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NonFickian Solute Transport 
 
1.1 Models in Solute Transport in Porous Media 
This research monograph presents the modelling of solute transport in the saturated porous 
media using novel stochastic and computational approaches. Our previous book published 
in the North-Holland series of Applied Mathematics and Mechanics (Kulasiri and 
Verwoerd, 2002) covers some of our research in an introductory manner; this book can be 
considered as a sequel to it, but we include most of the basic concepts succinctly here, 
suitably placed in the main body so that the reader who does not have the access to the 
previous book is not disadvantaged to follow the material presented.  

The motivation of this work has been to explain the dispersion in saturated porous media at 
different scales in underground aquifers (i.e., subsurface groundwater flow), based on the 
theories in stochastic calculus. Underground aquifers render unique challenges in 
determining the nature of solute dispersion within them. Often the structure of porous 
formations is unknown and they are sometimes notoriously heterogeneous without any 
recognizable patterns. This element of uncertainty is the over-arching factor which shapes 
the nature of solute transport in aquifers. Therefore, it is reasonable to review briefly the 
work already done in that area in the pertinent literature when and where it is necessary. 
These interludes of previous work should provide us with necessary continuity of thinking 
in this work. 

There is monumental amount of research work done related to the groundwater flow since 
1950s. During the last five to six decades major changes to the size and demographics of 
human populations occurred; as a result, an unprecedented use of the hydrogeological 
resources of the earth makes contamination of groundwater a scientific, socio-economic and, 
in many localities, a political issue. What is less obvious in terms of importance is the way a 
contaminant, a solute, disperses itself within the geological formations of the aquifers. 
Experimentation with real aquifers is expensive; hence the need for mathematical and 
computational models of solute transport. People have developed many types of models 
over the years to understand the dynamics of aquifers, such as physical scale models, 
analogy models and mathematical models (Wang and Anderson, 1982; Anderson and 
Woessner, 1992; Fetter, 2001; Batu, 2006). All these types of models serve different purposes.  

Physical scale models are helpful to understand the salient features of groundwater flow 
and measure the variables such as solute concentrations at different locations of an artificial 
aquifer. A good example of this type of model is the two artificial aquifers at Lincoln 
University, New Zealand, a brief description of which appears in the monograph by Kulasiri 
and Verwoerd (2002). Apart from understanding the physical and chemical processes that 
occur in the aquifers, the measured variables can be used to partially validate the 
mathematical models. Inadequacy of these physical models is that their flow lengths are 
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fixed (in the case of Lincoln aquifers, flow length is 10 m), and the porous structure cannot 
be changed, and therefore a study involving multi-scale general behaviour of solute 
transport in saturated porous media may not be feasible. Analog models, as the name 
suggests, are used to study analogues of real aquifers by using electrical flow through 
conductors. While worthwhile insights can be obtained from these models, the development 
of and experimentation on these models can be expensive, in addition to being cumbersome 
and time consuming.These factors may have contributed to the popular use of mathematical 
and computational models in recent decades (Bear, 1979; Spitz and Moreno, 1996; Fetter, 
2001). 

A mathematical model consists of a set of differential equations that describe the governing 
principles of the physical processes of groundwater flow and mass transport of solutes. 
These time-dependent models have been solved analytically as well as numerically (Wang 
and Anderson, 1982; Anderson and Woessner, 1992; Fetter, 2001). Analytical solutions are 
often based on simpler formulations of the problems, for example, using the assumptions on 
homogeneity and isotropy of the medium; however, they are rich in providing the insights 
into the untested regimes of behaviour. They also reduce the complexity of the problem 
(Spitz and Moreno, 1996), and in practice, for example, the analytical solutions are 
commonly used in the parameter estimation problems using the pumping tests (Kruseman 
and Ridder, 1970). Analytical solutions also find wide applications in describing the one-
dimensional and two-dimensional steady state flows in homogeneous flow systems 
(Walton, 1979). However, in transport problems, the solutions of mathematical models are 
often intractable; despite this difficulty there are number of models in the literature that 
could be useful in many situations: Ogata and Banks’ (1961) model on one-dimensional 
longitudinal transport is such a model. A one-dimensional solution for transverse spreading 
(Harleman and Rumer (1963)) and other related solutions are quite useful (see Bear (1972); 
Freeze and Cherry (1979)). 

Numerical models are widely used when there are complex boundary conditions or where 
the coefficients are nonlinear within the domain of the model or both situations occur 
simultaneously (Zheng and Bennett, 1995). Rapid developments in digital computers enable 
the solutions of complex groundwater problems with numerical models to be efficient and 
faster. Since numerical models provide the most versatile approach to hydrology problems, 
they have outclassed all other types of models in many ways; especially in the scale of the 
problem and heterogeneity. The well-earned popularity of numerical models, however, may 
lead to over-rating their potential because groundwater systems are complicated beyond 
our capability to evaluate them in detail. Therefore, a modeller should pay great attention to 
the implications of simplifying assumptions, which may otherwise become a 
misrepresentation of the real system (Spitz and Moreno, 1996). 

Having discussed the context within which this work is done, we now focus on the core 
problem, the solute transport in porous media. We are only concerned with the porous 
media saturated with water, and it is reasonable to assume that the density of the solute in 
water is similar to that of water. Further we assume that the solute is chemically inert with 
respect to the porous material. While these can be included in the mathematical 
developments, they tend to mask the key problem that is being addressed.  

 

There are three distinct processes that contribute to the transport of solute in groundwater: 
convection, dispersion, and diffusion. Convection or advective transport refers to the 
dissolved solid transport due to the average bulk flow of the ground water. The quantity of 
solute being transported, in advection, depends on the concentration and quantity of 
ground water flowing. Different pore sizes, different flow lengths and friction in pores cause 
ground water to move at rates that are both greater and lesser than the average linear 
velocity. Due to these multitude of non-uniform non-parallel flow paths within which water 
moves at different velocities, mixing occurs in flowing ground water. The mixing that occurs 
in parallel to the flow direction is called hydrodynamic longitudinal dispersion; the word 
“hydrodynamic” signifies the momentum transfers among the fluid molecules. Likewise, 
the hydrodynamic transverse dispersion is the mixing that occurs in directions normal to the 
direction of flow. Diffusion refers to the spreading of the pollutant due to its concentration 
gradients, i.e., a solute in water will move from an area of greater concentration towards an 
area where it is less concentrated. Diffusion, unlike dispersion will occur even when the 
fluid has a zero mean velocity. Due to the tortuosity of the pores, the rate of diffusion in an 
aquifer is lower than the rate in water alone, and is usually considered negligible in aquifer 
flow when compared to convection and dispersion (Fetter, 2001). (Tortuosity is a measure of 
the effect of the shape of the flow path followed by water molecules in a porous media). The 
latter two processes are often lumped under the term hydrodynamic dispersion. Each of the 
three transport processes can dominate under different circumstances, depending on the 
rate of fluid flow and the nature of the medium (Bear, 1972).  

The combination of these three processes can be expressed by the advection – dispersion 
equation (Bear, 1979; Fetter, 1999; Anderson and Woessner, 1992; Spitz and Moreno, 1996; 
Fetter, 2001). Other possible phenomenon that can present in solute transport such as 
adsorption and the occurrence of short circuits are assumed negligible in this case. 
Derivation of the advection-dispersion equation is given by Ogata (1970), Bear (1972), and 
Freeze and Cherry (1979). Solutions of the advection-dispersion equation are generally 
based on a few working assumptions such as: the porous medium is homogeneous, 
isotropic and saturated with fluid, and flow conditions are such that Darcy’s law is valid 
(Bear, 1972; Fetter, 1999). The two-dimensional deterministic advection – dispersion 
equation can be written as (Fetter, 1999), 

    

2 2

2 2L T x
C C C CD D v
t x y x

                   
,                  (1.1.1) 

where C  is the solute concentration (M/L3), t  is time (T), LD  is the hydrodynamic 
dispersion coefficient parallel to the principal direction of flow (longitudinal) (L2/T), TD   is 
the hydrodynamic dispersion coefficient perpendicular to the principal direction of flow 
(transverse) (L2/T), and xv   is the average linear velocity (L/T) in the direction of flow. 

It is usually assumed that the hydrodynamic dispersion coefficients will have Gaussian 
distributions that is described by the mean and variance; therefore we express them as 
follows: 
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fixed (in the case of Lincoln aquifers, flow length is 10 m), and the porous structure cannot 
be changed, and therefore a study involving multi-scale general behaviour of solute 
transport in saturated porous media may not be feasible. Analog models, as the name 
suggests, are used to study analogues of real aquifers by using electrical flow through 
conductors. While worthwhile insights can be obtained from these models, the development 
of and experimentation on these models can be expensive, in addition to being cumbersome 
and time consuming.These factors may have contributed to the popular use of mathematical 
and computational models in recent decades (Bear, 1979; Spitz and Moreno, 1996; Fetter, 
2001). 

A mathematical model consists of a set of differential equations that describe the governing 
principles of the physical processes of groundwater flow and mass transport of solutes. 
These time-dependent models have been solved analytically as well as numerically (Wang 
and Anderson, 1982; Anderson and Woessner, 1992; Fetter, 2001). Analytical solutions are 
often based on simpler formulations of the problems, for example, using the assumptions on 
homogeneity and isotropy of the medium; however, they are rich in providing the insights 
into the untested regimes of behaviour. They also reduce the complexity of the problem 
(Spitz and Moreno, 1996), and in practice, for example, the analytical solutions are 
commonly used in the parameter estimation problems using the pumping tests (Kruseman 
and Ridder, 1970). Analytical solutions also find wide applications in describing the one-
dimensional and two-dimensional steady state flows in homogeneous flow systems 
(Walton, 1979). However, in transport problems, the solutions of mathematical models are 
often intractable; despite this difficulty there are number of models in the literature that 
could be useful in many situations: Ogata and Banks’ (1961) model on one-dimensional 
longitudinal transport is such a model. A one-dimensional solution for transverse spreading 
(Harleman and Rumer (1963)) and other related solutions are quite useful (see Bear (1972); 
Freeze and Cherry (1979)). 

Numerical models are widely used when there are complex boundary conditions or where 
the coefficients are nonlinear within the domain of the model or both situations occur 
simultaneously (Zheng and Bennett, 1995). Rapid developments in digital computers enable 
the solutions of complex groundwater problems with numerical models to be efficient and 
faster. Since numerical models provide the most versatile approach to hydrology problems, 
they have outclassed all other types of models in many ways; especially in the scale of the 
problem and heterogeneity. The well-earned popularity of numerical models, however, may 
lead to over-rating their potential because groundwater systems are complicated beyond 
our capability to evaluate them in detail. Therefore, a modeller should pay great attention to 
the implications of simplifying assumptions, which may otherwise become a 
misrepresentation of the real system (Spitz and Moreno, 1996). 

Having discussed the context within which this work is done, we now focus on the core 
problem, the solute transport in porous media. We are only concerned with the porous 
media saturated with water, and it is reasonable to assume that the density of the solute in 
water is similar to that of water. Further we assume that the solute is chemically inert with 
respect to the porous material. While these can be included in the mathematical 
developments, they tend to mask the key problem that is being addressed.  

 

There are three distinct processes that contribute to the transport of solute in groundwater: 
convection, dispersion, and diffusion. Convection or advective transport refers to the 
dissolved solid transport due to the average bulk flow of the ground water. The quantity of 
solute being transported, in advection, depends on the concentration and quantity of 
ground water flowing. Different pore sizes, different flow lengths and friction in pores cause 
ground water to move at rates that are both greater and lesser than the average linear 
velocity. Due to these multitude of non-uniform non-parallel flow paths within which water 
moves at different velocities, mixing occurs in flowing ground water. The mixing that occurs 
in parallel to the flow direction is called hydrodynamic longitudinal dispersion; the word 
“hydrodynamic” signifies the momentum transfers among the fluid molecules. Likewise, 
the hydrodynamic transverse dispersion is the mixing that occurs in directions normal to the 
direction of flow. Diffusion refers to the spreading of the pollutant due to its concentration 
gradients, i.e., a solute in water will move from an area of greater concentration towards an 
area where it is less concentrated. Diffusion, unlike dispersion will occur even when the 
fluid has a zero mean velocity. Due to the tortuosity of the pores, the rate of diffusion in an 
aquifer is lower than the rate in water alone, and is usually considered negligible in aquifer 
flow when compared to convection and dispersion (Fetter, 2001). (Tortuosity is a measure of 
the effect of the shape of the flow path followed by water molecules in a porous media). The 
latter two processes are often lumped under the term hydrodynamic dispersion. Each of the 
three transport processes can dominate under different circumstances, depending on the 
rate of fluid flow and the nature of the medium (Bear, 1972).  

The combination of these three processes can be expressed by the advection – dispersion 
equation (Bear, 1979; Fetter, 1999; Anderson and Woessner, 1992; Spitz and Moreno, 1996; 
Fetter, 2001). Other possible phenomenon that can present in solute transport such as 
adsorption and the occurrence of short circuits are assumed negligible in this case. 
Derivation of the advection-dispersion equation is given by Ogata (1970), Bear (1972), and 
Freeze and Cherry (1979). Solutions of the advection-dispersion equation are generally 
based on a few working assumptions such as: the porous medium is homogeneous, 
isotropic and saturated with fluid, and flow conditions are such that Darcy’s law is valid 
(Bear, 1972; Fetter, 1999). The two-dimensional deterministic advection – dispersion 
equation can be written as (Fetter, 1999), 

    

2 2

2 2L T x
C C C CD D v
t x y x

                   
,                  (1.1.1) 

where C  is the solute concentration (M/L3), t  is time (T), LD  is the hydrodynamic 
dispersion coefficient parallel to the principal direction of flow (longitudinal) (L2/T), TD   is 
the hydrodynamic dispersion coefficient perpendicular to the principal direction of flow 
(transverse) (L2/T), and xv   is the average linear velocity (L/T) in the direction of flow. 

It is usually assumed that the hydrodynamic dispersion coefficients will have Gaussian 
distributions that is described by the mean and variance; therefore we express them as 
follows: 
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Longitudinal hydrodynamic dispersion coefficient, 

                    

2

2
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L
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t


  , and                          (1.1.2) 

transverse hydrodynamic dispersion coefficient, 

2

2
T

T
D

t


                                (1.1.3) 

where 2
L  is the variance of the longitudinal spreading of the plume, and 2

T  is the 
variance of the transverse spreading of the plume.  

The dispersion coefficients can be thought of having two components: the first measure 
would reflect the hydrodynamic effects and the other component would indicate the 
molecular diffusion. For example, for the longitudinal dispersion coefficient,  

              
*

L L LD v D  ,                  (1.1.4) 

where L  is the longitudinal dynamic dispersivity, Lv  is the average linear velocity in  
longitudinal direction, and *D  is the effective diffusion coefficient. 

A similar equation can be written for the transverse dispersion as well. Equation (1.1.4) 
introduces a measure of dispersivity, L , which has the length dimension, and it can be 
considered as the average length a solute disperses when mean velocity of solute is unity. 
Usually in aquifers, diffusion can be neglected compared to the convective flow. Therefore, 
if velocity is written as a derivative of travel length with respect to time, the simplified 
version of equation (1.1.4) ( L L iD v ) shows a similar relationship as Fick’s law in physics.  

(Fick’s first law expresses that the mass of fluid diffusing is proportional to the 
concentration gradient. In one dimension, Fick’s first law can be expressed as: 

d
dCF D
dx

  , 
 

where F  is the mass flux of solute per unit area per unit time (M/ L2/T), dD   is the  

diffusion coefficient (L2/T), C is the solute concentration (M/L3), and dC
dx

 is the 

concentration gradient (M/L3/L). 

Fick’s second law gives, in one dimension,  

2

2d
dC CD
dt x




. )  

In general, dispersivity is considered as a property of a porous medium. Within equation 
(1.1.1) hydrodynamic dispersion coefficients represent the average dispersion for each 
direction for the entire domain of flow, and they mainly allude to and help quantifying the 
fingering effects on dispersing solute due to granular and irregular nature of the porous 

 

matrix through which solute flows. To understand how equation (1.1.1), which is a working 
model of dispersion, came about, it is important to understand its derivation better and the 
assumptions underpinning the development of the model. 
 

1.2 Deterministic Models of Dispersion 
There is much work done in this area using the deterministic description of mass 
conservation. In the derivation of advection–dispersion equation, also known as continuum 
transport model, (see Rashidi et al. (1999)), one takes the velocity fluctuations around the 
mean velocity to calculate the solute flux at a given point using the averaging theorems. The 
solute flux can be divided into two parts: mean advective flux which stems from the mean 
velocity and the mean concentration at a given point in space; and the mean dispersive flux 
which results from the averaging of the product of the fluctuating velocity component and 
the fluctuating concentration component. These fluctuations are at the scale of the particle 
sizes, and these fluctuations give rise to hydrodynamic dispersion over time along the 
porous medium in which solute is dispersed. If we track a single particle with time along 
one dimensional direction, the velocity fluctuation of the solute particle along that direction 
is a function of the pressure differential across the medium and the geometrical shapes of 
the particles, consequently the shapes of the pore spaces. These factors get themselves 
incorporated into the advection-dispersion equation through the assumptions which are 
similar to the Fick’s law in physics. 

To understand where the dispersion terms originate, it is worthwhile to review briefly the 
continuum model for the advection and dispersion in a porous medium (see Rashidi et al. 
(1999)). The mass conservation has been applied to a neutral solute assuming that the 
porosity of the region in which the mass is conserved does not change abruptly, i.e., changes 
in porosity would be continuous. This essentially means that the fluctuations which exist at 
the pore scale get smoothened out at the scale in which the continuum model is derived. 
However, the pore scale fluctuations give rise to hydrodynamic dispersion in the first place, 
and we can expect that the continuum model is more appropriate for homogeneous media. 

Consider the one dimensional problem of advection and dispersion in a porous medium 
without transverse dispersion. Assuming that the porous matrix is saturated with water of 
density, ρ, the local flow velocity with respect to pore structure and the local concentration  
are denoted by v(x,t) and c(x,t) at a given point x, respectively. These variables are 
interpreted as intrinsic volume average quantities over a representative elementary volume 
(Thompson and Gray, 1986). Because the solute flux is transient, conservation of solute mass 
is expressed by the time-dependent equation of continuity, a form of which is given below: 

           

   
0 00

( ) ( ) 0x x
m x

A CB
v c Jc cD

t x x x x
       

    
      
 

 

,             (1.2.1) 

where xv  is the mean velocity in the x- direction, c  is the intrinsic volume average 
concentration, φ is the porosity, Jx and τx are the macroscopic dispersive flux and diffusive 
tortuosity, respectively. They are approximated by using constitutive relationships for the 
medium. 
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Longitudinal hydrodynamic dispersion coefficient, 

                    

2

2
L

L
D

t
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transverse hydrodynamic dispersion coefficient, 
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where 2
L  is the variance of the longitudinal spreading of the plume, and 2

T  is the 
variance of the transverse spreading of the plume.  

The dispersion coefficients can be thought of having two components: the first measure 
would reflect the hydrodynamic effects and the other component would indicate the 
molecular diffusion. For example, for the longitudinal dispersion coefficient,  

              
*

L L LD v D  ,                  (1.1.4) 

where L  is the longitudinal dynamic dispersivity, Lv  is the average linear velocity in  
longitudinal direction, and *D  is the effective diffusion coefficient. 

A similar equation can be written for the transverse dispersion as well. Equation (1.1.4) 
introduces a measure of dispersivity, L , which has the length dimension, and it can be 
considered as the average length a solute disperses when mean velocity of solute is unity. 
Usually in aquifers, diffusion can be neglected compared to the convective flow. Therefore, 
if velocity is written as a derivative of travel length with respect to time, the simplified 
version of equation (1.1.4) ( L L iD v ) shows a similar relationship as Fick’s law in physics.  

(Fick’s first law expresses that the mass of fluid diffusing is proportional to the 
concentration gradient. In one dimension, Fick’s first law can be expressed as: 

d
dCF D
dx

  , 
 

where F  is the mass flux of solute per unit area per unit time (M/ L2/T), dD   is the  

diffusion coefficient (L2/T), C is the solute concentration (M/L3), and dC
dx

 is the 

concentration gradient (M/L3/L). 

Fick’s second law gives, in one dimension,  

2

2d
dC CD
dt x




. )  

In general, dispersivity is considered as a property of a porous medium. Within equation 
(1.1.1) hydrodynamic dispersion coefficients represent the average dispersion for each 
direction for the entire domain of flow, and they mainly allude to and help quantifying the 
fingering effects on dispersing solute due to granular and irregular nature of the porous 

 

matrix through which solute flows. To understand how equation (1.1.1), which is a working 
model of dispersion, came about, it is important to understand its derivation better and the 
assumptions underpinning the development of the model. 
 

1.2 Deterministic Models of Dispersion 
There is much work done in this area using the deterministic description of mass 
conservation. In the derivation of advection–dispersion equation, also known as continuum 
transport model, (see Rashidi et al. (1999)), one takes the velocity fluctuations around the 
mean velocity to calculate the solute flux at a given point using the averaging theorems. The 
solute flux can be divided into two parts: mean advective flux which stems from the mean 
velocity and the mean concentration at a given point in space; and the mean dispersive flux 
which results from the averaging of the product of the fluctuating velocity component and 
the fluctuating concentration component. These fluctuations are at the scale of the particle 
sizes, and these fluctuations give rise to hydrodynamic dispersion over time along the 
porous medium in which solute is dispersed. If we track a single particle with time along 
one dimensional direction, the velocity fluctuation of the solute particle along that direction 
is a function of the pressure differential across the medium and the geometrical shapes of 
the particles, consequently the shapes of the pore spaces. These factors get themselves 
incorporated into the advection-dispersion equation through the assumptions which are 
similar to the Fick’s law in physics. 

To understand where the dispersion terms originate, it is worthwhile to review briefly the 
continuum model for the advection and dispersion in a porous medium (see Rashidi et al. 
(1999)). The mass conservation has been applied to a neutral solute assuming that the 
porosity of the region in which the mass is conserved does not change abruptly, i.e., changes 
in porosity would be continuous. This essentially means that the fluctuations which exist at 
the pore scale get smoothened out at the scale in which the continuum model is derived. 
However, the pore scale fluctuations give rise to hydrodynamic dispersion in the first place, 
and we can expect that the continuum model is more appropriate for homogeneous media. 

Consider the one dimensional problem of advection and dispersion in a porous medium 
without transverse dispersion. Assuming that the porous matrix is saturated with water of 
density, ρ, the local flow velocity with respect to pore structure and the local concentration  
are denoted by v(x,t) and c(x,t) at a given point x, respectively. These variables are 
interpreted as intrinsic volume average quantities over a representative elementary volume 
(Thompson and Gray, 1986). Because the solute flux is transient, conservation of solute mass 
is expressed by the time-dependent equation of continuity, a form of which is given below: 
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,             (1.2.1) 

where xv  is the mean velocity in the x- direction, c  is the intrinsic volume average 
concentration, φ is the porosity, Jx and τx are the macroscopic dispersive flux and diffusive 
tortuosity, respectively. They are approximated by using constitutive relationships for the 
medium. 
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In equation (1.2.1), the rate of change of the intrinsic volume average concentration is 
balanced by the spatial gradients of A0, B0, and C0 terms, respectively. A0 represents the 
average volumetric flux of the solute transported by the average flow of fluid in the x-
direction at a given point in the porous matrix, x. However, the fluctuating component of 
the flux due to the velocity fluctuations around the mean velocity is captured through the 
term Jx(x,t) in B0, 

            
( , )x xJ x t c  ,                              (1.2.2) 

where ξx and c are the “noise” or perturbation  terms of  the solute velocity and the 
concentration about their means, respectively. C0 denotes the diffusive flux where Dm is the 
fundamental solute diffusivity. 

The mean advective flux (A0) and the mean dispersive flux (B0) can be thought of as 
representations of the masses of solute carried away by the mean velocity and the 
fluctuating components of velocity. Further, we do not often know the behaviour of the 
fluctuating velocity component, and the following assumption, which relates the fluctuating 
component of the flux to the mean velocity and the spatial gradient of the mean 
concentration, is used to describe the dispersive flux, 

             
( , )x L x

cJ x t v
x

 
 


.                         (1.2.3) 

The plausible reasoning behind this assumption is as follows: dispersive flux is proportional 
to the mean velocity and also proportional to the spatial gradient of the mean concentration. 
The proportionality constant, αL, called the dispersivity, and the subscript L indicates the 
longitudinal direction. Higher the mean velocity, the pore-scale fluctuations are higher but 
they are subjected to the effects induced by the geometry of the pore structure. This is also 
true for the dispersive flux component induced by the concentration gradient. Therefore, the 
dispersivity can be expected to be a material property but its dependency on the spatial 
concentration gradient makes it vulnerable to the fluctuations in the concentration as so 
often seen in the experimental situations. The concentration gradients become weaker as the 
solute plume disperses through a bed of porous medium, and therefore, the mean 
dispersivity across the bed could be expected to be dependent on the scale of the 
experiment. This assumption (equation (1.2.3)) therefore, while making mathematical 
modelling simpler, adds another dimension to the problem: the scale dependency of the 
dispersivity; and therefore, the scale dependency of the dispersion coefficient, which is 
obtained by multiplying dispersivity by the mean velocity. 

The dispersion coefficient can be expressed as,  

               
L xD v .                               (1.2.4) 

The diffusive tortuosity is typically approximated by a diffusion model of the form, 

( , ) cx t Gx x






,                           (1.2.5) 

where G is a material coefficient bounded by 0 and 1. 

 

By substituting equations (1.2.3), (1.2.4) and (1.2.5) into equation (1.2.1), the working model 
for solute transport in porous media can be expressed as, 

  

( )( ) (1 ) 0.
v cc cx D D Gmt x x x

     
   

      
 

             (1.2.6) 
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The sum (1 )H m
cD D D G
x

 


    is called the coefficient of hydrodynamic dispersion. In 

many cases, D>>Dm , therefore, DH ≈ D. We simply refer to D as the dispersion coefficient. 
For a flow with a constant mean velocity through a porous matrix having a constant 
porosity, we see that equation (1.2.6) becomes equation (1.1.1).  

In his pioneering work, Taylor (1953) used an equation analogous to equation (1.2.6) to 
study the dispersion of a soluble substance in a slow moving fluid in a small diameter tube, 
and he primarily focused on modelling the molecular diffusion coefficient using 
concentration profiles along a tube for large time. Following that work, Gill and 
Sankarasubramanian (1970) developed an exact solution for the local concentration for the 
fully developed laminar flow in a tube for all time. Their work shows that the time-
dependent dimensionless dispersion coefficient approaches an asymptotic value for larger 
time proving that Taylor’s analysis is adequate for steady-state diffusion through tubes. 
Even though the above analyses are primarily concerned with the diffusive flow in small-
diameter tubes, as a porous medium can be modelled as a pack of tubes, we could expect 
similar insights from the advection-dispersion models derived for porous media flow. 

The assumptions described by equations (1.2.3) and (1.2.5) above are similar in form to 
Fick’s first law, and therefore, we refer to equations (1.2.3) and (1.2.5) as Fickian 
assumptions. In particular, equation (1.2.3) defines the dispersivity and dispersion 
coefficient, which have become so integral to the modelling of dispersion in the literature. 
As we have briefly explained, dispersivity can be expected to be dependent on the scale of 
the experiment. This means that, in equations (1.1.1) and (1.2.6), the dispersion coefficient 
depends on the total length of the flow; mathematically, dispersion coefficient is not only a 
function of the distance variable x, but also a function of the total length. To circumvent the 
problems associated with solving the mathematical problem, the usual practice is to develop 
statistical relationships of dispersivity as a function of the total flow length. We discuss 
some of the relevant research related to ground water flow addressing the scale dependency 
problem in the next section. 
 

1.3 A Short Literature Review of Scale Dependency 
The differences between longitudinal dispersion observed in the field experiments and to 
the those conducted in the laboratory may be a result of the wide distribution of 
permeabilities and consequently the velocities found within a real aquifer (Theis 1962, 1963). 
Fried (1972) presented a few longitudinal dispersivity observations for several sites which 
were within the range of 0.1 to 0.6 m for the local (aquifer stratum) scale, and within 5 to 11 
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In equation (1.2.1), the rate of change of the intrinsic volume average concentration is 
balanced by the spatial gradients of A0, B0, and C0 terms, respectively. A0 represents the 
average volumetric flux of the solute transported by the average flow of fluid in the x-
direction at a given point in the porous matrix, x. However, the fluctuating component of 
the flux due to the velocity fluctuations around the mean velocity is captured through the 
term Jx(x,t) in B0, 
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The mean advective flux (A0) and the mean dispersive flux (B0) can be thought of as 
representations of the masses of solute carried away by the mean velocity and the 
fluctuating components of velocity. Further, we do not often know the behaviour of the 
fluctuating velocity component, and the following assumption, which relates the fluctuating 
component of the flux to the mean velocity and the spatial gradient of the mean 
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The plausible reasoning behind this assumption is as follows: dispersive flux is proportional 
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The diffusive tortuosity is typically approximated by a diffusion model of the form, 
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where G is a material coefficient bounded by 0 and 1. 
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many cases, D>>Dm , therefore, DH ≈ D. We simply refer to D as the dispersion coefficient. 
For a flow with a constant mean velocity through a porous matrix having a constant 
porosity, we see that equation (1.2.6) becomes equation (1.1.1).  
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dependent dimensionless dispersion coefficient approaches an asymptotic value for larger 
time proving that Taylor’s analysis is adequate for steady-state diffusion through tubes. 
Even though the above analyses are primarily concerned with the diffusive flow in small-
diameter tubes, as a porous medium can be modelled as a pack of tubes, we could expect 
similar insights from the advection-dispersion models derived for porous media flow. 

The assumptions described by equations (1.2.3) and (1.2.5) above are similar in form to 
Fick’s first law, and therefore, we refer to equations (1.2.3) and (1.2.5) as Fickian 
assumptions. In particular, equation (1.2.3) defines the dispersivity and dispersion 
coefficient, which have become so integral to the modelling of dispersion in the literature. 
As we have briefly explained, dispersivity can be expected to be dependent on the scale of 
the experiment. This means that, in equations (1.1.1) and (1.2.6), the dispersion coefficient 
depends on the total length of the flow; mathematically, dispersion coefficient is not only a 
function of the distance variable x, but also a function of the total length. To circumvent the 
problems associated with solving the mathematical problem, the usual practice is to develop 
statistical relationships of dispersivity as a function of the total flow length. We discuss 
some of the relevant research related to ground water flow addressing the scale dependency 
problem in the next section. 
 

1.3 A Short Literature Review of Scale Dependency 
The differences between longitudinal dispersion observed in the field experiments and to 
the those conducted in the laboratory may be a result of the wide distribution of 
permeabilities and consequently the velocities found within a real aquifer (Theis 1962, 1963). 
Fried (1972) presented a few longitudinal dispersivity observations for several sites which 
were within the range of 0.1 to 0.6 m for the local (aquifer stratum) scale, and within 5 to 11 
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m for the global (aquifer thickness) scale. These values show the differences in magnitude of 
the dispersivities. Fried (1975) revisited and redefined these scales in terms of ‘mean 
travelled distance’ of the tracer or contaminant as local scale (total flow length between 2 
and 4 m), global scale 1 (flow length between 4 and 20 m), global scale 2 (flow length 
between 20 and 100 m), and regional scale (greater than 100 m; usually several kilometres). 

When tested for transverse dispersion, Fried (1972) found no scale effect on the transverse 
dispersivity and thought that its value could be obtained from the laboratory results. 
However, Klotz et al. (1980) illustrated from a field tracer test that the width of the tracer 
plume increased linearly with the travel distance. Oakes and Edworthy (1977) conducted the 
two-well pulse and the radial injection experiments in a sandstone aquifer and showed that 
the dispersivity readings for the fully penetrated depth to be 2 to 4 times the values for 
discrete layers. These results are inconclusive about the lateral dispersivity, and it is very 
much dependent on the flow length as well as the characteristics of porous matrix subjected 
to the testing. 

Pickens and Grisak (1981), by conducting the laboratory column and field tracer tests, 
reported that the average longitudinal dispersivity, L ,  was 0.035 cm for three laboratory 
tracer tests with a repacked column of sand when the flow length was 30 cm. For a stratified 
sand aquifer, by analysing the withdrawal phase concentration histories of a single–well test 
of an injection withdrawal well, they showed  L  were 3 cm and 9 cm for flow lengths of 
3.13 m and 4.99 m, respectively. Further, they obtained 50 cm dispersivity in a two-well 
recirculating withdrawal–injection tracer test with wells located 8 m apart. All these tests 
were conducted in the same site. Pickens and Grisak (1981) showed that the scale 
dependency of L  for the study site has a relationship of L = 0.1 L, where L is the mean 
travel distance. Lallemand-Barres and Peaudecerf  (1978, cited in Fetter, 1999) plotted the 
field measured L  against the flow length on a log-log graph which strengthened the 
finding of Pickens and Grisak (1981) and suggested that L  could be estimated to be about 
0.1 of the flow length. Gelhar (1986) published a similar representation of the scale of 
dependency L using the data from many sites around the world, and according to that 
study, L  in the range of 1 to 10 m would be reasonable for a site of dimension in the order 
of 1 km. However, the relationship of L  and the flow length is more complex and not as 
simple as shown by Pickens and Grisak (1981), and Lallemand-Barres and Peaudecerf (1978, 
cited in Fetter, 1999). Several other studies  on the scale dependency of dispersivity can be 
found in Peaudecef and Sauty (1978), Sudicky and Cherry (1979), Merritt et al. (1979), 
Chapman (1979), Lee et al. (1980), Huang et al. (1996b), Scheibe and Yabusaki (1998), Klenk 
and Grathwohl (2002), and Vanderborght and Vereecken (2002). These empirical 
relationships influenced the way models developed subsequently. For example, Huang et al. 
(1996a) developed an analytical solution for solute transport in heterogeneous porous media 
with scale dependent dispersion. In this model, dispersivity was assumed to increase 
linearly with flow length until some distance and reaches an asymptotic value. 

Scale dependency of dispersivity shows that the contracted description of the deterministic 
model has inherent problems that need to be addressed using other forms of contracted 
descriptions. The Fickian assumptions, for example, help to develop a description which 
would absorb the fluctuations into a deterministic formalism. But this does not necessarily 

 

mean that this deterministic formalism is adequate to capture the reality of solute transport 
within, often unknown, porous structures. While the deterministic formalisms provide 
tractable and useful solutions for practical purposes, they may deviate from the reality they 
represent, in some situations, to unacceptable levels. One could argue that any contracted 
description of  the behaviour of physical ensemble of moving particles must be mechanistic 
as well as statistical (Keizer, 1987);  this may be one of the plausible reasons why there are 
many stochastic models of groundwater flow. Other plausible reasons are: formations of 
real world groundwater aquifers are highly heterogeneous, boundaries of the system are 
multifaceted, inputs are highly erratic, and other subsidiary conditions can be subject to 
variation as well. Heterogeneous underground formations pose major challenges of 
developing contracted descriptions of solute transport within them. This was illustrated by 
injecting a colour liquid into a body of porous rock material with irregular permeability 
(Øksendal, 1998). These experiments showed that the resulting highly scattered 
distributions of the liquid were not diffusing according to the deterministic models.  

To address the issue of scale dependence of dispersivity and dispersion coefficient 
fundamentally, it has been argued that a more realistic approach to modelling is to use 
stochastic calculus (Holden et al., 1996; Kulasiri and Verwoerd, 1999, 2002). Stochastic 
calculus deals with the uncertainty in the natural and other phenomena using 
nondifferentiable functions for which ordinary differentials do not exist (Klebaner, 1998). 
This well established branch of applied mathematics is based on the premise that the 
differentials of nondifferential functions can have meaning only through certain types of 
integrals such as Ito integrals which are rigorously developed in the literature. In addition, 
mathematically well-defined processes such as Weiner processes aid in formulating 
mathematical models of complex systems. 

Mathematical theories aside, one needs to question the validity of using stochastic calculus 
in each instance. In modelling the solute transport in porous media, we consider that the 
fluid velocity is fundamentally a random variable with respect to space and time and 
continuous but irregular, i.e., nondifferentiable. In many natural porous formations, 
geometrical structures are irregular and therefore, as fluid particles encounter porous 
structures, velocity changes are more likely to be irregular than regular. In many situations, 
we hardly have accurate information about the porous structure, which contributes to 
greater uncertainties. Hence, stochastic calculus provides a more sophisticated mathematical 
framework to model the advection-dispersion in porous media found in practical situations, 
especially involving natural porous formations. By using stochastic partial differential 
equations, for example, we could incorporate the uncertainty of the dispersion coefficient 
and hydraulic conductivity that are present in porous structures such as underground 
aquifers. The incorporation of the dispersivity as a random, irregular coefficient makes the 
solution of resulting partial differential equations an interesting area of study. However, the 
scale dependency of the dispersivity can not be addressed in this manner because the 
dispersivity itself is not a material property but it depends on the scale of the experiment. 
 

1.4 Stochastic Models  
The last three decades have seen rapid developments in theoretical research treating 
groundwater flow and transport problems in a probabilistic framework. The models that are 
developed under such a theoretical basis are called stochastic models, in which statistical 

www.intechopen.com



NonFickian Solute Transport 9
 

m for the global (aquifer thickness) scale. These values show the differences in magnitude of 
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and 4 m), global scale 1 (flow length between 4 and 20 m), global scale 2 (flow length 
between 20 and 100 m), and regional scale (greater than 100 m; usually several kilometres). 

When tested for transverse dispersion, Fried (1972) found no scale effect on the transverse 
dispersivity and thought that its value could be obtained from the laboratory results. 
However, Klotz et al. (1980) illustrated from a field tracer test that the width of the tracer 
plume increased linearly with the travel distance. Oakes and Edworthy (1977) conducted the 
two-well pulse and the radial injection experiments in a sandstone aquifer and showed that 
the dispersivity readings for the fully penetrated depth to be 2 to 4 times the values for 
discrete layers. These results are inconclusive about the lateral dispersivity, and it is very 
much dependent on the flow length as well as the characteristics of porous matrix subjected 
to the testing. 

Pickens and Grisak (1981), by conducting the laboratory column and field tracer tests, 
reported that the average longitudinal dispersivity, L ,  was 0.035 cm for three laboratory 
tracer tests with a repacked column of sand when the flow length was 30 cm. For a stratified 
sand aquifer, by analysing the withdrawal phase concentration histories of a single–well test 
of an injection withdrawal well, they showed  L  were 3 cm and 9 cm for flow lengths of 
3.13 m and 4.99 m, respectively. Further, they obtained 50 cm dispersivity in a two-well 
recirculating withdrawal–injection tracer test with wells located 8 m apart. All these tests 
were conducted in the same site. Pickens and Grisak (1981) showed that the scale 
dependency of L  for the study site has a relationship of L = 0.1 L, where L is the mean 
travel distance. Lallemand-Barres and Peaudecerf  (1978, cited in Fetter, 1999) plotted the 
field measured L  against the flow length on a log-log graph which strengthened the 
finding of Pickens and Grisak (1981) and suggested that L  could be estimated to be about 
0.1 of the flow length. Gelhar (1986) published a similar representation of the scale of 
dependency L using the data from many sites around the world, and according to that 
study, L  in the range of 1 to 10 m would be reasonable for a site of dimension in the order 
of 1 km. However, the relationship of L  and the flow length is more complex and not as 
simple as shown by Pickens and Grisak (1981), and Lallemand-Barres and Peaudecerf (1978, 
cited in Fetter, 1999). Several other studies  on the scale dependency of dispersivity can be 
found in Peaudecef and Sauty (1978), Sudicky and Cherry (1979), Merritt et al. (1979), 
Chapman (1979), Lee et al. (1980), Huang et al. (1996b), Scheibe and Yabusaki (1998), Klenk 
and Grathwohl (2002), and Vanderborght and Vereecken (2002). These empirical 
relationships influenced the way models developed subsequently. For example, Huang et al. 
(1996a) developed an analytical solution for solute transport in heterogeneous porous media 
with scale dependent dispersion. In this model, dispersivity was assumed to increase 
linearly with flow length until some distance and reaches an asymptotic value. 

Scale dependency of dispersivity shows that the contracted description of the deterministic 
model has inherent problems that need to be addressed using other forms of contracted 
descriptions. The Fickian assumptions, for example, help to develop a description which 
would absorb the fluctuations into a deterministic formalism. But this does not necessarily 

 

mean that this deterministic formalism is adequate to capture the reality of solute transport 
within, often unknown, porous structures. While the deterministic formalisms provide 
tractable and useful solutions for practical purposes, they may deviate from the reality they 
represent, in some situations, to unacceptable levels. One could argue that any contracted 
description of  the behaviour of physical ensemble of moving particles must be mechanistic 
as well as statistical (Keizer, 1987);  this may be one of the plausible reasons why there are 
many stochastic models of groundwater flow. Other plausible reasons are: formations of 
real world groundwater aquifers are highly heterogeneous, boundaries of the system are 
multifaceted, inputs are highly erratic, and other subsidiary conditions can be subject to 
variation as well. Heterogeneous underground formations pose major challenges of 
developing contracted descriptions of solute transport within them. This was illustrated by 
injecting a colour liquid into a body of porous rock material with irregular permeability 
(Øksendal, 1998). These experiments showed that the resulting highly scattered 
distributions of the liquid were not diffusing according to the deterministic models.  

To address the issue of scale dependence of dispersivity and dispersion coefficient 
fundamentally, it has been argued that a more realistic approach to modelling is to use 
stochastic calculus (Holden et al., 1996; Kulasiri and Verwoerd, 1999, 2002). Stochastic 
calculus deals with the uncertainty in the natural and other phenomena using 
nondifferentiable functions for which ordinary differentials do not exist (Klebaner, 1998). 
This well established branch of applied mathematics is based on the premise that the 
differentials of nondifferential functions can have meaning only through certain types of 
integrals such as Ito integrals which are rigorously developed in the literature. In addition, 
mathematically well-defined processes such as Weiner processes aid in formulating 
mathematical models of complex systems. 

Mathematical theories aside, one needs to question the validity of using stochastic calculus 
in each instance. In modelling the solute transport in porous media, we consider that the 
fluid velocity is fundamentally a random variable with respect to space and time and 
continuous but irregular, i.e., nondifferentiable. In many natural porous formations, 
geometrical structures are irregular and therefore, as fluid particles encounter porous 
structures, velocity changes are more likely to be irregular than regular. In many situations, 
we hardly have accurate information about the porous structure, which contributes to 
greater uncertainties. Hence, stochastic calculus provides a more sophisticated mathematical 
framework to model the advection-dispersion in porous media found in practical situations, 
especially involving natural porous formations. By using stochastic partial differential 
equations, for example, we could incorporate the uncertainty of the dispersion coefficient 
and hydraulic conductivity that are present in porous structures such as underground 
aquifers. The incorporation of the dispersivity as a random, irregular coefficient makes the 
solution of resulting partial differential equations an interesting area of study. However, the 
scale dependency of the dispersivity can not be addressed in this manner because the 
dispersivity itself is not a material property but it depends on the scale of the experiment. 
 

1.4 Stochastic Models  
The last three decades have seen rapid developments in theoretical research treating 
groundwater flow and transport problems in a probabilistic framework. The models that are 
developed under such a theoretical basis are called stochastic models, in which statistical 
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uncertainty of a natural phenomenon, such as solute transport, is expressed within the 
stochastic governing equations rather than based on deterministic formulations. The 
probabilistic nature of this outcome is due to the fact that there is a heterogeneous 
distribution of the underlying aquifer parameters such as hydraulic conductivity and 
porosity (Freeze, 1975). 

The researchers in the field of hydrology have paid more attention to the scale and 
variability of aquifers over the two past decades. It is apparent that we need to deal with 
larger scales more than ever to study the groundwater contaminant problems, which are 
becoming serious environmental concerns. The scale of the aquifer has a direct proportional 
relationship to the variability. Hence, the potential role of modelling in addressing these 
challenges is very much dependent on spatial distribution. When working with 
deterministic models, if we could measure the hydrogeologic parameters at very close 
spatial intervals (which is prohibitively expensive), the distribution of aquifer properties 
would have a high degree of detail. Therefore, the solution of the deterministic model 
would yield results with a high degree of reliability. However, as the knowledge of fine-
grained hydrogeologic parameters are limited in practice, the stochastic models are used to 
understand dynamics of aquifers thus recognising the inherent probabilistic nature of the 
hydrodynamic dispersion.  

Early research on stochastic modelling can be categorised in terms of three possible sources 
of uncertainties: (i) those caused by measurement errors in the input parameters, (ii) those 
caused by spatial averaging of input parameters, and (iii) those associated with an inherent 
stochastic description of heterogeneity porous media (Freeze, 1975). Bibby and Sunada 
(1971) utilised the Monte Carlo numerical simulation model to investigate the effect on the 
solution of normally distributed measurement errors in initial head, boundary heads, 
pumping rate, aquifer thickness, hydraulic conductivity, and storage coefficient of transient 
flow to a well in a confined aquifer. Sagar and Kisiel (1972) conducted an error propagation 
study to understand the influence of errors in the initial head, transmissibility, and storage 
coefficient on the drawdown pattern predicted by the Theis equation. We can find that some 
aspects of the flow in heterogeneous formations have been investigated even in the early 
1960s (Warren and Price, 1961; McMillan, 1966). However, concerted efforts began only in 
1975, with the pioneering work of Freeze (1975).  

Freeze (1975) showed that all soils and geologic formations, even those that are 
homogeneous, are non-uniform. Therefore, the most realistic representation of a non-
uniform porous medium is a stochastic set of macroscopic elements in which the three basic 
hydrologic parameters (hydraulic conductivity, compressibility and porosity) are assumed 
to come from the frequency distributions. Gelhar et al. (1979) discussed the stochastic 
microdispersion in a stratified aquifer, and Gelhar and Axness (1983) addressed the issue of 
three-dimensional stochastic macro dispersion in aquifers. Dagan (1984) analysed the solute 
transport in heterogeneous porous media in a stochastic framework, and Gelgar (1986) 
demonstrated that the necessity of the use of theoretical knowledge of stochastic subsurface 
hydrology in real world applications. Other major contributions to stochastic groundwater 
modelling in the decade of 1980 can be found in Dagan (1986), Dagan (1988) and Neuman et 
al. (1987).  

 

Welty and Gelhar (1992) studied that the density and fluid viscosity as a function of 
concentration in heterogeneous aquifers. The spatial and temporal behaviour of the solute 
front resulting from variable macrodispersion were investigated using analytical results and 
numerical simulations. The uncertainty in the mass flux for the solute advection in 
heterogeneous porous media was the research focus of Dagan et al. (1992) and Cvetkovic et 
al. (1992). Rubin and Dagan (1992) developed a procedure for the characterisation of the 
head and velocity fields in heterogeneous, statistically anisotropic formations. The velocity 
field was characterised through a series of spatial covariances as well as the velocity-head 
and velocity-log conductivity. Other important contributions of stochastic studies in 
subsurface hydrology can be found in Painter (1996), Yang et al. (1996), Miralles-Wilhelm 
and Gelhar (1996), Harter and Yeh (1996), Koutsoyiannis (1999), Koutsoyiannis (2000), 
Zhang and Sun (2000), Foussereau et al. (2000), Leeuwen et al. (2000), Loll and Moldrup 
(2000), Foussereau et al. (2001) and, Painter and Cvetkovic (2001). In additional to that, 
Farrell (1999), Farrell (2002a), and Farrell (2002b) made important contributions to the 
stochastic theory in uncertain flows. 

Kulasiri (1997) developed a preliminary stochastic model that describes the solute 
dispersion in a porous medium saturated with water and considers velocity of the solute as 
a fundamental stochastic variable. The main feature of this model is it eliminates the use of 
the hydrodynamic dispersion coefficient, which is subjected to scale effects and based on 
Fickian assumptions that were discussed in section 1.2. The model drives the mass 
conservation for solute transport based on the theories of stochastic calculus. 
 

1.5 Inverse Problems of the Models 
In the process of developing the differential equations of any model, we introduce the 
parameters, which we consider the attributes or properties of the system. In the case of 
groundwater flow, for example, the parameters such as hydraulic conductivity, 
transmissivity and porosity are constant within the differential equations, and it is often 
necessary to assign numerical values to these parameters. There are a few generally 
accepted direct parameter measurement methods such as the pumping tests, the 
permeameter tests and grain size analysis (details on these tests can be found in Bear et al. 
(1968) and Bear (1979)). The values of the parameters obtained from the laboratory 
experiments and/or the field scale experiments, may not represent the often complex 
patterns across a large geographical area, hence limiting the validity and credibility of a 
model. The inaccuracies of the laboratory tests are due to the scale differences of the actual 
aquifer and the laboratory sample. The heterogeneous porous media is, most of the time, 
laterally smaller than the longitudinal scale of the flow; in laboratory experiments, due to 
practical limitations, we deal with proportionally larger lateral dimensions. Hence, the 
parameter values obtained from the laboratory tests are not directly usable in the models, 
and generally need to be upscaled using often subjective techniques. This difficulty is 
recognised as a major impediment to wider use of the groundwater models and their full 
utilisation (Frind and Pinder, 1973). For this reason, Freeze (1972) stated that the estimation 
of the parameters is the ‘Achilles’ heel’ of groundwater modelling. 

Often we are interested in modelling the quantities such as the depth of water table and 
solute concentration, which are relevant to environmental decision making, and we measure 
these variables regularly and the measuring techniques tend to be relatively inexpensive. In 
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uncertainty of a natural phenomenon, such as solute transport, is expressed within the 
stochastic governing equations rather than based on deterministic formulations. The 
probabilistic nature of this outcome is due to the fact that there is a heterogeneous 
distribution of the underlying aquifer parameters such as hydraulic conductivity and 
porosity (Freeze, 1975). 

The researchers in the field of hydrology have paid more attention to the scale and 
variability of aquifers over the two past decades. It is apparent that we need to deal with 
larger scales more than ever to study the groundwater contaminant problems, which are 
becoming serious environmental concerns. The scale of the aquifer has a direct proportional 
relationship to the variability. Hence, the potential role of modelling in addressing these 
challenges is very much dependent on spatial distribution. When working with 
deterministic models, if we could measure the hydrogeologic parameters at very close 
spatial intervals (which is prohibitively expensive), the distribution of aquifer properties 
would have a high degree of detail. Therefore, the solution of the deterministic model 
would yield results with a high degree of reliability. However, as the knowledge of fine-
grained hydrogeologic parameters are limited in practice, the stochastic models are used to 
understand dynamics of aquifers thus recognising the inherent probabilistic nature of the 
hydrodynamic dispersion.  

Early research on stochastic modelling can be categorised in terms of three possible sources 
of uncertainties: (i) those caused by measurement errors in the input parameters, (ii) those 
caused by spatial averaging of input parameters, and (iii) those associated with an inherent 
stochastic description of heterogeneity porous media (Freeze, 1975). Bibby and Sunada 
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flow to a well in a confined aquifer. Sagar and Kisiel (1972) conducted an error propagation 
study to understand the influence of errors in the initial head, transmissibility, and storage 
coefficient on the drawdown pattern predicted by the Theis equation. We can find that some 
aspects of the flow in heterogeneous formations have been investigated even in the early 
1960s (Warren and Price, 1961; McMillan, 1966). However, concerted efforts began only in 
1975, with the pioneering work of Freeze (1975).  

Freeze (1975) showed that all soils and geologic formations, even those that are 
homogeneous, are non-uniform. Therefore, the most realistic representation of a non-
uniform porous medium is a stochastic set of macroscopic elements in which the three basic 
hydrologic parameters (hydraulic conductivity, compressibility and porosity) are assumed 
to come from the frequency distributions. Gelhar et al. (1979) discussed the stochastic 
microdispersion in a stratified aquifer, and Gelhar and Axness (1983) addressed the issue of 
three-dimensional stochastic macro dispersion in aquifers. Dagan (1984) analysed the solute 
transport in heterogeneous porous media in a stochastic framework, and Gelgar (1986) 
demonstrated that the necessity of the use of theoretical knowledge of stochastic subsurface 
hydrology in real world applications. Other major contributions to stochastic groundwater 
modelling in the decade of 1980 can be found in Dagan (1986), Dagan (1988) and Neuman et 
al. (1987).  

 

Welty and Gelhar (1992) studied that the density and fluid viscosity as a function of 
concentration in heterogeneous aquifers. The spatial and temporal behaviour of the solute 
front resulting from variable macrodispersion were investigated using analytical results and 
numerical simulations. The uncertainty in the mass flux for the solute advection in 
heterogeneous porous media was the research focus of Dagan et al. (1992) and Cvetkovic et 
al. (1992). Rubin and Dagan (1992) developed a procedure for the characterisation of the 
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addition, we can continuously monitor these decision (output) variables in many situations. 
Therefore, it is reasonable to assume that these observations of the output variables 
represent the current status of the system and measurement errors. If the dynamics of the 
system can be reliably modelled using relevant differential equations, we can expect the 
parameters estimated, based on the observations, may give us more reliable representative 
values than those obtained from the laboratory tests and literature. The observations often 
contain noise from two different sources: experimental errors and noisy system dynamics. 
Noise in the system dynamics may be due to the factors such as heterogeneity of the media, 
random nature of inputs (rainfall) and variable boundary conditions. Hence, the question of 
estimating the parameters from the observations should involve the models that consist of 
plausible representation of “noises”. 
 

1.6 Inherent Ill-Posedness  
A well-posed mathematical problem derived from a physical system must satisfy the 
existence, uniqueness and stability conditions, and if any one of these conditions is not 
satisfied the problem is ill-posed. But in a physical system itself, these conditions do not 
necessarily have specific meanings because, regardless of their mathematical descriptions, the 
physical system would respond to any situation. As different combinations of hydrological 
factors would produce almost similar results, it may be impossible to determine a unique set 
of parameters for a given set of mathematical equations. So this lack of uniqueness could only 
be remedied by searching a large enough parameter space to find a set of parameters that  
would explain the dynamics of  the maximum possible number, if not all, of the state 
variables satisfactorily. However, these parameter searches guarantee neither uniqueness nor 
stability in the inverse problems associated with the groundwater problems (Yew, 1986; 
Carrera, 1987; Sun, 1994; Kuiper, 1986; Ginn and Cushman, 1990; Keidser and Rosbjerg, 1991). 
The general consensus among groundwater modellers is that the inverse problem may at 
times result in meaningless solutions (Carrera and Neuman, 1986b). There are even those who 
argue that the inverse problem is hopelessly ill-posed and as such, intrinsically unsolvable 
(Carrera and Neuman, 1986b). This view aside, it has been established that a well-posed 
inverse problem can, in practice, yield an acceptable solution (McLauglin and Townley, 1996). 
We adopt a positive view point that a mixture of techniques smartly deployed would render 
us the sets of effective parameters under the regimes of behaviours of the system which we are 
interested in. Given this stance, we would like to briefly discuss a number of techniques we 
found useful in the parameter estimation of the models we describe in this monograph. This 
discussion does not do justice to the methods mentioned and therefore we include the 
references for further study. We attempt to describe a couple of methods, which we use in this 
work, inmore detail, but the reader may find the discussion inadequate; therefore, it is 
essential to follow up the references to understand the techniques thoroughly. 
 

1.7 Methods in Parameter Estimation 
The trial and error method is the most simple but laborious for solving the inverse problems 
to estimate the parameters. In this method, we use a model that represents the aquifer 
system with some observed data of state variables. It is important, however, to have an 
expert who is familiar with the system available, i.e., a specific aquifer (Sun, 1994). 
Candidate parameter values are tried out until satisfactory outputs are obtained. However, 
if a satisfactory parameter fitting cannot be found, the modification of the model structure 

 

should be considered. Even though there are many advantages of this method such as not 
having to solve an ill-posed inverse problem, this is a rather tedious way of finding 
parameters when the model is a large one, and subjective judgements of experts may play a 
role in determining the parameters (Keidser and Rosbjerg, 1991).  

The indirect method transfers the inverse problem into an optimisation problem, still using 
the forward solutions. Steps such as a criterion to decide the better parameters between 
previous and present values, and also a stopping condition, can be replaced with the 
computer-aided algorithms (Neuman, 1973; Sun, 1994). One draw back is that this method 
tends to converge towards local minima rather than global minima of objective functions 
(Yew, 1986; Kuiper, 1986; Keidser and Rosbjerg, 1991). 

The direct method is another optimisation approach to the inverse problem. If the state 
variables and their spatial and temporal derivatives are known over the entire region, and if 
the measurement and mass balance errors are negligible, the flow equation becomes a first 
order partial differential equation in terms of the unknown aquifer parameters. Using 
numerical methods, the linear partial differential equations can be reduced to a linear 
system of equations, which can be solved directly for the unknown aquifer parameters, and 
hence the method is named “direct method” (Neuman, 1973; Sun, 1994).  

The above three methods (trial and error, indirect, and direct) are well established and a 
large number of advanced techniques have been added. The algorithms to use in these 
methods can be found in any numerical recipes (for example, Press, 1992). Even though we 
change the parameter estimation problem for an optimisation problem, the ill-posedness of 
the inverse problems do still exist. The non-uniqueness of the inverse solution strongly 
displays itself in the indirect method through the existence of many local minima (Keidser 
and Rosbjerg, 1991). In the direct method the solution is often unstable (Kuiper, 1986). To 
overcome the ill-posedness, it is necessary to have supplementary information, or as often 
referred to as prior information, which is independent of the measurement of state variables. 
This can be designated parameter values at some specific time and space points or reliable 
information about the system to limit the admissible range of possible parameters to a 
narrower range or to assume that an unknown parameter is piecewise constant (Sun, 1994). 
 

1.8 Geostatistical Approach to the Inverse Problem 
The above described optimisation methods are limited to producing the best estimates and 
can only assess a residual uncertainty. Usually, output is an estimate of the confidence 
interval of each parameter after a post-calibration sensitivity study. This approach is 
deemed insufficient to characterise the uncertainty after calibration (Zimmerman et al., 
1998). Moreover, these inverse methods are not suitable enough to provide an accurate 
representation of larger scales. For that reason, the necessity of having statistically sound 
methods that are capable of producing reasonable distribution of data (parameters) 
throughout larger regions was identified. As a result, a large number of geostatistically-
based inverse methods have been developed to estimate groundwater parameters (Keidser 
and Rosbjerg, 1991; Zimmerman et al., 1998). A theoretical underpinning for new 
geostatistical inverse methods and discussion of geostatistical estimation approach can be 
found in many publications (Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1984; 
Kitanidis, 1985; Carrera, 1988; Gutjahr and Wilson, 1989; Carrera and Glorioso, 1991; 
Cressie, 1993; Gomez-Hernandez et al., 1997; Kitanidis, 1997). 
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1.9 Parameter Estimation by Stochastic Partial Differential Equations 
The geostatistical approaches mentioned briefly above estimate the distribution of the 
parameter space based on a few direct measurements and the geological formation of the 
spatial domain. Therefore, the accuracy of each method is largely dependent on direct 
measurements that, as mentioned above, are subject to randomness, numerical errors, and 
the methods of measurements tend to be expensive. Unny (1989) developed an approach 
based on the theory of stochastic partial differential equations to estimate groundwater 
parameters of a one-dimensional aquifer fed by rainfall by considering the water table depth 
as the output variable to identify the current state of the system. The approach inversely 
estimates the parameters by using stochastic partial differential equations that model the 
state variables of the system dynamics. Theory of the parameter estimation of stochastic 
processes can be found in Kutoyants (1984), Lipster and Shirayev (1977), and Basawa and 
Prakasa Rao (1980). We summarise this approach in some detail as we use this approach to 
estimate the parameters in our models in this monograph. 

Let ( )V t  denote a stochastic process having many realisations. We define the parameter set 
   of a probability space which is given by a stochastic process ( )V t , based on a set of 
realisations { ( )V t ; 0 t T  }. Let the evolution of the family of stochastic processes 
{ ( )V t ; t T ;  } be described by a stochastic partial differential equation (SPDE), 

   
( ) ( , )V t AV dt x t dt     ,                   (1.9.1) 

where A is a partial differential operator in space, and ( , )x t dt  is the stochastic process to 
represent a space- and time- correlated noise process.  

The stochastic process ( )V t  forms infinitely many sub event spaces with increasing times. 

We can describe the stochastic process  ( ); ;V t t T   , and AV  as a known function 

of the system, 

     
 , ,AV S t V  .                        (1.9.2) 

Therefore, the stochastic process ( )V t  can be represented as the solution of the stochastic 
differential equation (SDE), 

            
 ( ) , , ( , ) ,V t S t V dt x t dt                   (1.9.3) 

where (.)S  is a given function. 

We can transform the noise process by a Hilbert space valued standard Wiener process 
increments, ( )t . (A Hilbert space is an inner product space that is complete with respect to 
the norm defined by the inner product; and a separable Hilbert space should contain a 
complete orthonormal sequence (Young, 1988).) Therefore, 

     
 ( ) , , ( ).V t S t V dt d t                          (1.9.4) 

 

The explanation on the transformation of ( , )x t  to ( )d t  can be found in Jazwinski 
(1970), and we develop this approach further in the later chapters. A standard Wiener 
process (often called a Brownian motion) on the interval  0,T  is a random variable ( )W t  

that depends continuously on  0,t T  and satisfies the following:  

                   
(0) 0,W                              (1.9.5) 

For 0 s t T   , 

( ) ( ) (0,1),W t W s t s N    

where (0,1)N  is a random variable generated with zero mean and unit variance.  

Note that ( )d t and ( )V t  are defined on the same event space. We estimate the 
parameter   using the maximum likelihood approach using all the available observations 
of the groundwater system. The estimate θ̂  of   maximises the likelihood functions 

( )V t  given by (Basawa and Prakasa Rao, 1980): 

L( ) = exp    2

0 0

1,  ,   ( ) ,  ,  
2

T T

S t V dV t S t V dt 
   
  
  .              (1.9.6) 

The estimate θ̂  can be obtained as the solution to the equation,  

          

  0
L 






.                  (1.9.7) 

Maximising the likelihood function ( )L   is equivalent to maximising the log-likelihood 
function, l( ) = ln L( ); hence, the maximum likelihood estimate can also be obtained as a 
solution to the equation      

          

( ) 0l



θ
θ

.                        (1.9.8) 

Taking log on both sides of equation (1.9.6) we obtain, 

l( ) =    2

0 0

,  ,   ( )- ,  ,  .
T T1S t V dV t S t V dt

2
                  (1.9.9) 

The parameter is estimated as the solution to the equation 

       
0 0

0t 
  

T T

S t, V, θ  dV - S t, V, θ S t, V, θ dt =
θ θ

.            (1.9.10) 

The parameters can be estimated from equation (1.9.10), based on a single sample path. Let 
us now consider the case when M independent sample paths are being observed. The 
likelihood-function becomes the product of the likelihood functions for M individual sample 
paths,  
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       ...... .L L L 1 2 ML θ θ, V θ, V θ, V             (1.9.11) 

Taking the log on both sides of equation (1.9.11) we have the log-likelihood function, 

         
       1 2, , ...... , .Ml l V l V l V                      (1.9.12) 

Using equation (1.9.10) and (1.9.12)  

       2

1 10 0

1,  ,   ,  ,  .
2

T TM M

i i i
i i

l S t V dV t S t V dt  
 

                 (1.9.13) 

Now the parameter estimate is obtained as the solution to 

     
1 10 0

,  ,  ,  ,  
 ( ) ,  ,  0.
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S t V S t V
dV t S t V dt

 


  

 
 

               (1.9.14) 

Lets consider two particular examples in which the drift term S(t, V,  ) depends linearly on 
its parameters  . 
 

Example 1 

We define the problem of estimating a single parameter as follows, 

   0 1 1 1( ,  ,  ) , , ;S t V a V t a V t                     (1.9.15) 

The log-likelihood function from equation (1.9.13) is 

            2
1 0 1 1 0 1 1 1

1 10 0

1( ) , , ( ) , , , 0.
2

T TM M
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l a V t a V t dV t a V t a V t a V t dt  
 

         (1.9.16) 

The estimate θ̂  is obtained as a solution to the equation, 

          1 0 1 1 1
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             (1.9.17) 

Hence the estimate is given by 

θ̂ =
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.              (1.9.18) 

 

Example 2 

When there are two unknown parameters to be estimated, 

     0 1 1 2 2 1 2( ,  ,  ) , , , ; ,S t V a V t a V t a V t         .             (1.9.19) 

 

 

The log-likelihood function from equation (1.9.13) is, 
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              (1.9.20) 

Differentiating the above two expressions with respect to 1  and 2 , respectively, we can 
obtain the following two simultaneous equations: 

   1 0 1 1 2 2 1
1 10 0

( , ) ( ) - ( , ) ( , ) ( , ) { ( , )} 0
T TM M

i i i i i i
i i

a V t dV t a V t a V t a V t a V t dt 
 

     ,     (1.9.21)  

and 
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  (1.9.22) 

We obtain the values for 1  and 2  as the solutions to these two equations. 
 

1.10 Use of Artificial Neural Networks in Parameter Estimation 
Over the past decades, Artificial Neural Networks (ANN) have become increasingly 
popular in many disciplines as a problem solving tool in data rich areas (Samarasinghe, 
2006). ANN’s flexible structure is capable of approximating almost any input-output 
relationship. Their application areas are almost limitless but fall into categories such as 
classification, forecasting and data modelling (Maren et al., 1990; Hassoun, 1995). 

ANNs are a massively parallel-distributed information processing system that has certain 
performance characteristics resembling biological neural networks of the human brain 
(Samarasinghe, 2006, Haykin, 1994). We discuss only a few of main ANN techniques that 
are used in this work. General detail descriptions of ANN can be found in Samarasinghe 
(2006), Maren et al. (1990), Hertz et al. (1991), Hegazy et al. (1994), Hassoun (1995), Rojas 
(1996), and in many other excellent texts.  

Back propagation may be the most popular algorithm for training ANN in a multi-layer 
perceptron (MLP), which is one of many different types of neural networks. MLP comprises 
a number of active 'neurons' connected together to form a network. The 'strengths' or 
'weights' of these links between the neurons are where the functionality of the network 
resides (NeuralWare, 1998). Its basic structure is shown in Figure 1.1. 

Rumelhart et al. (1986) developed the standard back propagation algorithm. Since then it 
has undergone many modifications to overcome the limitations; and the back propagation is 
essentially a gradient descent technique that minimises the network error function between 
the output vector and the target vector. Each input pattern of the training data set is passed 
through the network from the input layer to the output layer. The network output is 
compared with the described target output, and an error is computed based on the error 
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Taking the log on both sides of equation (1.9.11) we have the log-likelihood function, 
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Using equation (1.9.10) and (1.9.12)  
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Now the parameter estimate is obtained as the solution to 
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Lets consider two particular examples in which the drift term S(t, V,  ) depends linearly on 
its parameters  . 
 

Example 1 

We define the problem of estimating a single parameter as follows, 
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The log-likelihood function from equation (1.9.13) is 
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The estimate θ̂  is obtained as a solution to the equation, 
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Hence the estimate is given by 
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Example 2 

When there are two unknown parameters to be estimated, 
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The log-likelihood function from equation (1.9.13) is, 
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Differentiating the above two expressions with respect to 1  and 2 , respectively, we can 
obtain the following two simultaneous equations: 
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We obtain the values for 1  and 2  as the solutions to these two equations. 
 

1.10 Use of Artificial Neural Networks in Parameter Estimation 
Over the past decades, Artificial Neural Networks (ANN) have become increasingly 
popular in many disciplines as a problem solving tool in data rich areas (Samarasinghe, 
2006). ANN’s flexible structure is capable of approximating almost any input-output 
relationship. Their application areas are almost limitless but fall into categories such as 
classification, forecasting and data modelling (Maren et al., 1990; Hassoun, 1995). 

ANNs are a massively parallel-distributed information processing system that has certain 
performance characteristics resembling biological neural networks of the human brain 
(Samarasinghe, 2006, Haykin, 1994). We discuss only a few of main ANN techniques that 
are used in this work. General detail descriptions of ANN can be found in Samarasinghe 
(2006), Maren et al. (1990), Hertz et al. (1991), Hegazy et al. (1994), Hassoun (1995), Rojas 
(1996), and in many other excellent texts.  

Back propagation may be the most popular algorithm for training ANN in a multi-layer 
perceptron (MLP), which is one of many different types of neural networks. MLP comprises 
a number of active 'neurons' connected together to form a network. The 'strengths' or 
'weights' of these links between the neurons are where the functionality of the network 
resides (NeuralWare, 1998). Its basic structure is shown in Figure 1.1. 

Rumelhart et al. (1986) developed the standard back propagation algorithm. Since then it 
has undergone many modifications to overcome the limitations; and the back propagation is 
essentially a gradient descent technique that minimises the network error function between 
the output vector and the target vector. Each input pattern of the training data set is passed 
through the network from the input layer to the output layer. The network output is 
compared with the described target output, and an error is computed based on the error 
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function. This error is propagated backward through the network to each node, and 
correspondingly the connection weights are adjusted. 
 

 
Figure 1.1. Basic structure of a multi-layer perceptron network. 

The Self-Organizing Map (SOM) was developed by Kohonen (1982) and arose from the 
attempts to model the topographically organized maps found in the cortices of the more 
developed animal brains. The underlying basis behind the development of the SOM was 
that topologically correct maps can be formed in an n-dimensional array of processing 
elements that did not have this initial ordering to begin with. In this way, input stimuli, 
which may have many dimensions, can cluster to be represented by a one or two-
dimensional vector which preserves the order of the higher dimensional data (NeuralWare, 
1998). The SOM employs a type of learning commonly referred to as competitive, 
unsupervised or self-organizing, in which adjacent cells within the network are able to 
interact and adaptively evolved into the detectors of a specific input pattern (Kohonen, 
1990). The SOM can be considered to be “neural” because the results have indicated that the 
adaptive processes utilized in the SOM may be similar to the processes at work within the 
brain (Kohonen, 1990). The SOM has the potential for extending its capability beyond the 
original purpose of modelling biological phenomena. Sorting items into categories of similar 
objects is a challenging, yet frequent task. The SOM achieves this task by nonlinearly 
projecting the data onto a lower dimensional display and by clustering the data (Kohonen, 
1990). This attribute has been used in a wide number of applications ranging from 
engineering (including image and signal processing, image recognition, telecommunication, 
process monitoring and control, and robotics) to natural sciences, medicine, humanities, 
economics and mathematics (Kaski et al., 1998). 
 

1.11 ANN Applications in Hydrology 
It has been shown that ANN’s flexible structure can provide simple and reasonable 
solutions to various problems in hydrology. Since the beginning of the last decade, ANN 
have been successfully employed in hydrology research such as rainfall-runoff modelling, 
stream flow forecasting, precipitation forecasting, groundwater modelling, water quality 
and management modelling (Morshed and Kaluarachchi, 1998; ASCE Task Committee on 
Application of ANN in Hydrology, 2000a, b; Maier and Dandy, 2000).  

 

ANN applications in groundwater problems are limited when compared to other disciplines 
in hydrology. A few of applications relevant to our work are reviewed here. Ranjithan et al. 
(1993) successfully used ANNs to simulate the pumping index for hydraulic conductivity 
realisation to remediate groundwater under uncertainty. In the process of designing a 
reliable groundwater remediation strategy, clear identification of heterogeneous spatial 
variability of the hydrology parameters is an important issue. The association of hydraulic 
conductivity patterns and the level of criticalness need to be understood sufficiently for 
efficient screening. ANNs have been used to recognize and classify the variable patterns 
(Ranjithan et al., 1993). Similar work has been conducted by Rogers and Dowla (1994) to 
simulate a regulatory index for multiple pumping realizations at a contaminated site. In this 
study the supervised learning algorithm of back propagation has been used to train a 
network. The conjugate gradient method and weight elimination procedures have been 
employed to speed up the convergence and improve the performance, respectively. After 
training the networks, the ANN begins a search through various realizations of pumping 
patterns to determine matching patterns. Rogers et al. (1995) took another step forward to 
simulate the regulatory index, remedial index and cost index by using ANN for 
groundwater remediation. This research contributed towards addressing the issue of 
escalating costs of environmental cleanup. 

Zhu (2000) used ANN to develop an approach to populate a soil similarity model that was 
designed to represent soil landscape as spatial continua for hydrological modelling at 
watershed of mesoscale size. Coulibaly et al. (2001) modelled the water table depth 
fluctuations by using three types of functionally different ANN models: Input Delay Neural 
Network (IDNN), Recurrent Neural Network (RNN) and Radial Basis Function Network 
(RBFN). This type of study has significant implications for groundwater management in the 
areas with inadequate groundwater monitoring networks (Maier and Dandy, 2000). Hong 
and Rosen (2001) demonstrated that the unsupervised self-organising map was an efficient 
tool for diagnosing the effect of the storm water infiltration on the groundwater quality 
variables. In addition, they showed that SOM could also be useful in extracting the 
dependencies between the variables in a given groundwater quality dataset.  

Balkhair (2002) presented a method for estimating the aquifer parameters in large diameter 
wells using ANN. The designed network was trained to learn the underlying complex 
relationship between input and output patterns of the normalized draw down data 
generated from an analytical solution and its corresponding transmissivity values. The 
ANN was trained with a fixed number of input draw down data points obtained from the 
analytical solution for a pre-specified ranges of aquifer parameter values and time-series 
data. The trained network was capable of producing aquifer parameter values for any given 
input pattern of normalized draw down data and well diameter size. The values of aquifer 
parameters obtained using this approach were in a good agreement with those obtained by 
other published results. Prior knowledge about the aquifer parameter values has served as a 
valuable piece of information in this ANN approach.  

Rudnitskaya et al. (2001) developed a methodology to monitor groundwater quality using 
an array of non-specific potentiometric chemical sensors with data processing by ANN. 
Lischeid (2001) studied the impact of long-lasting non-point emissions on groundwater and 
stream water in remote watersheds using a neural network approach. Scarlatos (2001) used 
ANN method to identify the sources, distribution and fate of fecal coliform populations in 
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Figure 1.1. Basic structure of a multi-layer perceptron network. 

The Self-Organizing Map (SOM) was developed by Kohonen (1982) and arose from the 
attempts to model the topographically organized maps found in the cortices of the more 
developed animal brains. The underlying basis behind the development of the SOM was 
that topologically correct maps can be formed in an n-dimensional array of processing 
elements that did not have this initial ordering to begin with. In this way, input stimuli, 
which may have many dimensions, can cluster to be represented by a one or two-
dimensional vector which preserves the order of the higher dimensional data (NeuralWare, 
1998). The SOM employs a type of learning commonly referred to as competitive, 
unsupervised or self-organizing, in which adjacent cells within the network are able to 
interact and adaptively evolved into the detectors of a specific input pattern (Kohonen, 
1990). The SOM can be considered to be “neural” because the results have indicated that the 
adaptive processes utilized in the SOM may be similar to the processes at work within the 
brain (Kohonen, 1990). The SOM has the potential for extending its capability beyond the 
original purpose of modelling biological phenomena. Sorting items into categories of similar 
objects is a challenging, yet frequent task. The SOM achieves this task by nonlinearly 
projecting the data onto a lower dimensional display and by clustering the data (Kohonen, 
1990). This attribute has been used in a wide number of applications ranging from 
engineering (including image and signal processing, image recognition, telecommunication, 
process monitoring and control, and robotics) to natural sciences, medicine, humanities, 
economics and mathematics (Kaski et al., 1998). 
 

1.11 ANN Applications in Hydrology 
It has been shown that ANN’s flexible structure can provide simple and reasonable 
solutions to various problems in hydrology. Since the beginning of the last decade, ANN 
have been successfully employed in hydrology research such as rainfall-runoff modelling, 
stream flow forecasting, precipitation forecasting, groundwater modelling, water quality 
and management modelling (Morshed and Kaluarachchi, 1998; ASCE Task Committee on 
Application of ANN in Hydrology, 2000a, b; Maier and Dandy, 2000).  

 

ANN applications in groundwater problems are limited when compared to other disciplines 
in hydrology. A few of applications relevant to our work are reviewed here. Ranjithan et al. 
(1993) successfully used ANNs to simulate the pumping index for hydraulic conductivity 
realisation to remediate groundwater under uncertainty. In the process of designing a 
reliable groundwater remediation strategy, clear identification of heterogeneous spatial 
variability of the hydrology parameters is an important issue. The association of hydraulic 
conductivity patterns and the level of criticalness need to be understood sufficiently for 
efficient screening. ANNs have been used to recognize and classify the variable patterns 
(Ranjithan et al., 1993). Similar work has been conducted by Rogers and Dowla (1994) to 
simulate a regulatory index for multiple pumping realizations at a contaminated site. In this 
study the supervised learning algorithm of back propagation has been used to train a 
network. The conjugate gradient method and weight elimination procedures have been 
employed to speed up the convergence and improve the performance, respectively. After 
training the networks, the ANN begins a search through various realizations of pumping 
patterns to determine matching patterns. Rogers et al. (1995) took another step forward to 
simulate the regulatory index, remedial index and cost index by using ANN for 
groundwater remediation. This research contributed towards addressing the issue of 
escalating costs of environmental cleanup. 

Zhu (2000) used ANN to develop an approach to populate a soil similarity model that was 
designed to represent soil landscape as spatial continua for hydrological modelling at 
watershed of mesoscale size. Coulibaly et al. (2001) modelled the water table depth 
fluctuations by using three types of functionally different ANN models: Input Delay Neural 
Network (IDNN), Recurrent Neural Network (RNN) and Radial Basis Function Network 
(RBFN). This type of study has significant implications for groundwater management in the 
areas with inadequate groundwater monitoring networks (Maier and Dandy, 2000). Hong 
and Rosen (2001) demonstrated that the unsupervised self-organising map was an efficient 
tool for diagnosing the effect of the storm water infiltration on the groundwater quality 
variables. In addition, they showed that SOM could also be useful in extracting the 
dependencies between the variables in a given groundwater quality dataset.  

Balkhair (2002) presented a method for estimating the aquifer parameters in large diameter 
wells using ANN. The designed network was trained to learn the underlying complex 
relationship between input and output patterns of the normalized draw down data 
generated from an analytical solution and its corresponding transmissivity values. The 
ANN was trained with a fixed number of input draw down data points obtained from the 
analytical solution for a pre-specified ranges of aquifer parameter values and time-series 
data. The trained network was capable of producing aquifer parameter values for any given 
input pattern of normalized draw down data and well diameter size. The values of aquifer 
parameters obtained using this approach were in a good agreement with those obtained by 
other published results. Prior knowledge about the aquifer parameter values has served as a 
valuable piece of information in this ANN approach.  

Rudnitskaya et al. (2001) developed a methodology to monitor groundwater quality using 
an array of non-specific potentiometric chemical sensors with data processing by ANN. 
Lischeid (2001) studied the impact of long-lasting non-point emissions on groundwater and 
stream water in remote watersheds using a neural network approach. Scarlatos (2001) used 
ANN method to identify the sources, distribution and fate of fecal coliform populations in 
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the North Fork of the New River that flows through the City of Fort Lauderdale, Florida, 
USA and how the storm water drainage from sewers affects the groundwater. Other ANN 
applications in water resources can be found in Aly and Peralta (1999), Mukhopadhyay 
(1999), Freeze and Gorelick (2000), Johnson and Rogers (2000), Hassan and Hamed (2001), 
Beaudeau et al. (2001), and Lindsay et al. (2002). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 
 

Stochastic Differential Equations  
and Related Inverse Problems 

 
2.1 Concepts in Stochastic Calculus 
As we have discussed in chapter 1, the deterministic mathematical formulation of solute 
transport through a porous medium introduces the dispersivity, which is a measure of the 
distance a solute tracer would travel when the mean velocity is normalized to be one. One 
would expect such a measure to be a mechanical property of the porous medium under 
consideration, but the evidence are there to show that dispersivity is dependent on the scale 
of the experiment for a given porous medium. One of the challenges in modelling the 
phenomena is to discard the Fickian assumptions, through which dispersivity is defined, 
and develop a mathematical discription containing the fluctuations associated with the 
mean velocity of a physical ensemble of solute particles. To this end, we require a 
sophisticated mathematical framework, and the theory of stochastic processes and 
differential equations is a natural mathematical setting. In this chapter we review some 
essential concepts in stochastic processes and stochastic differential equations in order to 
understand the stochastic calculus in a more applied context. 

A deterministic variable expressed as a function of time uniquely determines the value of 
the variable at a given time. A stochastic variable Y, on the other hand, is one that does not 
have a unique value; it can have any one out of a set of values. We assign a unique label  to 
each possible value of the stochastic variable, and set  to denote the set of all such values. 
When Y represents, for example the outcome of throwing dice,  may be a finite set of 
discrete numbers, and when Y is the instantaneous position of a fluid particle, it may be a 
continuous range of real numbers. If a particular value y is observed for Y, this is called an 
event F. In fact, this is only the simplest prototype of an event; other possibilities might be 
that the value of Y is observed not to be y  (the complementary event), or that a value 
within a certain range of  values is observed. The set of all possible events is denoted by F. 
Even though the outcome of a particular observation of Y is unpredictable, the probability of 
observing y must be determined by a probability function P(). By using the standard 
methods of probability calculus, this implies that a probability P(F) can also be assigned to 
compound events F e.g. by appropriate summation or integration over  values. For this to 
work, F must satisfy the criteria that for any event F in its complement Fc must also belong 
to F, and that for any subset of F’s the union of these must also belong to F. The explanation 
above of what it means to call Y a stochastic variable, is encapsulated in formal 
mathematical language by saying “Y is defined on a probability space (, F, P )” . 

In describing physical systems, deterministic variables usually depend on additional 
parameters such as time. Similarly, a stochastic variable may depend on an additional 
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