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1. Introduction 

1.1 erbB family 

HER-2 is a member of the erbB family of receptor tyrosine kinases. Epidermal Growth Factor 

Receptor (EGFR) was first identified as the cellular homolog of the transduced oncogene of 

the avian retroviruses such as avian ERythroBlastosis virus, which causes erythroleukemia 

and fibrosarcoma and gives rise to the family name (erbB). EGFR, as its name implies, was 

shown by Stanley Cohen to induce the growth of epidermal cells (Todaro, DeLarco et al. 

1976). The EGFR family consists of four members: erbB-1 (EGFR), erbB-2 (HER-2/neu),  

erbB-3 (HER-3), and erbB-4 (HER-4). Her-1, -2, and -3 have been associated with 

tumorigenesis (Suo, Emilsen et al. 1998). HER-4 has been implicated in development and 

tumor suppression, possibly by sequestration of the other erbB receptors in dimers. Ligand 

binding stabilizes dimer formation, leading to intracellular signaling. Each receptor consists 

of an extracellular domain that contains the ligand binding sites, an intracellular domain 

that contains the tyrosine kinase activity, and a cytoplasmic tail that is involved in cellular 

signaling. EGFR can be stimulated by an array of ligands, including EGF, transforming 

growth factor ǂ (TGF-ǂ), heparin-binding EGF (HB-EGF), and heregulins. HER-3 can bind 

heregulins (Holmes, Sliwkowski et al. 1992); although, it in and of itself does not have an 

active kinase domain. Heregulin binding to HER-3 facilitates dimerization with other erbB 

receptors which promote the phosphorylation of HER-3 and subsequent activation of 

downstream signals.  

HER-2 does not have any known ligands; however, several intriguing papers have been 

published recently on this topic. The Calloway group has had a series of papers (Carraway, 

Carvajal et al. 1993; Carraway and Cantley 1994; Carraway, Sliwkowski et al. 1994; 

Carraway, Rossi et al. 1999; Komatsu, Jepson et al. 2001; Carraway and Carraway 2007; 

Kozloski, Carraway et al. 2010) showing that the extracellular domain of HER-2 can bind the 

intramembrane protein MUC4, suggesting that MUC4 was the ligand for HER-2. MUC4 

appears to play a role in mammary gland development at the lactation step along with HER-

2. In cancer, MUC 4 blocks apoptosis and stabilizes HER-2/HER-3 dimers. In normal 

epithelia, MUC 4 sequesters HER-2 to the apical surface, separating it from HER-3, which is 

on the lateral surface (Carraway and Carraway 2007). These data make a compelling 

argument for MUC4 as a ligand for HER-2.  

More recently, Day, et al. (Najy, Day et al. 2008) showed that the extracellular domain of E-

cadherin could activate HER-2 and EGFR. They have shown that the extracellular domain of 

E-cadherin is cleaved by the ADAM proteases. Since E-cadherin is normally present on 
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epithelial cells and itself, or its sister protein N-cadherin, is present on cancer cells of 

epithelial origin, it is also a good candidate for a HER-2 ligand.  

Pairings of the erbB receptors have been exquisitely elucidated by Josef Yarden and 
colleagues (Goldman, Benlevy et al. 1990; Karunagaran, Tzahar et al. 1996; Alroy and 
Yarden 1997). Yarden, et al. utilized the 32D cell line, an IL-3-independent murine myeloid 
cell line that does not express endogenous erbB receptors. They systematically expressed 
each family member separately and in pairs to determine which family members formed 
complexes. They found that each family member can homodimerize or heterodimerize with 
every other family member; although, certain heterodimers are preferred. Which dimer is 
present on the cell determines the biological phenotype of that cell. Although EGFR can 
homodimerize, it will pair with HER-2 when HER-2 is present and will only pair with itself 
when all of the HER-2 is paired or no HER-2 is present (Hendriks , Opresko et al. 2003).  
EGFR dimerization results in the phosphorylation of tyrosine 1045 in the cytoplasmic 
domain. Phosphorylation of this tyrosine creates a docking site for the cbl protein (Yokouchi, 
Kondo et al. 1999). Cbl then recruits ubiquitin which targets the EGFR for degradation 
(Yokouchi, Kondo et al. 1999). Activation of HER-2 does not create a ubinquitin binding site, 
so HER-2 does not get degraded upon activation unless it is dimerized with EGFR. Over 
expression of HER-2 results in constitutive activation of both HER-2 and EGFR and in a 
decrease in degradation of both of the receptors.  
Due to the fluidity of the plasma membrane, transient dimerization of the erbB receptors 
occurs. However, the transient dimers do not elicit a strong signal. Our model (FIGURE 1) 
(Woods Ignatoski, LaPointe et al. 1999) suggests that over expression of HER-2 leads to 
many transient homodimers. The transient homodimers lead to transphosphorylation of the 
receptor causing many small signals to be initiated. The overall effect is one of a strong, 
ligand-stabilized signal which results in constitutive activation of HER-2 and constitutive 
growth signals (FIGURE 1C). The type of HER-2 homo and heterodimerization, coupled 
with over expression, on mammary epithelial cells has consequences dealing with normal 
development, proliferation, and transformation.  

2. HER-2 in development 

HER-2 is expressed in almost all fetal tissues including the placenta, liver, kidney, mammary 
gland, brain, and lung (Kokai, Wada et al. 1988). On the basis of its expression pattern, HER-
2 plays a role in general development. Although HER-2’s role in tumorigenesis has been 
studied extensively, its role in normal mammary gland development has not. There are 
many articles about mammary gland development in HER-2 transgenic and knock-out mice, 
but since human and mouse mammary glands develop differently, the actual role of HER-2 
in human mammary gland development is not fully understood. Mina Bissell and 
colleagues developed the three-dimensional Matrigel system to study mammary gland 
morphogenesis, discovering the role for integrins in anti-apoptotic signaling (Petersen, 
Ronnovjessen et al. 1992; Howlett, Bailey et al. 1995; Lochter, Galosy et al. 1997; Lochter, 
Navre et al. 1999). Joan Brugge and colleagues refined the Matrigel model to identify HER-2 
as a modulator of the lumen compartment, by working through Bim-1 to regulate apoptosis 
of the pre-lumenal cells (Muthuswamy, Li et al. 2001). One caveat to the Brugge group’s 
work is the use of a chimeric molecule that has an NGF extracellular domain and a HER-2 
cytoplasmic domain that can be crosslinked to give a constitutive signal. While their work 
leads to important insight into the role of HER-2 in development, the system they use is not  
 

www.intechopen.com



 
HER-2 Signaling in Human Breast Cancer 

 

75 
e

rb
B

-2

e
rb

B
-2

e
rb

B
-2

A

e
rb

B
-2

e
rb

B
-2

P

P

P

P

PP

e
rb

B
-2

e
rb

B
-2

P

P

P

P

PP

e
rb

B
-2

e
rb

B
-2

P

P

P

P

PP

e
rb

B
-2

e
rb

B
-2

P

P

P

P

PP

e
rb

B
-2

C

e
rb

B
-2

e
rb

B
-2

e
rb

B
-2

P

P

P

P

PP

B

 

Fig. 1. Schematic of signaling from HER-2 during normal conditions and during over 
expression. (A) HER-2 is normally present as single molecules in the plasma membrane.  
(B) Due to the fluid nature of the membrane, random, transient dimers form producing 
weak signals that cannot elicit a response from the cell. (C) During over expression, many 
transient dimers produce a signal strong enough to elicit a response from the cell. 

physiological, since HER-2 is not activated by a ligand but rather by the amount of protein, 
and constitutive HER-2 activation is not done by cross-linking the cytoplasmic domains.  
Recently, we have developed a system that is more physiological than the one used by 
Brugge and colleagues (manuscript submitted). We used human mammary epithelial 
(HME) cells, obtained from reduction mammoplasties, plated in Matrigel to study the role of 
HER-2 in branching morphogenesis. We observed that HME cells form branching structures 
when plated in the 3D matrix Matrigel and determined that HER-2 is up-regulated at the 
time of branching. Using HER-2 over expressing HME cells (Woods Ignatoski, LaPointe et 
al. 1999) we showed that constitutive activation of HER-2 was necessary and sufficient to 
form the branches. By using genetic and chemical activators and inhibitors, we showed that 
AKT activation mediated the HER-2-facilitated branching morphogenesis. Our data imply 
that HER-2’s role in mammary gland development is to facilitate ductal formation. 
Korkaya, et al. (Korkaya, Paulson et al. 2008) and Magnifico, et al. (Magnifico, Albano et al. 
2009) have shown that an increase in HER-2 in human mammary stem cells causes an 
increase in mammosphere formation and an increase in ductal structures when the cells are 
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placed in animals. Both groups have also shown a reciprocal relationship between over 
expression of HER-2 and the expression of the developmental gene Notch. Their published 
data suggest that HER-2-mediated AKT activation is necessary for self-renewal leading to 
the ductal structures in their mouse models. Our data show that HER-2-mediated AKT 
activation is necessary for branching morphogenesis and is concordant with the data 
presented by Korkaya, et al. (Korkaya, Paulson et al. 2008) and Magnifico, et al. (Magnifico, 
Albano et al. 2009).  
Since we have previously shown that HME cells in Matrigel and HER-2 over expressing cells 
have an increase in Focal Adhesion Kinase (FAK) phosphorylation (Woods Ignatoski and 
Ethier 1999), an implication of these data is that signaling from integrin binding to 
extracellular matrix may also play a role in this developmental phenotype. Indeed, Bissell, et 
al. (Petersen, Ronnovjessen et al. 1992; Howlett, Petersen et al. 1994; Howlett, Bailey et al. 
1995; Gudjonsson, Ronnov-Jessen et al. 2002), has shown that ǃ1 integrin is important in 
mammary cell morphology change. ǃ1 integrins bind to and activate FAK (Zachary and 
Rozengurt 1992). FAK was shown to maintain the mammary gland stem cell pool (Nagy, 
Wei et al. 2007). Since HER-2 has recently been shown to play a role in human mammary 
stem cells (Korkaya, Paulson et al. 2008; Korkaya and Wicha 2009), the idea that FAK may 
be downstream of HER-2 to maintain the stem cell population is intriguing.  

3. HER-2 signaling in transformation 

HER-2 uses a variety of signaling pathways to elicit phenotypes associated with 
transformation and tumorigenesis. We and others used various in vitro methods in 
conjunction with constitutively active and dominantly negative mutants and chemical 
inhibitors to elucidate the multiple pathways HER-2 uses to transform cells (FIGURE 2). 
Growth factor independence: One hallmark of a transformed cell is growth factor 
independence. Ram, et al. (Ram, Kokeny et al. 1995; Ram, Dilts et al. 1996) showed that 
human breast cancer (HBC) cells with increasing amounts of HER-2 had increasing degrees 
of growth factor independence. H16N2 cells, which are non-transformed, immortalized 
HME, have normal levels of HER-2 and required both insulin-like growth factor (IGF) and 
epidermal growth factor (EGF) to survive. 21MT-2 cells with an slight over expression of 
HER-2 still required EGF, but 21MT-1 cells with a clinically relevant HER-2 over expression 
did not require either IGF or EGF for growth. To determine the contribution of HER-2 over 
expression to growth factor independence without the other genetic abnormalities 
associated with HBC, we developed HME cell lines that over expressed HER-2 less than the 
HPV16-immortalized HME cell line (H16N2).  
The MCF-10HER-2 cells were unable to grow in the absence of IGF, showing that a slight 
over expression resulted in IGF independence and that over expression to levels seen in 
amplified HBC cells conferred both IGF and EGF independence to the H16N2 cells (Woods 
Ignatoski, LaPointe et al. 1999). Over expression of HER-2 resulted in progressively 
increasing levels of tyrosine-phosphorylated HER-3, without any significant changes in 
HER-3 protein levels (Woods Ignatoski, LaPointe et al. 1999). 
Our studies, while demonstrating a direct relationship between the level of expression, 
the activation of HER-2, and the requirements for IGF and EGF, suggest that genetic 
alterations present in breast cancer cells, or mediated by HPV-16-induced alterations, can 
influence the expression level and activation status of HER-2 and, in turn, their degree of 
growth factor independence. To this end, we were intrigued by the differences between  
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Fig. 2. The tools used to decipher HER-2 signaling. Various constitutively active and 
dominant negative constructs plus specific chemical inhibitors and phospho-specific 
antibodies were used to elucidate downstream signaling for HER-2 and associate them with 
transformed phenotypes. 

the MCF-10A cell line and the H16N2 cell line in terms of their ability to over express HER-2 

and their differences in growth factor independence. The biggest difference in the parental 

cell lines is the inclusion of the entire HPV16 genome in the H16N2 cells which is not in the 

MCF-10A cells. The HPV-16 genome produces the HPV E5, E6, and E7 oncogenes which 

have been shown to affect the tumor suppressors Rb and p53, among other proteins. To 

discern if the HPV genes played a role in HER-2-mediated transformation, we co-expressed 

E6, E7, or E6 and E7 with HER-2 in MCF-10A cells and tested for transformed phenotypes 

(Woods Ignatoski, Dziubinski et al. 2005). Co-expression of HER-2 with the HPV-16 

oncoproteins E6 and E7 resulted in the emergence of fully EGF-independent cells that 

expressed very high levels of constitutively activated HER-2. Interestingly, co-expression of 

E7 with HER-2 resulted in cells that were EGF-independent for growth but which did not 

express HER-2 to higher levels than control MCF-10HER-2 cells. By contrast, co-expression 

of E6 with HER-2 resulted in cells expressing higher levels of HER-2 but which were still 

dependent on EGF for growth and survival. Examination of the expression and activation 

status of HER-1, -2 and -3 in the MCF-10HER-2 cells and their derivatives by 
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immunoprecipitation/western blot analysis demonstrated that the EGF-independent 

MCF-10HER-2E7 cells and the HER-2/E6E7 cells exhibited constitutive EGF-independent 

activation of EGFR. Further, the constitutively active EGFR had a faster electrophoretic 

mobility than EGFR activated by exogenous growth factors. Exposure of MCF-10HER-2 cells 

and their derivatives as well as the HER-2 amplified SUM-225 breast cancer cell line to 

ZD1839 (IRESSA®) at concentrations specific for EGFR, eliminated EGFR tyrosine 

phosphorylation, blocked proliferation, but only modestly altered the levels of constitutively 

activated HER-2. By contrast, exposure of SUM-190 cells or MDA-351 cells, which have 

amplified HER-2 but express little or no EGFR, to these same concentrations of ZD1839 had 

little or no influence on cell proliferation. Our results showed that HER-2 over expression 

cooperates with EGFR and HPV-E7 to yield HME cells that are EGF-independent for 

growth. Together, HER-2, E6 and E7 cooperate with endogenous EGFR to yield fully 

transformed cells that express very high levels of HER-2 and that are growth factor 

autonomous for proliferation and survival. 

Phophotidylinositol 3’ kinase (PI3’K) phosphorylates inositol in the plasma membrane at the 

3’ position. Phosphorylation of inositol produces a docking site for the serine/threonine 

kinase AKT. Docking of AKT activates its kinase activity and elicits downstream signals. 

Activation of both HER-2 and HER-3 provide phosphotyrosines that can dock PI3’K and 

bring it to the membrane; therefore, activation of HER-2 mediates inositol phosphorylation 

and PI3’K signaling (Fedi, Pierce et al. 1994). Phospho-AKT remained detectable in HER-2 

cells treated with the PI3’K inhibitor LY294002 or with expression of exogenous PTEN, a 

phosphatase that reverses the action of PI3’K, but was abolished by treatment with the p38 

mitogen activated kinase (p38MAPK) inhibitor SB202190. Thus, both PI3K-dependent and 

p38MAPK-dependent pathways lead to activation of AKT. We also found that AKT was 

activated by p38MAPK in these cells, but this activation did not play a role in invasion 

(Woods Ignatoski, Livant et al. 2003). Since AKT has been shown in other systems to be a 

survival factor (Datta, Dudek et al. 1997; Brunet, Bonni et al. 1999; Hutchinson J, Jin J et al. 

2001), we hypothesized that HER-2 mediated activation of AKT is necessary for growth 

factor independence. We found that, in the absence of EGF, p38MAPK-activated AKT is 

necessary for HER-2 over expressing cells to survive and to form colonies in soft agar 

(Woods Ignatoski, Livant et al. 2003). We showed that EGF works as a survival signal in the 

absence of p38MAPK-mediated activation of AKT and that HME cells expressing a 

constitutively active AKT did not require EGF for growth or colony formation in soft agar. 

Thus, our data indicate that AKT activation can compensate for EGF-mediated cell survival 

signals leading to growth factor-independence and anchorage-independent growth (Diehl, 

Grewal et al. 2007).  
HER-2 in invasion: Using a model system for invasion that utilizes a naturally occurring 
membrane found in sea urchin embryos (Livant, Linn et al. 1995) in the configuration a cell 
would see upon extravasation (FIGURE 3), we determined that ǂ5 integrin binding to the 
PHSRN sequence of fibronectin is necessary for invasion and that ǂ4 integrin binding to the 
“LDV” sequence of fibronection abrogates invasion (Livant, Allen et al. 2000; Livant, Brabec 
et al. 2000; Woods Ignatoski, Maehama et al. 2000; Jia, Markwart et al. 2002) (FIGURE 4). 
Using this system, we showed that HER-2 requires PI3’K to drive invasion. With this same 
system we also showed that HER-2 mediates the down-regulation of ǂ4 integrin from the 
cell surface to facilitate invasion via activation of p38MAPK (Woods Ignatoski, Maehama et 
al. 2000) (FIGURE 5).  
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Invasion assay

Livant, et al. (1995). Cancer Res. 55:5085-93

 

Fig. 3. Sea urchin embryo invasion assay. This assay utilizes the naturally occurring 
membrane found under a cell layer in sea urchin embryos. The outer cell layer is lysed and 
the cells are placed on top of the embryos. The number of cells that enter the embryo are 
blindly scored. Arrows point to cancer cells. 
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Fig. 4. Model of how cells are able to invade basement membranes. Fibronectin can bind ǂ5 
integrin through the PHSRN sequence. This binding drives the expression of MMP-1 and 
facilitates invasion. However, on normal cells, fibronectin binding to ǂ4 integrin blocks 
MMP-1 release. On cancer cells, ǂ4 integrin is not present on the cell surface, so invasion can 
proceed.  

Utilizing a constitutively active form of PI3K, p110CAAX, we showed that PI3K can mediate 
most phenotypes observed in HER-2-overexpressing cells. PTEN expression blocked HER-2-
mediated invasion. Down-regulated ǂ4 integrin sequestered PTEN away from the surface, 

allowing PI3’K to activate PKCδ and facilitate the release of MMP-1 to drive invasion. These 
results led us to a model for HER-2-mediated invasion where the down-regulation of ǂ4 
integrin works in concert with the activation of PI3’K to facilitate the release of MMP-1 and 
drive invasion (FIGURE 5).  
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Fig. 5. Schematic of the signal pathways mediated by HER-2. HER-2 activates Rac 1 which 
activates p38MAPK. P38MAPK rearranges the actin cytoskeleton drawing ǂ4 from the cell 
surface. It is hypothesized that PTEN is sequestered in the cytoplasm via its association with 
ǂ4 (data not shown). Sequestration of PTEN allows PI3’K to activate PKCδ to release MMP-1 
and facilitate invasion. P38MAPK also activates Hsp27 which activates MapKap kinase and, 
subsequently, AKT. AKT then facilitaes EGF-independent survival.  

Using other in vitro transformation methods including anchorage-independent growth and 
cell motility assays, we were able to show that the PI3’K pathway can mediate most 
phenotypes observed when HER-2 is over expressed (Woods Ignatoski, Livant et al. 2003; 
Diehl, Woods Ignatoski et al. 2004). The HER-2-mediated signaling pathways are 
summarized in FIGURE 6. 
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Fig. 6. Diagram of the HER-2-mediated signaling and designation of which pathways 
facilitate which transformed phenotypes.  

Anti-HER-2 therapeutics: The presence of HER-2 over expression in HBC confers a poor 

prognosis (Slamon, Clark et al. 1987). Thus, the ultimate goal of the study of HER-2 is to 

offer women with HER-2 over expressing breast cancer an effective therapy. To this end, 

two relatively effective anti-HER-2 therapies have been FDA approved: trastuzumab 

(Herceptin®, Genentech) and lapatinib (Tykerb®, Glaxo Smith-Kline). Trastuzumab is a 

humanized anti-HER-2 antibody (Ewer, Gibbs et al. 1999; Palmieri, Powles et al. 2001; 

Rudlowski, Rath et al. 2001). The exact mode of action for trastuzumab is not known; 

however, trastuzumab is effective against 12-26% of HER-2-positive metastatic patients. 

Much of the resistance to trastuzumab has been shown to involve over activation of the 

PI3’K/ AKT pathway (O'Brien, Browne et al. 2010; Migliaccio I, Gutierrez et al. 2011). The 

survival advantage conferred upon a cell with an activated AKT overcomes the loss of HER-

2 activity. Recently, Miller, et al. (Miller , Forbes et al. 2009) showed that trastuzumab in 

combination with rapamycin, which blocks the AKT pathway downstream of AKT at 

mTOR, could block HER-2 positive tumor growth in mice better than either treatment alone. 

Also, Zhang, et al. (Zhang, Huang et al. 2011) has shown that trastuzumab in combination 

with the Src inhibitor saracatinib can decrease HER-2 positive tumor growth in animals. Src 

is a non-receptor tyrosine kinase that has been shown to play a role in tumorigenesis. 

Zhang, et al. go on to show that Src activation is necessary for trastuzumab resistance and 
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that all of the pathways that cause trastuzumab resistance, including different pathways that 

over activate AKT, originate from over active Src. Combination therapies, as the ones above, 

will be useful when using trastuzumab against HER-2 positive breast cancer. 

Glaxo Smith-Kline has developed a small molecule EGFR/HER-2 dual inhibitor called 
lapatinib (Konecny, Pegram et al. 2006; Rusnak, Alligood et al. 2007; Molina, Kaufmann et 
al. 2008). Lapatinib has been shown to be a potent HER-2 inhibitor and a useful therapeutic 
against HER-2 positive breast cancer. Lapatinib, a 4-anilinoquinazoline kinase inhibitor of 
the intracellular tyrosine kinase domain of HER-2, is used with capecitabine for the 
treatment of advanced HER2-positive metastatic breast cancer (Molina, Kaufmann et al. 
2008). Since response to lapatinib is predicted specifically by low levels of PTEN (Migliaccio 
I, Gutierrez et al. 2011) and resistance to trastuzumab is dependent on activation of the PI3’K 
pathway, studies showing the efficacy of a dual therapy using both lapatinib and 
trastuzumab will be very useful.  

4. Conclusions 

HER-2-mediated signaling is a convergence point that controls ductal development, the 
activity of the EGFR family of receptors, and many transformed phenotypes. Significantly 
abrogating the function of HER-2 is necessary to achieve prolonged survival for breast 
cancer patients.  
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