proliferation and death of the neoplastic cells, such as seen in 

ductal carcinoma in situ (DCIS). Deregulated cell death can foster a status of chronic 
inflammation, possibly due to the release of DAMPs from the dying cells (Mantovani et al., 

2008; Zeh and Lotze, 2005). Death of epithelial cells that have undergone or are undergoing 
transformation also releases tumor-associated antigens and can result in activation of tumor-

specific T and B cell responses. These immune responses can prevent tumor outgrowth, but 
eventually genetically unstable cancer cells give rise to variants that have become resistant 

to the recognition and/or killing by immune effector cells, a process defined as 
immunoediting (Schreiber et al., 2011). Escape from immune control does not necessarily 

require the loss of the antigen(s) recognized by T cells, but it is a complex process involving 
the production of immunosuppressive cytokines and the recruitment of regulatory innate 

and adaptive immune cells that protect the tumor from rejection. Key players in 
development and maintenance of the pro-tumorigenic environment are myeloid cells and 

subsets of CD4 T cells functionally differentiated towards T-helper type 2 (Th2) and 
regulatory (Treg) phenotypes that actively maintain a state of tolerance to the tumor (Disis, 

2010). The contribution of Th2 CD4 cells has been recently demonstrated in an experimental 
study showing that interleukin (IL)-4 produced by Th2 CD4 T cells regulates the function of 

macrophages and promotes their pro-tumorigenic M2 phenotype in a mouse breast cancer 
model (Allavena et al., 2008; DeNardo et al., 2009). Interestingly, IL-4 has also been shown to 

be produced by primary epithelial breast cancer cells and to serve as an autocrine survival 
factor (Todaro et al., 2008). Another Th2 cytokine, IL-13, was shown to be involved in 

growth of human breast cancer cells (Aspord et al., 2007). Finally, a correlation between the 
number of Treg infiltrating human breast cancer and worse prognosis was reported in a 

study of 62 patients with DCIS and 237 patients with invasive breast cancer (Bates et al., 

2006).  
Conversely, evidence of effective anti-tumor immunity limiting tumor growth has been 

reported in several studies. Presence of a gene signature rich in Th1 and CD8 T cell markers 

was associated with a better outcome regardless of the type of epithelial malignancy in a 

study analyzing the stroma of primary breast cancers (Finak et al., 2008). Other studies, 

however, found that the prognostic value of immune signatures is different depending on 

the molecular subtype of breast cancer, and is a dominant factor in hormone receptors- and 

human epidermal growth factor receptor (Her)-2-negative (triple negative) cancers (Calabrò 

et al., 2009; Desmedt et al., 2008; Kreike et al., 2007; Mahmoud et al., 2011).  

Overall, accumulating data support the concept that the balance between pro-tumorigenic 
and anti-tumor immune reactions is a key determinant of breast cancer progression. As 
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detailed below, the neoplastic epithelial cells both secrete and respond to cytokines, 
chemokines and other bioactive molecules that regulate the recruitment and function of 
immune cells.  
 

 

Fig. 1. Example of immune infiltrate in breast cancer. (A) Lymphocytic infiltrate as seen in 
H&E-stained sections. Ductal carcinoma in situ (DCIS) with comedo necrosis (upper panel), 
well differentiated invasive ductal carcinoma (lower panel). (B) Immunohistochemical 
staining of intratumoral T cells for markers of helper T cells (CD4), regulatory T cells 
(FoxP3), and effector T cells (CD8 and granzyme). 

3. Chemokines and cytokines produced by breast cancer cells 

A large network of chemokines and their receptors regulate trafficking and recruitment of 
innate and adaptive immune cells to different tissues in response to inflammation (Kunkel 
and Butcher, 2002). Signaling via chemokine receptors regulates processes such as cell 
migration, invasion, interaction with the endothelium and extracellular matrix, as well as 
survival. Interestingly, many epithelial cells acquire the expression of chemokine receptors 
and/or secrete chemokines when they undergo neoplastic transformation (Balkwill, 2004). 
The production of chemokines by cancer cells has been shown to influence the degree and 
phenotype of the inflammatory infiltrate. For example, the chemokine CCL2 (also known as 
monocyte chemotactic protein-1, MCP-1) is frequently secreted by breast cancer cells and is 
primarily responsible for recruitment of monocytes to tumors (Ueno et al., 2000; Valković et 
al., 1998). Within the tumor microenvironment monocytes differentiate into tumor-
associated macrophages (TAM), which play a role in cancer progression and metastasis by 
producing immunosuppressive cytokines and pro-angiogenic factors (Pollard, 2004; Ueno et 
al., 2000). In human breast cancer levels of CCL2 correlate with a poor prognosis (Saji et al., 
2001; Ueno et al., 2000) and recent evidence indicates that CCL2 plays a key role in 
pulmonary metastases of breast cancer by recruiting Gr1+ inflammatory monocytes (Qian et 
al., 2011). Another chemokine produced by breast cancer cells and implicated in recruitment 
of monocytes is CCL5 (also known as Rantes) (Luboshits et al., 1999). Co-expression of CCL5 
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with CCL2 was reported to be associated with more advanced breast cancer stage (Soria et 
al., 2008).  
Levels of two pro-inflammatory and pro-angiogenic chemokines, CXCL8 (also known as IL-
8) and CXCL1 (also known as Growth-related oncogene, GRO) were found to be 
significantly elevated in sera of metastatic breast cancer patients with Her-2-positive 
compared with Her-2-negative cancers (Vazquez-Martin et al., 2007). In vitro, over-
expression of Her-2 in human breast cancer cells MCF7 led to a marked increase in release of 
CXCL8 and CXCL1 that was abrogated by treatment with the tyrosine kinase inhibitor 
geftinib (Iressa), suggesting that these chemokines may play a role in the aggressive 
behavior of Her-2-positive breast cancers (Vazquez-Martin et al., 2007). CXCL1 and CXCL8 
recruit neutrophils to tumors, and there is evidence that in the tumor microenvironment 

these cells acquire a pro-tumor phenotype in response to transforming growth factor (TGF)β 
(Fridlender et al., 2009).  
Secretion of the chemokines CCL20 (also known as macrophage inflammatory protein, MIP-

3α) and CCL19 (MIP-3β) by human breast cancer cells has been implicated in the 

recruitment of immature dendritic cells (DC) to breast cancer but the prognostic value 

remains uncertain (Bell et al., 1999; Treilleux et al., 2004). Interestingly, infiltration of breast 

cancer by Treg cells, which are recruited by CCL22 produced by approximately 60% of 

breast cancers (Gobert et al., 2009), was found to be associated with increased risk of relapse 

(Bates et al., 2006).  

Conversely, some chemokines produced by breast cancer cells enhance recruitment of anti-

tumor T cells. One such example is CXCL16, a chemokine that is up-regulated during 

inflammation in peripheral tissues and promotes recruitment of activated CD8 and Th1 T 

cells (Sato et al., 2005; Yamauchi et al., 2004). This may explain why the levels of expression 

of CXCL16 in colorectal carcinoma correlate with increased infiltration of tumors by T cells 

and better prognosis (Hojo et al., 2007). We were the first to report the expression of CXCL16 

by human and mouse breast cancer cells, and to show that CXCL16 is markedly induced in 

vitro and in vivo by treatment with radiotherapy (Matsumura et al., 2008). We also showed in 

a mouse model of metastatic breast cancer that induction of CXCL16 by radiotherapy 

enhanced tumor infiltration by CD8 T cells elicited by immunotherapy promoting immune-

mediated tumor rejection (Matsumura et al., 2008). Data in the preclinical model suggest 

that CXCL16 may play a role in response to treatment with radiotherapy and 

immunotherapy. Although the prognostic value of the expression of CXCL16 in breast 

cancer remains to be determined, it is possible that in the absence of treatment-induced anti-

tumor CD8 T cells the lymphocytes recruited to CXCL16+ tumors may instead promote pro-

tumorigenic inflammation, as suggested in prostate cancer (Darash-Yahana et al., 2009). 

Whether the pro- or anti-tumor effects of CXCL16 prevail may be determined by expression 

of the cognate receptor, CXCR6, by the cancer cells, as discussed in the next section. Overall, 

chemokines expressed by breast cancer cells play critical roles in shaping the tumor immune 

infiltrate and likely influence tumor progression and response to treatment.  

Among cytokines produced by breast cancer cells, the role of TGFβ in tumor development 

and progression has been extensively studied. Acting as a tumor suppressor early on, TGFβ 

later becomes a key factor in promoting tumor progression, metastases, and resistance to 

treatment (Barcellos-Hoff and Akhurst, 2009). Relevant to the focus of this chapter, in 

addition to direct effects on the neoplastic cells, TGFβ acts on innate and adaptive immune 

cells suppressing their function (Gorelik and Flavell, 2001; Wrzesinski et al., 2007). DCs 
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(Kobie et al., 2003) and effector CD8 T cells (Gorelik and Flavell, 2001; Thomas and J., 2005; 

Wrzesinski et al., 2007) are key targets of TGFβ suppressive effects in cancer leading to 

defects in activation and function of anti-tumor effector cells. Interestingly, an unexpected 

tumor-promoting effect of TGFβ was shown to be mediated by induction of production of 

the pro-inflammatory cytokine IL-17 by CD8 T cells (Nam et al., 2008). IL-17 acted as a 

survival factor for tumor cells, including mouse breast cancer cell lines that ectopically 

expressed the IL-17 receptor (Nam et al., 2008). These intriguing observations emphasize the 

complexity of interactions between tumor cells and immune system. Breast cancer cells also 

produce IL-4 and use it as an autocrine survival factor (Todaro et al., 2008).  
The expression and production of IL-10 and IL-12 p40, but not of IL-12 p70, by human breast 
tumor cells was recently reported (Heckel et al., 2011). IL-10 has immunosuppressive anti-
inflammatory effects, and IL-12p40 can bind to IL-12 receptor on immune cells and work as 
an antagonist of IL-12p70, a cytokine that promotes Th1 T cell differentiation. Although the 
contribution of IL-10 and IL-12p40 produced by breast cancer cells to generation of an 
immune suppressive tumor microenvironment remains to be further studied, data support 
the concept that tumors that become clinically apparent have undergone multiple changes 
to escape immune rejection (Schreiber et al., 2011).  

4. Chemokine receptors expressed by breast cancer cells 

Cancer cells express several chemokine receptors, and exploit the chemokine system to 
home to bone marrow and different organs that are sites of metastases. An example is 
CXCR4, the chemokine receptor most commonly found on cancer cells and the role of which 
has been more extensively characterized (Balkwill, 2004). In vitro, binding of CXCR4 to its 
ligand, the chemokine CXCL12 (also known as stromal derived factor -1, SDF-1) activates 
migration and invasion of cancer cells. In vivo, expression of CXCR4 is associated with 
metastatic capacity in melanoma, breast, and other cancers (Balkwill, 2004; Muller et al., 
2001). Another chemokine receptor that is required for homing of lymphocytes and DCs to 
lymph nodes, CCR7, has been shown to be expressed by breast cancer cells and guide their 
metastases to lymph nodes (Muller et al., 2001).  
CXCR3, a chemokine receptor expressed by activated Th1 and effector CD8 T and natural 
killer (NK) cells, binds to three chemokines, CXCL9, CXCL10 and CXCL11. Overexpression 

of CXCL10 (also known as interferon (IFN)-γ inducible protein 10, IP-10), or CXCL9 (also 

known as monokine induced by IFN-γ, Mig) by genetic engineering of tumor cells in 
experimental mouse tumor models enhanced recruitment of T and NK cells and promoted 
immune-mediated tumor rejection (Luster and Leder, 1993; Walser et al., 2007). However, 
CXCR3 is also expressed by human and mouse breast cancer cell lines (Goldberg-Bittman et 
al., 2004; Walser et al., 2006), and more recently it was found in all human primary breast 
cancers tested (N=75). Importantly, high CXCR3 expression, found in 24% of the tumors, 
was associated with poor overall survival (Ma et al., 2009). In experimental mouse models, 
blocking CXCR3 with a small molecule inhibitor prior to i.v. injection of the tumor cells, or 
by gene silencing in the tumor cells inhibited metastases (Ma et al., 2009; Walser et al., 2006). 
Intriguingly, inhibition of lung metastases by CXCR3 gene silencing required NK cells and 

was compromised in IFN-γ-deficient mice (Ma et al., 2009). These data highlight the 
complexity of the interactions between tumor and host, and caution that the systemic use of 
CXCR3 inhibitors could elicit mixed effects by reducing metastases while potentially 
interfering also with recruitment of immune cells that are required for metastasis control.  
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Similarly to CXCR3, CXCR6 is expressed on immune cells with anti-tumor effector function, 
namely activated CD8 and Th1 CD4 T cells, NK cells, and NKT cells (Kim et al., 2002; Kim et 
al., 2001; Nakayama et al., 2003; Unutmaz et al., 2000). CXCL16, the only ligand for CXCR6, 
was first shown to be expressed by immune cells with antigen-presenting function, and to 
be up-regulated during inflammation in different organs (Sato et al., 2005; Yamauchi et al., 
2004). As mentioned above, expression of CXCL16 was recently described in several tumors, 
including breast cancer. Autocrine effects of CXCL16 binding to CXCR6 expressed on the 
same cancer cells were described in prostate cancer, where signaling via CXCR6 induced the 
activation of AKT/mammalian target of rapamycin (mTOR) pathway and promoted tumor 
cell invasion, growth and angiogenesis (Wang et al., 2008). In contrast, in renal cell 
carcinoma, CXCL16 expression was associated with better prognosis in patients. 
Endogenous CXCL16 appeared to inhibit growth and migration by interacting with CXCR6 
expressed by the same tumor cells (Gutwein et al., 2009). Whether the pro- or anti-tumor 
effects of the CXCL16/CXCR6 pathway depend on the levels of CXCR6 expression on the 
tumor cells or its interaction with different forms of CXCL16 remains to be clarified. 
CXCL16 is one of only two chemokines that is released by cleavage of the chemokine 
domain from a transmembrane molecule by the activity of the disintegrin-like 
metalloproteinase ADAM10 (Abel et al., 2004). Soluble CXCL16 has chemotactic activity, 
while the transmembrane form can mediate adhesion to CXCR6+ cells, as well as function as 
a scavenger receptor for oxidized low density lipoproteins, phosphatidylserine, and dextran 
sulfate (Shimaoka et al., 2003). Therefore, it is possible that interaction of CXCR6 expressed 
on tumor cells with the soluble chemokine domain or the transmembrane form of CXCL16 
has different consequences. Expression of CXCR6 was initially reported in mouse breast 
cancer cell lines (Wang et al., 2006). A recent report in human breast cancer cells shows that 
CXCR6 can mediate chemotaxis in response to soluble CXCL16. Interestingly, expression of 

CXCR6 was regulated by hypoxia via hypoxia inducible factor (HIF)-1α, suggesting a role of 
CXCR6 expressed in breast cancer cells in cell migration in response to hypoxia (Lin et al., 
2009). Although intriguing, these findings need confirmation in functional experiments 
assessing the role of CXCR6 in breast cancer metastasis. Overall, more data is required to 
clarify the expression and function of CXCR6 in breast cancer.  
Another chemokine receptor, CCR5, has been implicated in breast cancer metastases 
promoted by mesenchymal stem cells. Intriguingly, the increased metastatic ability was 
dependent on the production of CCL5 by mesenchymal stem cells, which was induced de 
novo by the breast cancer cells, highlighting the importance of the tumor microenvironment 
in the cross-talk between neoplastic and stromal cells (Karnoub et al., 2007).  

5. TLR and their ligands 

Immune surveillance by cells of the innate immune system is mediated in large part by 
pattern recognition receptors (PRRs) that allow sensing of the invading pathogens and 
initiation of the inflammatory cascade (Kopp and Medzhitov, 2003). PRRs represent a family 
of evolutionarily conserved, germline-encoded proteins that recognize structural motifs 
found in bacteria and viruses known as pathogen-associated molecular patterns (PAMPs) 
(Barton and Medzhitov, 2002). TLRs constitute the most well-studied and characterized 
family of PRRs. To date, 11 TLRs and their cognate ligands have been identified in humans. 
TLRs are predominantly expressed in DCs, macrophages and NK cells. TLR activation by 
their respective PAMPs induces the release of pro-inflammatory cytokines, chemokines as 
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well as adhesion molecules that collectively enhance phagocytosis, microbial killing as well 
as recruitment of adaptive immunity (Iwasaki and Medzhitov, 2004).  
In addition to sensing microbial pathogens, TLRs are also activated by endogenous ligands 

and trigger a sterile form of inflammation. First described by Matzinger as DAMP, these 

endogenous danger signals are often released or expressed in the context of tissue injury by 

both normal and neoplastic cells (Bianchi, 2007; Gallucci et al., 1999). Several recently 

identified DAMPs include heat- shock proteins (Ohashi et al., 2000; Roelofs et al., 2006; 

Vabulas et al., 2002), uric acid crystals (Liu-Bryan et al., 2005) and extracellular matrix 

proteins (Okamura et al., 2001) (Figure 2).  

DAMP-TLR interactions have been implicated in the pathogenesis of immune dysfunction 

in autoimmune diseases and atherosclerosis, as well as in the chronic inflammation often 

associated with cancer (Marshak-Rothstein, 2006). 

 

 

Fig. 2. Overview of toll-like receptors (TLRs) and their ligands. Activation of TLRs can be 
induced by exogenous microbial-derived ligands (PAMPs) as well as endogenous ligands 
(DAMPs) which are released from tissues in response to injury and inflammation.  

Importantly, DAMP-TLR interactions have also been shown to play a decisive role in 

shaping anti-tumor immune responses (Apetoh et al., 2007a). Tumor cell death induced by 

some chemotherapy drugs and ionizing radiation resulted in release of copious amounts of 

the DAMP high-mobility-group box 1 (HMGB1) that binds to TLR4 expressed by DC and 

promotes the cross-presentation of tumor-derived antigens to T cells (Apetoh et al., 2007b). 

The ability of TLR engagement to activate innate immune cells to promote a defense 

response by inducing adaptive anti-tumor responses has spurred efforts to exploit TLR 

agonists as novel adjuvants for cancer therapy (Adams, 2009). Both purified natural and 

synthetic TLR ligands have been used in a variety of vaccination regimens designed to 
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overcome tolerance and sustain tumor-specific T-cell responses. Evidence from pre-clinical 

and clinical studies has shown the benefit of TLR stimulation when combined with 

conventional cancer treatment modalities such as radiotherapy and/or chemotherapy 

(Manegold et al., 2008; Mason et al., 2006). The discovery that many epithelial cells, 

including carcinoma cells, do express at least some TLRs, however, has raised the question 

about the effect of TLR stimulation on the tumor cells (Yu and Chen, 2008), and the effects of 

their therapeutic use (Huang et al., 2008). For instance, data from both mouse and human 

cancer cells show that while activation of some TLRs can increase susceptibility of tumor 

cells to apoptosis (Salaun et al., 2006), the ligation of other TLRs promotes tumorigenesis on 

several levels. Indeed, in a variety of tumor models, TLR stimulation has been shown to 

enhance proliferation, diminish tumor susceptibility to apoptosis, stimulate migratory 

capacity and invasiveness as well as promote angiogenesis (Harmey et al., 2002; Jego et al., 

2006; Pidgeon et al., 1999). In the following section, we summarize data about the function 

of the main TLRs known to be expressed by breast cancer cells.  

5.1 TLR3  

Several TLRs (TLR 3,7,8 and 9) that recognize nucleic acid ligands are expressed 
intracellularly in the endosomal compartment, thus allowing for rapid detection of 
foreign nucleic acid material (Liu et al., 2008). TLR3 is an important detector of viral 
infection since it binds viral double-stranded RNA (dsRNA) and initiates a strong IFN 
type I response. Synthetic dsRNA agonists for TLR3, such as polyadenylic-polyuridylic 
acid [poly(A:U)], have been developed and tested in clinical trials in several cancers, 
including breast cancer, with encouraging results (Lacour et al., 1980). Interestingly, TLR3 
is expressed by breast cancer cells and its triggering promotes apoptosis (Salaun et al., 
2006) (Figure 3). In a recent clinical trial, adjuvant treatment with poly(A:U) showed a 
significant decrease in the risk of metastatic relapse in TLR3 positive but not in TLR3-
negative breast cancers, suggesting that the direct anti-tumor effect may be more 
important than the indirect stimulation of anti-tumor immunity (Salaun et al., 2011). TLR3 
triggering can also elicit the production by some tumor cells of chemokines that recruit 
immune cells with opposing effects (Conforti et al., 2010). Therefore, the use of TLR3 
agonists should be combined with strategies to enhance anti-tumor Th1 responses and/or 
decrease immunosuppressive cells responsive to CCL5. 

5.2 TLR4  

The prototypical and best-characterized agonist for TLR4 activation is lipopolysaccharide 

(LPS), a structural component of Gram-negative bacteria. TLR4 can also be stimulated by 

viral components derived, for example, from respiratory syncytial virus (Kurt-Jones et al., 

2000) or the murine retrovirus MMTV (Rassa et al., 2002). Additionally, endogenous DAMPs 

such as heat-shock proteins and HMGB-1 are ligands for TLR4 (Apetoh et al., 2007b; Ohashi 

et al., 2000). A synthetic derivative, i.e., monophospohryl lipid A (MPL), is used as a vaccine 

adjuvant for hepatitis B (Fendrix) and human papilloma virus (Cervarix) (reviewed in 

(Adams, 2009)). In the 1990’s, MPL was included as a component of DETOX adjuvant in 

tumor vaccines for skin, lung and breast malignancies, with promising results in Phase II/III 

clinical trials (Eton et al., 1998; He et al., 2007; MacLean et al., 1993). On the other hand, 

recent evidence has implicated TLR4 expression in tumor cells as having a profound impact 

on tumor cell survival by evading host anti-tumor responses (He et al., 2007) or promoting  
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Fig. 3. Documented effects of TLR ligation on breast cancer cells. TLR activation in breast 
cancer cells is complex since it can either promote tumor cell death or enhance its growth 
and invasive potential. Like most other epithelial malignancies, breast cancer cells express 
several TLRs although the endogenous ligands for many of these TLRs remain unknown.  

chemoresistance (Kelly et al., 2006). Expression of TLR4 by a large majority (~90%) of 
primary breast cancers was detected by immunohistochemistry in a study of 133 cases, but 
there was no significant association between TLR4-positivity and outcome (Petricevic et al., 
2011). On the other hand, another study reported an interesting correlation between 
metastatic propensity and expression of TLR4 among stromal cells (i.e mononuclear 
inflammatory cells), which are found in abundance in primary breast tumors (Gonzalez-
Reyes et al., 2010). These findings reiterate the complexity of the role that stromal cells play 
in tumor progression and suggest that TLR4 expression may be a critical mediator in these 
events. Furthermore, TLR4 was the predominant TLR detected in the immortalized human 
breast cancer cell line MDA-MB-231 (Yang et al., 2010). Knockdown of TLR4 significantly 
inhibited growth and secretion of IL-6 and IL-8 by these breast cancer cells, suggesting that 
TLR4 could be a therapeutic target. Overall, while stimulation of TLR4 in the cancer cells 
themselves may have deleterious effects, stimulation of TLR4 in innate immune cells could 
have opposite effects, depending on the tumor microenvironment, the type of myeloid cells 
involved (e.g., macrophages versus DC) and the availability of other signals that have to be 
integrated by DC to promote, rather than suppress, anti-tumor immune responses (Zitvogel 
et al., 2010).  

5.3 TLR5  

TLR5 is a cell surface receptor that recognizes bacterial flagellin and is unique among TLRs 
in that it is highly expressed in DCs within the lamina propria of the gut epithelium. It has 
also been detected in carcinomas of the gastro-intestinal tract, where it has been 
hypothesized that it may interact with bacterial pathogens linked to cancer development 
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such as Helicobacter pylori (Schmausser et al., 2005). Interestingly, a functional TLR5 is also 
expressed by human prostate cancer cells and its stimulation triggers the production of 
chemokines that recruit immune cells, although it is unclear whether recruited cells 
contribute to pro-tumorigenic inflammation or tumor rejection (Galli et al., 2010). On the 
other hand, the pro-inflammatory effects of TLR5 activation, particularly IL-6 and CCL2 
release, were implicated in tumor progression of ovarian malignancies (Zhou et al., 2009). 
Indeed, early studies comparing TLR5 expression in normal and ovarian cancer have 
suggested that TLR5 could be a promising biomarker for malignant changes (Kim et al., 
2008).  
In a preclinical model of breast cancer, administration of flagellin to mice with established 

tumors inhibited the growth of an immunogenic variant expressing human Her-2 but not 
the parental non-immunogenic tumor (Sfondrini et al., 2006). TLR5 stimulation by flagellin 

was associated with enhanced IFNγ production and diminished infiltration of Treg cells. 
Interestingly, flagellin treatment at the time of tumor implantation had the opposite effect, 

leading to decreased IFNγ, increased frequency of Treg cells and accelerated tumor growth, 
indicating that opposing effects may be elicited depending on the tumor/host environment 
at time of administration (Sfondrini et al., 2006). However, since TLR5 expression in tumor 

cells themselves was not definitively established, no conclusions could be drawn whether 
the pro- or anti-tumorigenic effects of flagellin treatment resulted from direct effects on 

carcinoma cells.  
A recent study in human primary breast cancer specimens from 75 patients demonstrated 

that TLR5 is expressed in normal ductal epithelium and in 80% of breast cancers 
examined (Cai et al., 2011). TLR5 was also expressed in 6 human breast cancer cell lines, 

and flagellin treatment inhibited tumor cell proliferation in vitro and in vivo, in a xenograft 
model. In MCF7 cells, flagellin stimulation induced tumor necrosis factor (TNF)-α, IL-1β, 

IL-6, and IL-8 mRNA, suggesting that flagellin activates TLR5-dependent signaling 
pathway in breast cancer cells. The production of several chemokines was also increased 

by flagellin, including MIP-3α, MCP-1, macrophage-derived chemokine (MDC), IL-6, Gro-
α, and osteoprotegerin. In vivo, flagellin-treated MCF7 and MDA-MB-468 tumors growing 

in nude (T cell deficient) mice showed increased infiltration by neutrophils (Cai et al., 
2011). It will be important to establish, however, if these anti-tumor effects can be 

achieved in immunocompetent mice.  

5.4 TLR9  

TLR9 is located intracellularly in the endoplasmic reticulum and binding induces 

translocation to the endosomal/lysosomal compartment. In humans, TLR9 is abundantly 
expressed in plasmacytoid DC (pDCs) and B cells. Until recently, TLR9 has been thought to 

recognize hypomethylated CpG deoxynucleotides (CpG-ODN) motifs characteristic of 
bacterial DNA but molecular studies have definitively shown that TLR9 binds instead to the 

2’-deoxyribose sugar backbone (Haas et al., 2008). TLR9 activation in pDC enhances their 
maturation into more efficient antigen presenting cells and producers of powerful pro-

inflammatory cytokines such as type I IFN (Gilliet et al., 2008). Furthermore, the activation 
of TLR9 in B cells promotes their proliferation and polyclonal immunoglobulin synthesis, 

thus generating a robust humoral response as well (Chiron et al., 2008). The broad spectrum 
of immunoactivating effects of TLR9 stimulation on both innate and adaptive responses 

have spurred efforts to use synthetic TLR9 ligands as an immunotherapeutic for both solid 
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tumors and hematological malignancies (Krieg, 2008). Initially, TLR9 expression was 
thought to be restricted to immune cells, but recent studies have conclusively showed that a 

variety of tumor cell types also express functional TLR9 molecules. Indeed, expression of 
TLR9 has been confirmed in both frozen breast tumor specimens (Berger et al., 2010)as well 

as breast cancer cell lines (Berger et al., 2010; Merrell et al., 2006; Qiu et al., 2009). A study of 
124 frozen breast tissue specimen from women diagnosed with breast cancer found a 

positive correlation (Spearman rank p=0.04) between TLR9 mRNA expression and 
increasing tumor grade, suggesting that TLR9 expression may be a molecular marker for 

poorly differentiated breast cancers (Berger et al., 2010).  
The direct effects of TLR9 stimulation on tumor cells, however, remains decidedly 
complex. In 2006, Selander and colleagues showed that CpG-ODN stimulation of the TLR9-
positive MDA-MB-231 but not TLR9-negative MCF-7 human breast cancer cells induced 
their migration across a matrigel matrix (Merrell et al., 2006), suggesting that TLR9 
signaling plays a role in cancer progression and metastasis. TLR9 overexpression in BT-20 
breast cancer cells has similarly been found to enhance invasiveness in vitro (Berger et al., 
2010). In both studies, CpG-ODN stimulation did not affect cellular proliferation, thus 
negating the possibility that the enhanced migration could be attributed to increased cell 
division. TLR9 expression may also be a mechanism that tumors employ to evade host 
immune responses such as tumor necrosis factor-related apoptosis inducing ligand 
(TRAIL)-induced apoptosis. The TRAIL/TRAIL receptor interaction is an important 
mechanism by which anti-tumor effectors such as CD8 T cells, NK cells and NKT cells 
mediate tumor-directed cell kill. In an in vitro study using TLR9-expressing breast cancer 
cell lines HCC1569 and Cal51, CpG-ODN stimulation resulted in a significant decrease in 
the sensitivity of tumor cells to lexatumumab, an anti-DR5 agonist antibody that stimulates 
the TRAIL pathway (Chiron et al., 2009; Ohta et al., 2006) . Using a synthetic TLR9 ligand 
in which the phosphate backbone was modified to increase resistance to nucleases and 
enhance circulating half-life, Chiron and co-workers showed that the phosphorothioate-
modified TLR9 agonist could bind directly to the DR5 receptor on tumor cells and inhibit 
TRAIL-dependent killing by NK cells. These findings have important implications for the 
use of TLR9-directed therapies using synthetic CpG-ODNs which may potentially 
attenuate tumor immunosurveillance. Conversely, a recent study suggest that CpG-ODN 
stimulation may hold therapeutic promise in estrogen-responsive breast cancer cells (Qiu 
et al., 2009). TLR9 activation in T47D and MCF-7 breast cancer cells inhibited estrogen-

receptor alpha (ERα)-mediated transactivation through the NF-κB pathway. Although 
these findings need to be confirmed in primary breast tumor tissues, it is intriguing to 
investigate whether CpG-ODN stimulation can synergize with hormonal therapy for ER+ 
breast cancers.  

6. The cross-talk between regulatory T cells and breast cancer cells (RANKL) 

Receptor activator of NF-kB (RANK) is a type I membrane protein, which shares high 
homology with CD40. RANK ligand (RANKL, also called TRANCE (TNF-related activation-
induced cytokine) or osteoclast differentiation factor (ODF) is a type II membrane protein 
with belongs to the TNF superfamily originally identified as a dendritic cell survival factor. 
RANKL is predominately expressed in activated T cells, as well as the thymus, lymph node 
and bone marrow. RANK/RANKL are essential regulators of bone remodeling, body 
temperature, lymph node and thymus formation as well as mammary gland development 
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during pregnancy (Leibbrandt and Penninger, 2008). Furthermore, the RANK/RANKL axis 
has been linked to progestin-driven breast carcinomas and bone metastases (Schramek et al., 
2010).  
In addition to the expression of RANK on hematopoietic osteoclast precursors and DC, the 
receptor is also expressed by some tumor cell types, including melanoma, osteosarcomas, 
breast and prostate cancers (Jones et al., 2006; Mori et al., 2007a; Mori et al., 2007b). RANK 
expression has been reported in 6-57% of invasive human breast cancers, depending upon 
the parameters used to define positivity and antibodies utilized for staining (Gonzalez-
Suarez et al., 2010; Santini et al., 2011). Stimulation of RANK+ human breast cancer cells 
with recombinant RANKL induces actin polymerization and migration without affecting 
cell proliferation (Jones et al., 2006). Preclinical models of Her-2+ mammary carcinoma 
(MMTV-neu transgenic mouse) have shown that metastatic spread is dependent on RANK 
signaling and that pharmacological inhibition of RANKL reduces tumor growth and lung 
metastases (Gonzalez-Suarez et al., 2010; Tan et al., 2011).  
While only a subgroup of breast cancers expresses RANKL and there is no evidence for co-
localization of RANK and its ligand in the carcinoma epithelium (Gonzalez-Suarez et al., 
2010; Van Poznak et al., 2006), RANKL is expressed by infiltrating immune cells. In one 
study, RANKL was detected in tumor-infiltrating mononuclear cells (not further 
characterized) and occasionally in fibroblast-like stromal cells (Gonzalez-Suarez et al., 2010). 
Another report showed that the majority of RANKL-producing cells infiltrating breast 
cancers were T cells expressing FOXP3, a transcription factor produced by Treg cells (Tan et 
al., 2011). Importantly, RANK signaling mediated the metastatic behavior of RANK-
expressing mouse breast cancer cells, and RANKL was produced by Treg cells (Tan et al., 
2011). Therefore, in addition to suppressing anti-tumor immune responses, Treg cells might 
promote the metastatic behaviors of some tumors by producing RANKL, explaining why 
Treg cells have been shown to have prognostic significance in breast cancers. In 237 patients 
with operable breast cancers, Treg cell numbers in the primary tumor correlated with 
relapse-free survival independently of nodal involvement, tumor size and grade (Bates et 
al., 2006). Therefore, it will be of great interest to determine if tumor infiltration by Treg cells 
and/or Th17 cells, another T cell subset that has been shown to express high levels of 
RANKL (Sato et al., 2006), predicts for increased metastases of RANK+ breast cancers, and 
whether RANKL inhibition will be effective at inhibiting metastasis and risk of recurrence 
and death from breast cancer. 

7. Therapeutic implications 

The role of interactions between tumor cells and host immune system is increasingly 
appreciated as critical for tumor development and progression, as well as therapeutic 
response. As discussed above, the type and density of immune cells infiltrating breast 
cancers is associated with prognosis, with high density of macrophages forecasting a worse 
outcome (Bingle et al., 2002) while high numbers of CD8+ T cells predict a better outcome 
(Mahmoud et al., 2011). Importantly, the presence of a brisk lymphocytic infiltrate in pre-
treatment biopsies of more than one thousand primary breast cancers was significantly 
associated with pathological complete response (pCR) to neoadjuvant anthracycline/taxane 
treatment (Denkert et al., 2010). A significant association was found between markers of T 
cells (CD3) and effector T-cell recruitment (CXCL9) and pCR (Denkert et al., 2010). These 
data in patients support the concept that the anti-cancer immune response is essential for 
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therapeutic success (Zitvogel et al., 2008), and suggest that immune infiltrates can provide 
predictive information. Indeed, if cytocidal treatments work, in part, by causing an 
immunogenic tumor cell death and generating an in situ vaccine, the presence of a less 
immunosuppressive microenvironment will favor development of anti-tumor immunity 
post-treatment (Apetoh et al., 2007c; Formenti and Demaria, 2009; Ghiringhelli et al., 2009; 
Obeid et al., 2007). Conversely, immune cells and their receptors become attractive targets 
for improving response to chemo- and radio-therapy. For example, we have shown in a 
mouse model of metastatic breast cancer that targeting the co-inhibitory receptor CTLA-4 on 
T cells synergizes with local radiotherapy in inducing the immune-mediated regression of 
the irradiated tumor and metastases outside of the radiation field (Demaria et al., 2005). In a 
different mouse model of breast cancer targeting colony stimulating factor (CSF)-1 receptor 
with an antagonist blocked macrophage recruitment to paclitaxel-treated tumors leading to 
improved therapeutic response, longer survival and reduced metastases (DeNardo et al., 
2011).  
Strategies to deplete Treg cells in breast cancer patients (Dannull et al., 2005; Rech and 
Vonderheide, 2009) may also be beneficial by reducing local immunosuppression as well as 
removing a main source of RANKL production. Increased accumulation of Treg cells is also 
seen in sentinel lymph nodes of breast cancer patients and it correlates with the size of the 
primary tumor (Gupta et al., 2011). Since anti-tumor T cells are activated in sentinel lymph 
nodes (Kim et al., 2006) the increased Treg cell presence might limit the efficacy of pre-
operative chemotherapy for locally advanced breast cancer by inhibiting the activation of 
tumor-specific T cells (Boissonnas et al., 2010).  
Multiple additional strategies for manipulating the immune environment of breast cancer 
are being studied, including TLR agonists (Lu et al., 2010), immunomodulatory drugs and 
vaccines (Emens et al., 2009). A critical question that will need to be addressed is how we 
predict response to treatment with agents that target the immune system, whether directly 
such as antibodies against co-stimulatory or co-inhibitory T cell receptors, or indirectly such 
as chemotherapy drugs that induce an immunogenic cell death. In fact, polymorphisms of 
TLR4 and P2X7, receptors that play a key role in development of anti-tumor immunity 
following chemotherapy-induced immunogenic tumor cell death, are present in the 
population and have been shown to impact response to treatment with anthracyclines and 
radiotherapy (Apetoh et al., 2007c; Ghiringhelli et al., 2009). Therefore, as recently proposed 
by Zitvogel and colleagues (Zitvogel et al., 2011), immune-relevant biomarkers will need to 
be considered together with tumor cell biomarkers in tailoring treatment for patients 
towards a personalized therapeutic approach.  

8. Conclusions 

This chapter summarizes the recent advances in our understanding of the interplay between 
breast cancer and the immune system. Cancer cells secrete and respond to cytokines, 
chemokines, and DAMPs influencing the nature and quantity of the immune infiltrate. In 
turn, the type of immune cells present within breast cancer can have a major impact on 
tumor progression, prognosis and response to treatment. Immune cells can foster a pro-
tumorigenic inflammatory environment as well as inhibit tumors (Figure 4). To achieve 
therapeutic success, any treatment strategy will need to include an approach to shift the 
balance of pro-tumorigenic and anti-tumor immunity in favor of the latter. The good news is 
that enlisting the power of the immune system to synergize with cytocidal tumor therapy 
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holds the promise to revolutionize treatment and the hope to achieve long-term tumor 
control and perhaps cure (Schreiber et al., 2011).  
 

 
Fig. 4. Immune cells infiltrating breast cancer play a dual role, promoting (left) or inhibiting 
(right) tumor growth and metastases. Breast cancer cells produce chemokines, such as CCL5 
and MCP-1, that recruit monocytic cells which, in the presence of IL-4 secreted by Th2 T 
cells differentiate into pro-tumorigenic macrophages (TAMs). Breast cancer cells also 
express chemokine receptors, such as CXCR4, that promote their migration in response to 
CXCL12, guiding metastases to distant organs. In contrast, other chemokines produced by 
breast cancer cells, such as CXCL16, promote the recruitment of CXCR6+ anti-tumor CD8 T 
cells. Activation of TLRs on the surface of breast cancer cells has differential effects that can 
either promote or inhibit tumor growth. The recruitment of Treg cells by breast tumor cells 
via secretion of CCL22 contributes to create an immunosuppressive milieu. In addition, 
RANKL production by Treg and Th17 cells, and possibly other stromal cells, promotes 
metastases of RANK+ breast cancer cells.  
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