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1. Introduction 

Breast cancer represents a major health problem in women, with more than 1,000,000 new 
cases and 370,000 deaths yearly worldwide [1]. Perhaps more worrisome is an apparently 
increasing incidence of breast cancer among younger women under 40 years of age recently 
reported in many countries worldwide [2-4]. The lethality of breast cancer is largely due to 
metastasis, preferentially to the lymph nodes, lungs and bones [5]; in order to delay the 
progression of breast cancer and prolong patient life, more effective chemopreventive and 
antimetastatic treatments and less toxic chemotherapeutic agents are desperately required. 
Vascular endothelial growth factor-C (VEGF-C) is expressed in a variety of malignant 
tumors including mammary cancer [6] and over-expression of VEGF-C has been reported to 
be associated with lymph node metastasis and poor prognosis in breast cancer patients [7,8]. 
A number of animal studies using cell lines [9-11] and transgenic mice[12] have been 
conducted in an attempt to demonstrate that VEGF-C over-expression is able to promote 
cancer metastasis. Using a ‘RNA interference’ approach with an immunocompetent mouse 
mammary cancer model, we previously demonstrated that inhibition of VEGF-C or VEGF-A 
by gene silencing using vectors expressing short interfering RNA (siRNA) leads to 
suppression of lymphatic and/or hematogenous metastasis [13].  
The cytokine interleukin-12 (IL-12), a heterodimer composed of p35 and p40 subunits, is 
produced primarily by dendritic cells, macrophages/monocytes, and neutrophils and 
functions in enhancing the activity of cytotoxic T lymphocytes and NK cells. Both subunits 
are necessary to exert biological activity [14]. IL-12 plays an important role in the induction 
of a cell-mediated immune response [15]. This cytokine is also involved in the differentiation 

of native T cells to the Th1 subset, and induces production of interferon- (IFN) in both T 
and NK cells. In addition, IL-12 has been shown to exert a potent anti-neoplastic effect in a 
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variety of tumors in animal models [16-19]. The anti-tumor activity of IL-12 is considered to 
be due to anti-angiogenic effects as well as to induction of immune response [19-21]. The 

number of CD8+ T cells and dendritic cells is significantly elevated in induced murine 
mammary tumors stably transfected with VEGF-C siRNA, suggesting that VEGF-C 
modulates the immune response [22]. Based on the above evidence, we chose to use an 
immunocompetent mammary cancer model in this study. 

2. Materials and methods 

2.1 BJMC3879 cell line 
Mouse mammary tumor virus (MMTV), isolated and purified from medium in which Jyg-
MC cells (established from mammary tumors of the Chinese wild mouse) were grown, was 
inoculated into the inguinal mammary glands of female BALB/c mice, resulting in the 
development of mammary carcinomas [23]. The BJMC3879 mammary adenocarcinoma cell 
line was subsequently derived from a metastatic focus within a lymph node from one of the 
inoculated mice and the cell line continues to show a high metastatic propensity, especially 
to lymph nodes and lungs [19,24,25]. We maintain the BJMC3879 cell line in either RPMI-
1640 medium or Dulbecco’s Modified Eagle’s medium containing 10% fetal bovine serum 
supplemented with streptomycin/penicillin in an incubator at 37°C under a 5% CO2 
atmosphere. 

2.2 Animals 
Forty female 6-week-old BALB/c mice were used in this study (Japan SLC, Inc., 
Hamamatsu, Japan). The animals were housed no more than 5 per plastic cage on wood 
chip bedding with free access to water and food and maintained under conditions of 
controlled temperature (21 ± 2 °C), humidity (50 ± 10 %), and lighting (12 h-12 h light-dark 
cycle). All animals were held for a 1-week acclimatization period before study 
commencement. This animal experiment was approved by the Animal Experiment 
Committee of Osaka Medical College. Husbandry was in accordance with the procedures 
outlined in the Guide for the Care and Use of Laboratory Animals at Osaka Medical College, 
the Japanese Government Animal Protection and Management Law (No.105) and the 
Japanese Government Notification on Feeding and Safekeeping of Animals (No.6). 

2.3 Vectors for VEGF-C siRNA and IL-12 expression 
We used short hairpin RNAs (shRNA) targeting mouse VEGF-C to generate siRNA. The 
previously determined mouse VEGF-C siRNA sequence, 5’-
GCATGAACACCAGCACAGGTTccaagagAACCTGTGCTGGTGTTCATGC-3’, [13] contains 
a 21-nucleotide sequence in sense and antisense orientation separated by a 7-nucleotide 
spacer (indicated above by small letters in italics). The complementary oligonucleotide was 
annealed and ligated into a BbsI/BbsI-digested psiRNA-h7SKGFP-zeo vector (InvivoGen, 
Inc., San Diego, CA, USA). This vector contains the human 7SK promoter (an RNA 
polymerase III promoter), which can generate high amounts of shRNAs [26]. We identified 
positive clones by restriction digestion and confirmed by sequencing.  
The plasmid, pORF-mIL-12 (InvivoGen, Inc., San Diego, CA, USA), encodes for the mouse 
IL-12 gene; it is an active fusion of the p35 and p40 subunits linked by bovine elastin motifs 
to express IL-12 as a single peptide with the signal sequence in the p35 subunit. This vector 
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is regulated by the elongation factor –1 (EF-1)/human T cell leukemia virus type 1 
(HTLV-1) long terminal repeat hybrid promoter and has previously shown anti-neoplastic 
effects [19]. To produce the empty control vector, we deleted the IL-12 gene from pORF-
mIL-12 via digestion with NcoI/NheI. 

2.4 In vivo gene therapy using VEGF-C siRNA and/or IL12 expression vectors 

BJMC3879 cells (5 x 106 cells/0.3 ml in phosphate buffered saline) were inoculated into the 

right inguinal region of the 40 female BALB/c mice and the animals randomly allocated into 

4 groups - pVec (control), psiVEGF-C, pIL12, and psiVEGF-C+pIL12 - of 10 mice each. Two 

weeks post-inoculation, when the tumors had reached 0.2–0.4 cm in diameter, we injected 

either psiVEGF-C, pIL12 or psiRNA-VEGF-C+pIL12, or the pVec control directly into the 

tumors of mice in the appropriate treatment groups. The vectors were injected using a 27-

guage needle at a concentration of 0.5g/l in sterile saline while the animals were under 

isoflurane anesthesia. A total volume of 150 l was introduced into larger tumors (more 

than 0.6 cm in maximum diameter), while smaller tumors of 0.6 cm in maximum diameter 

were infused until we detected leakage of the vector solution. Immediately after vector 

injection, we performed in vivo gene electrotransfer by applying a conductive gel (Echo Jelly; 

Aloka., Co., Ltd., Tokyo, Japan) topically to the unshaved skin over the injected tumor. 

Electric pulses were delivered directly to the tumor via “forceps” platinum plate electrodes 

(CUY650-10; Nepa Gene Co., Ltd., Ichikawa, Japan) using a CUY21EDIT square-wave 

electropulser (Nepa Gene Co., Ltd.). We had previously determined the parameters for 

optimal gene electrotransfer: for intratumoral injection of 50-75 g plasmid (dependent on 

tumor size as mentioned above), 8 pulses with a pulse length of 20 milliseconds at 100 volts 

proved to be most efficient [13,24,27].  

Using calipers, we measured the size of each treated mammary tumor weekly and 

calculated tumor volumes using the formula maximum diameter x (minimum diameter)2 x 0.4 

[28]. Individual body weights were also recorded at weekly intervals. All surviving animals 

received 50 mg/kg 5-bromo-2’-deoxyuridine (BrdU; Sigma Co., St. Lois, MO, USA) i.p. at 1 

h prior to sacrifice.  

2.5 Histopathological analysis 

After 8 weeks of treatment and observation/ tumor measurement, all mice were euthanized 

under isoflurane anesthesia and the mammary tumors and certain lymph nodes 

(specifically, nodes from axillary and femoral regions, as well as any that appeared 

abnormal) were removed. We then immediately fixed a portion of each tissue sample in 10% 

phosphate-buffered formalin. Lungs were routinely inflated with the fixative, excised, and 

immersed back into the phosphate-buffered formalin. We subsequently trimmed and 

examined all lobes for metastatic foci before processing all tissues through to paraffin 

blocks, after which they were cut into 4-m-thick sections and stained with hematoxylin and 

eosin (H&E) for histopathological examination or left unstained for immunohistochemistry. 

2.6 Immunohistochemical analysis of mammary tumors for microvascular density and 
dilated lymphatic vessels  

To quantitatively assess blood and lymphatic microvessel density in the primary mammary 

carcinomas, we used the avidin-biotin immunohistochemical complex method (LSAB kit; 
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DakoCytomation) with a rabbit polyclonal antibody against CD31 (Lab Vision Co., CA, 

USA), a specific marker for blood vessel endothelium, and a hamster anti-podoplanin 

monoclonal antibody (AngioBio Co., Del Mar, CA, USA) targeted to lymphatic 

endothelium. The number of CD31-positive blood microvessels was counted as previously 

described [29]; briefly, we scanned slides at low-power (X100) magnification to identify 

those areas having the highest number of vessels and the 5 areas of highest microvascular 

density were then selected and counted at higher (X200–400) magnification to obtain mean 

± SD values. We counted the number of podoplanin-positive lymphatic vessels containing 

intralumenal tumor cells and expressed the numbers of immunopositive structures as an 

average ± SD.  

2.7 Statistical analyses 
We analyzed significant differences in the quantitative data between groups using the 
Student's t-test via the method of Welch, which provides for insufficient homogeneity of 
variance. The differences in metastatic incidence we examined by Fisher’s exact 
probability test, with P<0.05 or P<0.01 considered to represent a statistically significant 
difference. 

3. Results 

3.1 Body weights and tumor growth  
No mortality was observed in this study. At experimental weeks 2 through 6, body weights 
in mice receiving pIL12 and the combination psiVEGF-C + pIL12 treatment began to 
decrease compared to both control and psiVEGF-C alone. Though mild (less than 5% 
reduction compared to the controls), weight loss was consistently significant in the 
combination group during this 4-week period, but the pIL12 group showed statistically 
lower weights intermittently at weeks 2 and 4 (Fig. 1A). The general condition of the 
animals was good throughout the experiment. At conclusion of the study at week 8, body 
weights were roughly equivalent across treatment groups; however, as can be seen in Figure 
1B, the tumor volumes of all 3 treatment groups were significantly suppressed from 
experimental weeks 3 to termination as compared to the pVec controls. The average tumor 

volumes at week 8 were as follows: pVec control group, 1715 ± 662 mm3; psiVEGF-C group, 

954 ± 470 mm3; pIL12 group, 756 ± 343 mm3; psiVEGF-C + pIL12 group, 860 ± 437 mm3. 

3.2 Tumor morphology and metastases  
Histopathologically, all mammary carcinomas proved to be moderately differentiated 
adenocarcinomas. Representative histologic morphologies of lymph node and lung 
metastases are illustrated in Figures 2A-H. Both the metastatic incidence and multiplicity in 
lymph node and lung was markedly reduced in all treatment groups as compared to 
control; as illustrated in Figures 3A and B for lymph node metastasis and Figures 3C and D 
for lung metastasis, the reductions were statistically significant within the parameters of 
overall node and lung metastatic incidence and in the number of larger metastatic lung foci 
>250 μm. Treatment with pIL12 alone appears to be more effective in inhibiting tumor 
spread than psiVEGF-C, but by all criteria evaluated, the psiVEGF-C + pIL12 combination 
yielded the greatest reductions in metastatic spread and severity over either psiVEGF-C 
alone, pIL12 alone, or pVec control (Figures.3B and D). 
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Fig. 1. Body weights (A) and mammary tumor volumes (B) in female BALB/c mice treated 
with pVec (control), psiVEGF-C, pIL12, and the psiVEGF-C+pIL12 combination vector. (A) 
Body weights were significantly lower in the pIL12 group at weeks 2 and 4, and in the 
psiVEGF-C+pIL12 combination group from weeks 2 through 6, as compared to the pVec 
group. (B) Increases in tumor volume were significantly suppressed in mice transfected with 
either psiVEGF-C alone, pIL12 alone, or combined psiVEGF-C+pIL12 at weeks 3 – 8 
(experiment termination) compared to pVec -treated control mice. The data for body 
weights at weeks 0 – 4 are magnified. Data represent mean ± SD. *P<0.05; **P<0.01 
compared with pVec controls.  
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Fig. 2. Metastasis to a lymph node (A-D). (A) Metastatic carcinoma cells fill the sinusoidal 
space (arrow) in a control mouse. (B) A lymph node from a tumor injected with psiVEGF-C. 
Metastatic carcinoma cells filled the subcapsular sinus (asterisk). (C) and (D) No metastatic 
cells are observed in the subcaspsular sinus of a lymph node from a mouse in the pIL12 
group (C), or from an animal in the combination psiVEGF-C+pIL12 group (D), but 
histiocytes are acummulating here in each case (asterisks). (E) Metastatic foci in the lung of a 
control (pVec) mouse. Many metastatic foci and small to large nodules were seen. (F-H) 
Metastatic foci tended to be smaller in mice receiving psiVEGF-C (F), pIL12 (G), and the 
combination vector (H) than those observed in the pVec group (E). H&E staining. 
Magnification: A-D, x100; E-H, x40. 
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Fig. 3. Quantitative analysis of lymph node metastasis (A and B) and lung metastasis (C and 
D) in mice treated with pVec (control), psiVEGF-C alone, pIL12 alone, or combined 
psiVEGF-C+pIL12. (A) The incidence of lymph node metastasis was 100% in the pVec 
group, while the incidence was 90% in the psiVEGF-C group, 50% in the pIL12 group and 
30% in the psiVEGF-C+pIL12 group; these incidences were significantly lower with pIL12 
alone and pIL12 combine with psiVEGF-C. (B) Similarly, the number of lymph nodes with 
metastases per mouse was also significantly decreased in all groups receiving therapeutic 
treatment. (C) The incidence of lung metastasis tended to decrease in all therapeutic groups, 
but the decrease was not statistically significant. (D) However, the number of lung 

metastatic nodules >250 m was significantly lower in all groups receiving therapeutic 
treatment. Data represent mean ± SD. *P<0.05; **P<0.01 

3.3 Angiogenesis as measured by microvessel density  
The immunohistochemical appearance of microvessels immunopositive for CD31, which is 
specific for the endothelium of blood vessels, is represented in Figures 4A and B. Tumor 
angiogenesis, as determined by the number of stained microvessels within the tumors 
themselves, was significantly lower in all therapeutic groups when compared to the pVec 
control group (Figure 5A). 
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Fig. 4. Immunohistochemical analysis of angiogenesis (A and B) and lymphangiogenesis (C 
and D) in mammary tumors transfected with pVec (control), psiVEGF-C alone, pIL12 alone, 
or combined psiVEGF-C+pIL12. (A) A section representative of control tumors show a 
higher density of well-developed CD31-positive microvessels, whereas in tumors 
transfected with psiVEGF-C alone, pIL12 alone, or combined psiVEGF-C+pIL12 (B), few 
immunopositive vessels are seen. (C) Lymphatic vessels were often dilated and frequently 
contained migrating tumor cells within the lumina (arrows, pVec-transfected tumor). (D) 
The numbers of lymphatic vessels containing intralumenal tumor cells were lower in tumors 
transfected with psiVEGF-C alone, pIL12 alone, or combined psiVEGF-C+pIL12 (arrow). A 
and B, anti-CD31 immunohistochemistry; C and D, anti-podoplanin 
immunohistochemistry. Magnification: A-D, x400. 

3.4 Dilated lymphatic vessels  
The relative decrease in the number of dilated lymphatic vessels containing intraluminal 
tumor cells indicates migratory inhibition of cancer cells via the lymphatics of the tumor. 
Anti-podoplanin staining of the lymphatic microvessels in mammary tumors is 
demonstrated in Figures 4C and D. In all groups, these lymphatic microvessels were well 
developed in the outer, superficial layers of the mammary tumors in a somewhat hexagonal 
network pattern. We frequently observed tumor cells within the lumina of dilated lymphatic 
vessels in tumors of both control (Figure 4C) and treated animals (Figure 4D). However, as 
shown in Figure 5B, the number of lymphatic vessels carrying detached cancer cells was 
lower in both the pIL12 and psiVEGF-C + pIL12 groups, but this difference was statistically 
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significant only in the mice receiving pIL12 alone. The data from mice treated with 
psiVEGF-C alone showed large variations.  
 

 

Fig. 5. Microvessel density (A) and frequency of lymphatic vessels containing migrating 
cancer cells (B) from tumors transfected with pVec (control), psiVEGF-C alone, pIL12 alone 
or combined psiVEGF-C+pIL12. (A) Microvessel density was significantly lower in tumors 
of mice receiving therapeutic vectors compared to the pVec control. (B) The number of 
lymphatic vessels containing intraluminal cancer cells was lower in the tumors transfected 
with pIL12 alone and combined psiVEGF-C+pIL12 as compared with the pVec controls, but 
significant differences were observed in the pIL12 alone group only. Data represent mean ± 
SD. *P<0.05. 
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4. Discussion 

Since metastasis seems to be the biggest prognostic factor for lethality in most cancers, 
finding therapies that control or totally inhibit tumor spread is of paramount importance. A 
variety of mechanisms may contribute to the dissemination of primary cancer cells: local 
tissue invasion, systemic metastasis via tumor blood vessels to distant organs, and 
lymphatic metastasis via tumor lymphatic vessels to the sentinel lymph node, distal lymph 
nodes, and from there to distal organs. In general, the most common pathway of initial 
dissemination is via the lymphatics, with patterns of spread via afferent ducts [30]. The 
lymphatic capillaries present in tissues and tumors provide entrance into the lymphatic 
system, allowing cancer cell migration to the lymph nodes. In this study, lymph node 
metastasis was significantly decreased by exposure to vectors expressing siVEGF-C, IL-12, 
or a combination vector expressing both. We also observed a significant decrease in the 
number of lymphatic vessels containing tumor cells intraluminally in tissues from mice 
receiving pIL12 alone and the combination of psiVEGF-C/pIL12, suggesting an inhibitory 
effect on migration into tumor lymphatic vessels that supports the significant reduction in 
lymph node metastasis in these groups.  
VEGF-C expression has been shown to correlate with lymph node metastasis in a variety of 
human cancers, including breast [6,31]. In many animal models of cancer, VEGF-C has been 
shown to enhance tumor lymphangiogenesis, the metastatic spread of tumor cells to lymph 
nodes and, in some cases, to distant organs [32]. Downregulation of VEGF-C using siRNA 
has been shown to reduce lymph node and lung metastases in murine mammary cancer 
models [13,22]. In 2009, an endogenous soluble isoform of VEGFR-2 (sVEGFR-2) that 
sequesters VEGF-C was identified and shown to be the first endogenous specific inhibitor of 
lymphatic vessel growth [33]. Endogenous sVEGFR-2 is a truncated form of 230 kDa 
membrance-bound form of VEGFR-2 resulting from alternative splicing. Subsequently, it 
has been shown that endogenous sVEGFR-2 suppresses tumor growth and lymph node 
metastasis in a mouse mammary cancer model [34]. This molecule significantly inhibits 
lymphangiogenesis, but not angiogenesis, in mammary tumor tissues [34]. In addition, 
VEGFR-3, the VEGF-C receptor, is predominantly expressed on lymphatic endothelial cells 
[35], and VEGF-C-dependent activation of VEGFR-3 stimulates the growth of lymph 
endothelial cells and lymphatics [36]. Blockade of VEGFR-3 signaling by soluble VEGFR-3 
inhibits lymphangiogenesis and lymph node metastasis in experimental animal cancer 
models [11,37,38]. 
Cancer cells metastasize to distal sites via the vascular system as well as via the lymphatic 
system. Significant decreases in microvessel density were observed in the tumors we 
injected with psiVEGF-C, pIL12, and the combination vector. VEGF-C has been reported to 
stimulate angiogenesis under certain experimental conditions [39]. The biosynthesis of 
VEGF-C involves proteolytic processing that gives intermediate forms along with a 21kDa 
mature form [36]. The intermediate forms predominantly bind to VEGFR-3, whereas the 
mature form can bind to both VEGFR-3 and VEGFR-2 to induce angiogenesis [36], which 
explains the inhibition of angiogenesis observed with exposure to psiVEGF-C [36,40]and 
which is in agreement with our previous VEGF-C siRNA experiment [13].  
In contrast, IL-12 has also been shown to strongly inhibit angiogenesis in mouse corneal 
neovascularization [20] and in several tumor models [19,21]. IL-12 itself has no direct action 

on vascular endothelial cells; however, IL-12 induction of IFN can apparently suppress 

angiogenesis on Matrigel-cultured human umbilical vein endothelial cells [19]. But IFN 
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does not seem the only player in angiogenesis inhibition; the cytokine IP-10 (IFN-inducing 
protein-10) has also been reported to be a potent antiangiogenic factor in vivo [41]. The exact 
mechanism of angiogenic suppression induced by IL-12 is therefore another avenue to 
explore in tumor therapeutics. 
And the means of administration may also affect the efficacy of IL-12 as an anti-
angiogenic/anti-metastatic agent. In a phase I clinical trial, recombinant IL-12 stimulated 
significant immunological activity in cancer patients [42]. However, despite initial 
enthusiasm for recombinant IL-12 as a potential anti-tumor agent, severe systemic toxicities 
have repeatedly been reported in clinical trials, limiting its use [43,44]. In contrast to direct 
cytokine administration, IL-12 gene therapy using an adenoviral vector in animal cancer 
models has been shown to be as effective as protein exposure, but avoids the systemic 
toxicity seen in human trials [45-47]. One of the major advantages of gene transfer compared 
with the administration of recombinant proteins is the quicker achievement of steady-state 
levels of circulating protein [48]; administration of recombinant proteins leads first to a 
concentration peak, which may be within the zone of toxicity and responsible for adverse 
effects, followed by a rapid fall to sub-therapeutic levels. 
The administration of either psiVEGF-C, pIL12, or a combination of both psiVEGF-C + 
pIL12 vectors significantly suppressed tumor growth and metastasis in our 
immunocompetent metastatic mammary cancer model. Since Carter et al. have reported the 
chance of tumor recurrence and/or metastasis increases dramatically once breast cancers 
reach 4 cm or larger [49], this reduction in tumor volume induced by decreasing VEGF-C 
and increasing IL-12 expression could be clinically significant; the fact that the treatment 
with a combined psiVEGF-C and pIL12 vector showed an enhanced inhibitory effect not 
only on tumor growth but also on metastasis is of particular importance when considering 
therapeutic strategies in breast cancer treatment. In conclusion, treatment with psiVEGF-C 
and pIL12 exerted combinational effects for suppression of tumor growth and metastasis in 
mouse mammary cancer model, suggesting a potentially significant clinical option in the 
treatment of metastatic human breast cancer.  

5. Abbreviations 

BrdU, 5-bromo-2’-deoxyuridine; EF-1HTLV-1, elongation factor –1/human T cell 

leukemia virus type 1; H&E, hematoxylin and eosin; IFN, interferon-; IL-12, interleukin-12; 

IP-10, IFN-inducing protein-10; MMTV, mouse mammary tumor virus; shRNA, short 
hairpin RNAs; siRNA, short interfering RNA; VEGF-C, vascular endothelial growth factor-C; 
VEGFR, vascular endothelial growth factor receptor 
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