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1. Introduction 

Hysteresis phenomenon occurs in all smart material-based sensors and actuators, such as 
shape memory alloys, piezoceramics and magnetostrictive actuators (Su, et al, 2000; Fu, et al, 
2007; Banks & Smith, 2000; Tan & Baras, 2004). When the hysteresis nonlinearity precedes a 
system plant, the nonlinearity usually causes the overall closed-loop systems to exhibit 
inaccuracies or oscillations, even leading to instability (Tao & Kokotovic, 1995). This fact 
often makes the traditional control methods insufficient for precision requirement and even 
not be able to guarantee the basic requirement of system stability owing to the non-smooth 
and multi-value nonlinearities of the hysteresis (Tao & Levis, 2001). Hence the control of 
nonlinear systems in presence of hysteresis nonlinearities is difficult and challenging (Fu, et 
al, 2007; Tan & Baras, 2004).   
Generally there are two ways to mitigate the effects of hysteresis. One is to construct an 
inverse operator of the considered hysteresis model to perform inversion compensation (Tan 
& Baras, 2004; Tao & Kokotovic, 1995; Tao & Levis, 2001). The other is, without necessarily 
constructing an inverse, to fuse a suitable hysteresis model with available robust control 
techniques to mitigate the hysteretic effects (Su, et al, 2000; Fu, et al, 2007; Zhou, et al, 2004; 
Wen & Zhou, 2007). The inversion compensation was pioneered in (Tao & Kokotovic, 1995) 
and there are some other important results in (Tan & Baras, 2005; Iyer, et al, 2005; Tan & 
Bennani, 2008).  However, most of these results were achieved only at actuator component 
level without allowing for the overall dynamic systems with actuator hysteresis nonlinearities. 
Essentially, constructing inverse operator relies on the phenomenological model (such as 
Preisach models) and influences strongly the practical application of the design concept (Su, et 
al, 2000). Because of multi-valued and non-smoothness feature of hysteresis, those methods are 
often complicated, computationally costly and possess strong sensitivity of the model 
parameters to unknown measurement errors. These issues are directly linked to the difficulties 
of guaranteeing the stability of systems except for certain special cases (Tao & Kokotovic, 
1995). For the methods to mitigate hysteretic effects without constructing the inverse, there are 
two main challenges involved in this idea. One challenge is that very few hysteresis models 
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are suitable to be fused with available robust adaptive control techniques. And the other is 
how to fuse the suitable hysteresis model with available control techniques to guarantee the 
stability of the dynamics systems (Su, et al, 2000). Hence it is usually difficult to construct new 
suitable hysteresis models to be fused into control plants, and to explore new control 
techniques to mitigate the effects of hysteresis and to ensure the system stability, without 
necessarily constructing the hysteresis inverse. 

Noticing the above challenges, we first construct a hysteresis model using play-like 

operators, in a similar way to L. Prandtl’s construction of the Prandtl-Ishilinskii model using 

play operators (Brokate & Sprekels, 1996), and thus name it Prandtl-Ishilinskii-Like model. 

Because the play-like operator in (Ekanayake & Iyer, 2008) is a generalization of the 

backlash-like operator in (Su, et al, 2000), the Prandtl-Ishilinskii-Like model is a subclass of 

SSSL-PKP hysteresis model (Ekanayake & Iyer, 2008). Then, the development of two robust 

adaptive control schemes to mitigate the hysteresis avoids constructing a hysteresis inverse.  

The new methods not only can perform global stabilization and tracking tasks of the 

dynamic nonlinear systems, but also can derive transient performance in terms of 2L  norm 

of tracking error as an explicit function of design parameters, which allows designers to 

meet the desired performance requirement by tuning the design parameters in an explicit 

way.  
The main contributions in this chapter are highlighted as follows: 
i. A new hysteresis model is constructed, where the play-like operators developed in 

(Ekanayake & Iyer, 2008) play a role of building blocks. From a standpoint of categories 
of hysteresis models, this class of hysteresis models is a subclass of SSSL-PKP hysteresis 
models.  It provides a possibility to mitigate the effects of hysteresis without necessarily 
constructing an inverse, which is the unique feature of this subclass model identified 
from the SSSL-PKP hysteresis model of general class in the literature; 

ii. A challenge is addressed to fuse a suitable hysteresis model with available robust 
adaptive techniques to mitigate the effects of hysteresis without constructing a 
complicated inverse operator of the hysteresis model; 

iii. Two backstepping schemes are proposed to accomplish robust adaptive control tasks 

for a class of nonlinear systems preceded by the Prandtl-Ishilinskii-Like models. Such 

control schemes not only ensure the stabilization and tracking of the hysteretic dynamic 

nonlinear systems, but also derive the transient performance in terms of 2L  norm of 

tracking error as an explicit function of design parameters. 
The organization of this chapter is as follows. Section 2 gives the problem statement.  In 

Section 3, we will construct Prandtl-Ishlinshii-Like model and explore its properties. The 

details about two control schemes for the nonlinear systems preceded by Prandtl-Ishlinshii-

Like model proposed in Section 3 are presented in Section 4. Simulation results are given in 

Section 5. Section 6 concludes this paper with some brief remarks. 

2. Problem statement 

Consider a controlled system consisting of a nonlinear plant preceded by an actuator with 
hysteresis nonlinearity, that is, the hysteresis is presented as an input to the nonlinear plant. 
The hysteresis is denoted as an operator 

 ( ) [ ]( )w t P v t=  (1) 
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with ( )v t as the input and ( )w t as the output. The operator [ ]P v will be constructed in detail 

in next section. The nonlinear dynamic system being preceded by the previous hysteresis is 

described in the canonical form as 

 ( ) ( 1)

1

( ) ( ( ), ( ), , ( )) ( )
k

n n
i i

i

x t a Y x t x t x t bw t−

=
+ =∑ $ A  (2) 

where iY are known continuous, linear or nonlinear function. Parameters ia and control 

gain b are unknown constants. It is a common assumption that the sign of b is known.  

Without losing generality, we assume b is greater than zero. It should be noted that more 

general classes of nonlinear systems can be transformed into this structure (Isidori, 1989). 
The control objective is to design controller ( )v t in (1), as shown in Figure 1, to render the 

plant state ( )x t to track a specified desired trajectory ( )dx t , i.e., ( ) ( )dx t x t→ as t →∞ . 

Throughout this paper the following assumption is made. 

 

Fig. 1. Configuration of the hysteretic system 

Assumption: The desired trajectory ( 1)[ , , , ]n T
d d d dX x x x −= $ A  is continuous. Furthermore, 

( ) 1[ , ]nT T n
d ddX x R +∈Ω ⊂ with dΩ being a compact set. 

3. Prandtl-Ishlinskii-Like model 

In this section, we will first recall the backlash-like operator (Su, et al, 2000) which will serve 
as elementary hysteresis operator, in other words, the backlash-like operator will play a role 
of building blocks, then will show how the new hysteresis will be constructed by using the 
backlash-like operator and explore its some useful properties of this model. 

3.1 Backlash-like operator 

In 2000, Su et al proposed a continuous-time dynamic model to describe a class of backlash-
like hysteresis, as given by 

 
1( )

dF dv dv
cv F B

dt dt dt
α= − +  (3) 
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where , ,cα and 1B are constants, satisfying 1c B> .  

The solution of (3) can be solved explicitly for piecewise monotone v as follows 

 0

0

( )sgn sgn (sgn )
0 0 1( ) ( ) [ ] [ ]

vv v v v v v

v
F t cv t F cv e e B c e dα α αζ ζ− − −= + − + −∫$ $ $  (4) 

for v$ constant and 0 0( )w v w= . Equation (4) can also be rewritten as 

 

0 0

0 0

( ) 1
0 0

( ) 1
0 0

( ) [ ] ( ), 0

( )

( ) [ ] ( ), 0

v v vv v

v v vv v

B c
cv t F cv e e e e v

F t

B c
cv t F cv e e e e v

α αα α

α αα α

α

α

− − −

− −−

−⎧ + − + − >⎪
⎪

= ⎨
⎪ −⎪ + − + − <

−⎩

$

$

 (5) 

It is worth to note that 

 

1

1

lim ( ( ) )

lim ( ( ) )

v

v

c B
F v cv

c B
F v cv

α

α

→+∞

→−∞

−
− = −

−
− =

 (6) 

Hence, solution ( )F t exponentially converges the output of a play operator with 

threshold 1c B
r

α
−

= and switches between lines 1c B
cv

α
−

+  and 1c B
cv

α
−

− . We will construct 

a new Prandtl-Ishilinskii-Like model by using the above backlash-like model in next 
subsection, similar to the construction of the well-known Prandtl-Ishilinskii model from 
play operators, which is our motivation behind the construction of this new model indeed. 

3.2 Prandtl-Ishilinskii-Like model  

We now ready to construct Prandtl-Ishilinskii-Like model through a weighted superposition 

of elementary backlash-like operator [ ]( )rF v t , in a similar way as L. Prandtl (Brokate & 

Sprekels, 1996) constructed Prandtl-Ishilinskii model by using play operators. 

Keep 1c B
r

α
−

= in mind and, without losing generality, set ( (0) 0) 0F v = = and 1c = , we 

rewrite equation (5) as 

 

1

1

(1 )

1

( ) , 0
( )

( ) , 0

B
v

r

r B
v

r

v t r re v
F t

v t r re v

− −
−

−

⎧
⎪ + − >⎪= ⎨
⎪

− + <⎪⎩

$

$
 (7) 

where r is the threshold of the backlash-like operator. 

To this end, we construct the Prandtl-Ishilinskii-Like model by 

 
0

( ) ( ) [ ]( )
R

rw t p r F v t dr= ∫  (8) 
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where ( )p r is a given continuous density function, satisfying ( ) 0p r ≥ with
0

( )p r dr
∞

< +∞∫ , 

and is expected to be identified from experimental data (Krasnoskl’skill & Pokrovskill, 1983; 

Brokate & Sprekels, 1996). Since the density function ( )p r vanishes for large values of r , the 

choice of R = +∞ as the upper limit of integration in the literature is just a matter of 
convenience (Brokate & Sprekels, 1996).  
Inserting (7) into (8) yields 

 

1

1

(1 )

0 0

1

0 0

( ) ( ) ( )( ) , 0
[ ]( )

( ) ( ) ( )( ) , 0

B
vR R

r

B
vR R

r

p r dr v t p r r re dr v
w v t

p r dr v t p r r re dr v

− −

−
−

⎧
⎪ ⋅ + − >⎪= ⎨
⎪

⋅ + − + <⎪⎩

∫ ∫

∫ ∫

$

$

 (9) 

the hysteresis (9) can be expressed as 

 

1

1

(1 )

0
0 1

0

( )( ) , 0
( )

( )( ) , 0

B
vR

r

B
vR

r

p r r re dr v
w t p v

p r r re dr v

− −

−
−

⎧
⎪ − >⎪= + ⎨
⎪

− + <⎪⎩

∫

∫

$

$

 (10) 

where 0 0
( )

R
p p r dr= ∫ is a constant which depends on the density function ( )p r .  

Property 1: Let 

 

1

1

(1 )

0

1

0

( )( ) , 0
[ ]( )

( )( ) , 0

B
vR

r

B
vR

r

p r r re dr v
d v t

p r r re dr v

− −

−
−

⎧
⎪ − >⎪= ⎨
⎪

− + <⎪⎩

∫

∫

$

$
 (11) 

satisfying ( ) 0p r ≥ with
0

( )p r dr
∞

< +∞∫ , then for any 0( ) ( , )pmv t C t∈ ∞ , there exists a constant 

0M ≥ such that [ ]( )d v t M≤ . 

Proof: since (7) can be rewritten as ( ) ( ) ( , )rF t v t R r v= + where 

1

1

(1 )

1

, 0
( , )

, 0

B
v

r

B
v

r

r re v
R r v

r re v

− −
−

−

⎧
⎪ − >⎪= ⎨
⎪
− + <⎪⎩

$

$
 

Based on the analysis in (Su, et al, 2000), for each fixed (0, )r R∈ , it is always possible there 

exists a positive constant 1M , such that 1( , )R r v M≤ . Hence  

1

0 0 0

[ ]( ) ( ) ( , ) ( ) ( , ) ( )
R R R

d v t p r R r v dr p r R r v dr M p r dr= ≤ ≤∫ ∫ ∫  
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By the definition of ( ),p r  one can conclude that
1

0

( )
R

M M p r dr= ∫ . 

Property 2: the Prandtl-Ishilinskii-Like model constructed by (9) is rate-independent. 

Proof: Following (Brokate & Sprekels, 1996), we let : [0, ] [0, ]E Et tσ →  satisfying (0) 0σ = and 

( )E Et tσ =  be a continuous increasing function, i.e. ( )σ ⋅ is an admissible time transformation 

and define [ ]f tw v  satisfying [ ] [ ]( ), [0, ]f t Ew v w v t t t= ∈ and [0, ]pm Ev M t∈  where tv  

represents the truncation of v at t , defined by ( ) ( )tv vτ τ= for 0 tτ≤ ≤  and ( ) ( )tv v tτ = for 

Et tτ≤ ≤ , and [ ]( )w v t constructed by (9). For the model (9), we can easily have 

( ) ( )[ ]( ) [( ) ] [ ] [ ] [ ]( ( )) [ ]( ) ( )f t f t f tw v t w v w v w v w v t w v t tσ σσ σ σ σ σ= = = = =c c c c  

Hence for all admissible time transformation ( )σ ⋅ , according to the definition 2.2.1 in 

(Brokate & Sprekels, 1996), the model constructed by (9) is rate-independent.  
Property 3: the Prandtl-Ishilinskii-Like model constructed by (9) has the Volterra property. 

Proof: it is obvious whenever , [0, ]pm Ev v M t∈  and [0, ]Et t∈ , then t tv v=  implies that 

( [ ]) ( [ ])t tw v w v= , so, according to (Brokate & Sprekels, 1996, Page 37), the model (8) has 

Volterra property.  

Lemma 1: If a functional : [0, ] ([0, ])pm E Ew C t Map t→ has both rate independence property 

and Volterra property, then w is a hysteresis operator (Brokate & Sprekels, 1996).   

Proposition 1: the Prandtl-Ishilinskii-Like model constructed by (9) is a hysteresis operator. 
Proof: From the Properties 1, 2 and Lemma 1, the Prandtl-Ishilinskii-Like model (9) is a 
hysteresis model. 
Remark 1: It should be mentioned that Prandtl-Ishilinskii model is a weighted superposition 
of play operator, i.e. play operator is the hysteron (Krasnoskl’skill & Pokrovskill, 1983), and 
that backlash-like operator can be viewed as a play-like operator from a 1st order 
differential equation (Ekanayake & Iyer, 2008). Hence, the model (8) is, with a litter abuse 
terminology, named Prandtl-Ishilinskii-Like model. As an illustration, Figure 2 shows 

( )w t generated by (9), with 
26.7(0.1 1)( ) (0,50]rp r e r− −= ∈ , 1 0.505B = , and input 

( ) 7 sin(4 ) /(1 ),v t t t= +  with ( (0) 0) 0.F v = =  
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Fig. 2. Prandtl-Ishlinskii-Like Hysteresis curves given by (10) 
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Remark 2: From another point of an alternative one-parametric representation of Preisach 
operator (Krejci, 1996), the Prandtl-Ishilinskii-Like model falls into PKP-type operator 
(Ekanayake & Iyer, 2008), as Prandtl-Ishilinskii model into Preisach model. As a preliminary 
step, in the paper we explore the properties of this model and its potential to facilitate 
control when a system is preceded by this kind of hysteresis model, which will be 
demonstrated in the next section. Regarding hysteresis phenomena in which kind of smart 
actuator this model could characterize, it is still unclear. The future work will focus on, 
which is beyond of the scope of this paper.     
To this end, we can rewrite (9) into 

 0( ) [ ]( )w t p v d v t= +  (12) 

where 0 0
( )

R
p p r dr= ∫ and [ ]( )d v t is defined by (11).  

Remark 3:  It should be note that (10) decomposes the hysteresis behavior into two terms. 
The first term describes the linear reversible part, while the second term describes the 
nonlinear hysteretic behavior. This decomposition is crucial (Su, et al, 2000, Fu, et al, 2007) 
since it facilitates the utilization of the currently available control techniques for the 
controller design, which will be clear in next section. 

4. Adaptive control design 

From (10) and Proposition 1 we see that the signal ( )w t is expressed as a linear function of 

input signal ( )v t plus a bounded term. Using the hysteresis model of (10), the nonlinear 

system dynamics described by (2), can be re-expressed as 

 

1 2

1

1 2
1

0

( ( ), ( ), , ( ))

{ ( ) [ ]( )}

( ) [ ]

n n

k

n i i n
i

T
p b

x x

x x

x a Y x t x t x t

b p v t d v t

Y b v t d v

−

=

=

=

= −

+ −

= + −

∑

a

$
B

$

$ A
 (13) 

where 1( ) ( ),x t x t= ( 1)
2( ) ( ), , ( ) ( ),n

nx t x t x t x t−= =$ A 1 2[ , , , ]Tka a a= − − −a A , and 0pb bp=  

1 2[ , , , ]TkY Y Y Y= A , and [ ]( ) [ ]( )bd v t bd v t= . 

Before presenting the adaptive control design using the backstepping technique in (Krisic, et 
al, 1995) to achieve the desired control objectives, we make the following change of 
coordinates: 

 1 1

( 1)
1 , 2,3, ,

d

i
i i d i

z x x

z x x i nα−
−

= −

= − − = A
 (14) 

Where αi-1 is the virtual controller in the i th step and will be determined later. In the 
following, we give two control schemes. In Scheme I, the controller is discontinuous; the 
other is continuous in Scheme II.  
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Scheme I 

In what follows, the robust adaptive control law will be developed for Scheme I. 
First, we give the following definitions 

 

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

t t

t t

M t M M t

φ φ φ

= −

= −

= −

a a a#
#  (15) 

 

where â is an estimate of a , φ̂ is an estimate of φ , which is defined as 
1

:
pb

φ = , and M̂ is an 

estimate of M . 
Given the plant and the hysteresis model subject to the assumption above, we propose the 
following control law 

 

1

( )
1 1 1

1

ˆ( ) ( ) ( )

ˆˆ( ) sgn( )

ˆ( ) ( )

ˆ( )

( )

nT
n n n n nd

n

n

n

v t t v t

v t c z z Y z D x

t v t z

t Yz

M t z

φ

α

φ η

γ

− −

=

= − − − − + +

= −

= Γ

=

a

a

$
$

$

$

 (16)  

 

where nc , η , and γ are positive design parameters, and Γ  is a positive-definite matrix. 

These parameters can provide a certain degree of freedom to determine the rates of the 

adaptations. And 1nα − and the implicit 1 ,iα − 2,3, , 1i n= −A in (16) will be designed in the 

proof of the following theorem for stability analysis. 
The stability of the closed-loop system described in (13) and (16) is established as: 

Theorem 1: For the plant given in (2) with the hysteresis (8), subject to Assumption 1, the 

robust adaptive controller specified by (16) ensures the following statements hold. 

i. The resulting closed-loop system (2) and (8) is globally stable in the sense that all the  

signals of the closed-loop system ultimately bounded; 
ii. The asymptotic tracking is achieved, i.e., lim[ ( ) ( )] 0d

t
x t x t

→∞
− = ; 

iii. The transient tracking error can be explicitly specified by 

1 2 2

2
1

1 1
(0) (0) (0) (0)

2 2 2
( ) ( )

pT

d

b
M

x t x t
c

φ
η γ

−⎛ ⎞
Γ + +⎜ ⎟

⎝ ⎠− ≤
a a # ## #

 

 

Proof: we will use a standard backstepping technique to prove the statements in a 

systematically way as follows: 
Step 1: The time derivative of 1z can be computed as 

 1 2 1z z α= +$  (17) 

The virtual control 1α can be designed as 

www.intechopen.com



 
Robust Control of Nonlinear Systems with Hysteresis Based on Play-Like Operators 

 

431 

1 1 1c zα = −  

where 1c is a positive design parameter. 

Hence, we can get the first equation of tracking error 

1 2 1 1z z c z= −$   

Step 2: Differentiating 2z  gives 

2 3 2 1z z α α= + −$ $  

The virtual control 2α can be designed as 

2 2 2 1 1c z zα α= − − + $  

Hence the dynamics is  

2 2 2 1 3z c z z z= − − +$  

Following this procedure step by step, we can derive the dynamics of the rest of states until 
the real control appears. 
Step n: the n-th dynamics are given by 

 ( )
1( ) [ ]( )nT

n p n bdz b v t a Y x d v tα −= + − − +$ $  (18) 

We design the real control as follows: 

 

1

( )
1 1 1

1

ˆ( ) ( ) ( )

ˆˆ( ) sgn( )

ˆ( ) ( )

ˆ( )

( )

nT
n n n n nd

n

n

n

v t t v t

v t c z z Y z M x

t v t z

t Yz

M t z

φ

α

φ η

γ

− −

=

= − − − − + +

= −

= Γ

=

a

a

$
$

$

$

 (19) 

Note that ( )pb v t in (19) can be expressed as 

 1 1 1
ˆ( ) ( ) ( ) ( ) ( ) ( )p p pb v t b t v t v t b t v tφ φ= = − #  (20) 

Hence, we obtain 

 1 1
ˆˆ sgn( ) [ ]( ) ( ) ( )T

n n n n n b pz c z z Y z M d v t b t v tφ−= − − − − + −a #$  (21) 

To this end, we defend the candidate Lyapunov function as 

 2 1 2 2

1

1 1 1

2 2 2 2

n
pT

i
i

b
V z Mφ

η γ
−

=
= + Γ + +∑ a a # ## #  (22) 

The derivative V$  is given by 
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1

1

2 1
1

1

2 1
1

1

2

1

1

1ˆ ˆˆ( ) ( ) [ ]( )

1ˆ ˆˆ( ) ( ) ( )

n
pT

i i
i

n
pT

i i n n n n b
i

n
pT

i i n n n
i

n

i i
i

b
V z z MM

b
c z Yz v z z M z d v t MM

b
c z Yz v z M z M

c z

φφ
η γ

φ η φ
η γ

φ η φ γ
η γ

−

=

−

=

−

=

=

= + Γ + +

≤ + Γ Γ − − + − + +

≤ − + Γ Γ − − + + −

= −

∑

∑

∑

∑

a a

a a

a a

$ $$$ # # # ## #$

$ $$ # # ##

$ $$ # ##
 (23) 

Equations (22) and (23) imply that V is nonincreasing. Hence, the boundedness of the 

variables 1 2, , , nz z zA , φ̂ , â , M̂ are ensured. By applying the LaSalle-Yoshizawa Theorem 

(Krisic, et al, 1995, Theorem 2.1), if further follows that 0iz → , 1,2, ,i n= A as time goes to 

infinity, which implies lim[ ( ) ( )] 0d
t

x t x t
→∞

− = . 

We can prove the third statement of Theorem 1 in the following way. 
From (23), we know 

2 2
1 12

1 10

(0) ( ) (0)
( )

V V V
z z s ds

c c

∞ − ∞
= ≤ ≤∫  

Noticing 1 2 21 1
(0) (0) (0) (0) (0)

2 2 2

pT
b

V Mφ
η γ

−= Γ + +a a # ## # after setting (0) 0, 1,2, ,iz i n= = A , hence 

 

1 2 2

2
1

1 1
(0) (0) (0) (0)

2 2 2
( ) ( )

pT

d

b
M

x t x t
c

ϕ
η γ

−⎛ ⎞
Γ + +⎜ ⎟

⎝ ⎠− ≤
a a ## # #

 (24) 

Remark 4:  From (24), we know that the transient performance in a computable explicit form 

depends on the design parameters 1, ,cη γ and on the initial estimate errors (0), (0)φa ## (0)M# , 

which gives designers enough tuning freedom for transient performance. 

Scheme II 

In the control scheme above, we notice that in the controller, there is sgn( )nz introduced in 

the design process, which makes the controller discontinuous and this may cause 
undesirable chattering. An alternative smooth scheme is proposed to avoid possible 
chattering with resort to the definition of continuous sign function (Zhou et al, 2004).  

First, the definition of ( )i isg z is introduced as follows: 

 

2 2 2

,

( )

( )

i
i i

i
i i

i
i in i

i i i

z
z

z
sg z

z
z

z z

δ

δ
δ − +

⎧ ≥⎪
⎪= ⎨
⎪ <
⎪ + −⎩

 (25) 
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where design parameter ( 1, , )i i nδ = A is positive. It can be known that ( )i isg z has ( 2)n i− + -

th order derivatives.  
Hence we have 

1,

( ) ( ) 0,

1,

i i

i i i i i i

i i

z

sg z f z z

z

δ
δ
δ

≥⎧
⎪= <⎨
⎪− ≤ −⎩

 

where  

1,
( )

0,
i i

i i
i i

z
f z

z

δ
δ

⎧ ≥⎪= ⎨ <⎪⎩
 

Given the plant and the hysteresis model subject to the assumption above, we propose the 
following continuous controller as follows: 

 

1

( )
1 1

1

ˆ( ) ( ) ( )

ˆˆ( ) ( 1)( ) ( ) ( )

ˆ( ) ( )( ) ( )

ˆ( ) ( ) ( )

( ) ( )

nT
n n n n n n n nd

n n n n n

n n n n n

n n n

v t t v t

v t c z sg z Y sg z M x

t v t z f sg z

t Y z f sg z

M t z f

φ

δ α

φ η δ

δ

γ δ

−

=

= − + − − − + +

= − −

= Γ −

= −

a

a

$
$

$

$

 (26) 

where, similarly as Control Scheme 1, nc , η , and γ are positive design parameters, and Γ  

is a positive-definite matrix, and 1nα − and the implicit 1 ,iα − 2,3, , 1i n= −A in (26) will be 

designed in the proof of the following theorem for stability analysis. 
Theorem 2: For the plant given in (2) with the hysteresis (8), subject to Assumption 1, the 
robust adaptive controller specified by (26) ensures the following statements hold. 
i. The resulting closed-loop system (2) and (8) is globally stable in the sense that all the 

signals of the closed-loop system ultimately bounded; 

ii. The tracking error can asymptotically reach to 1δ , i.e., 1lim[ ( ) ( )]d
t

x t x t δ
→∞

− = ; 

iii. The transient tracking error can be explicitly specified by 

 

1/2

1 2 2
1 22

1

1 1 1
( ) ( ) (0) (0) (0) (0)

2 2 2

n
pT

d n

b
x t x t M

c
δ φ

η γ
−⎛ ⎞

− ≤ + Γ + +⎜ ⎟⎜ ⎟
⎝ ⎠

a a # ## #  (27) 

Proof: To guarantee the differentiability of the resultant functions, 2
iz  in the Lyaounov 

functions will be replaced by 2( )n i
i i iz fδ − +−  in Section 3.1 and iz in the design procedure 

detailed below will be replaced by 1( )n i
i i iz sgδ − +−  as did in (Zhou et al, 2004).  

Step 1: We choose a positive-definition function 1V  as 

1
1 1 1 1 1

1
( ) ( )

1
nV z f z

n
δ += −

+
, 
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and design virtual controller 1α as 

 1 1 1 1 1 1 2 1 1( )( ) ( ) ( 1) ( )nc k z sg z sg zα δ δ= − + − − +  (28) 

with constant k satisfying 
1

0
4

k< ≤  and a positive design parameter 1c , then  compute its 

time derivative by using (17)(28),  

 
1 1 1 1 1 1 1 1

2
1 1 1 1 1 1 1 2 2 1 1

( ) ( ) ( )

( )( ) ( ) ( ) ( 1) ( )

n

n n

V z f z sg z z

c k z f z z z f z

δ

δ δ δ

= −

≤ − + − + − − −

$ $
 (29) 

Step 2: We choose a positive-definition function 1V  as 

2 1 2 2 2 2

1
( ) ( )nV V z f z

n
δ= + − , 

and design virtual controller 2α as 

 1
2 2 2 2 2 2 1 3 2 2( 1)( ) ( ) ( 1) ( )nc k z sg z sg zα δ α δ−= − + + − + − +$  (30) 

with a positive design parameter 2c , then  compute its time derivative,  

2
2( 1) 2

2 1 1 1 1 1 1 2 2 1 1
1

2( 1) 1
2 2 2 2 2 2 3 3 2 2

( ) ( ) ( ) ( ) ( ) ( 1) ( )

( ) ( ) ( ) ( 1) ( )

n i n n
i i i i i

i

n n

V c z f z k z f z z z f z

z f z z z f z

δ δ δ δ

δ δ δ

− +

=
− −

≤ − − − − + − − −

− − + − − −

∑$
 

By using inequality 2 22ab a b≤ + , we have 

2
2( 1) 2

2 2 2
1

2( 1) 1
2 2 2 2 2 2 3 3 2 2

1
( ) ( ) ( 1)

4

( ) ( ) ( ) ( 1) ( )

n i
i i i i i

i

n n

V c z f z z
k

z f z z z f z

δ δ

δ δ δ

− +

=
− −

≤ − − + − −

− − + − − −

∑$
 

for both cases 2 2 1z δ≥ + and  2 2 1z δ< + , we can conclude that 

 
2

2( 1) 1
2 2 2 3 3 2 2

1

( ) ( ) ( ) ( 1) ( )n i n
i i i i i

i

V c z f z z z f zδ δ δ− + −

=

≤ − − + − − −∑$  (31) 

Step n: Following this procedure step by step, we can derive the real control 

 

1

( )
1 1

1

ˆ( ) ( ) ( )

ˆˆ( ) ( 1)( ) ( ) ( )

ˆ( ) ( )( ) ( )

ˆ( ) ( ) ( )

( ) ( )

nT
n n n n n n n nd

n n n n n

n n n n n

n n n

v t t v t

v t c z sg z Y sg z M x

t v t z f sg z

t Y z f sg z

M t z f

φ

δ α

φ η δ

δ

γ δ

−

=

= − + − − − + +

= − −

= Γ −

= −

a

a

$
$

$

$

 (32) 
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where 1nα − can be obtained from the common form of virtual controllers 

1
1 1( 1)( ) ( ) ( 1) ( ) , ( 3, , 1)n i

i i i i i i i i i ic k z sg z sg z i nα δ α δ− +
− += − + + − + − + = −$ A  with positive 

design parameters ic . 

We define a positive-definition function as 

( 2) 1 2 2

1

1 1 1
( ) ( )

2 2 2 2

n
pn i T

i i i i
i

b
V z f z M

n i
δ φ

η γ
− + −

=
= − + Γ + +

− +∑ a a # ## #  

and compute its time derivative by using (13), (28), (30) and (32), 

2 1
1

2( 1) 1

1

1

2( 1) 1

1

1
( ) ( ) ( )

ˆ( ) ( ) ( )

1ˆ( ) [ ]( )

ˆ( ) ( ) ( )

pT
n n n n n n n n

n
n i T

i i i i i n
i

p
n n n b

n
pn i T

i i i i i n
i

b
V V z f z sg z z MM

c z f z Yz

b
v z z M z d v t MM

b
c z f z Yz

δ φφ
η γ

δ

φ η φ
η γ

δ
η

−
−

− + −

=

− + −

=

= + − + Γ + +

≤ − − + Γ Γ −

− + − + +

≤ − − + Γ Γ − −

∑

∑

a a

a a

a a

$ $$$ $ # # # ## #$

$#

$ $# # # #

$ ## 1

2( 1)

1

1ˆ ˆ( ) ( )

( ) ( )

n n

n
n i

i i i i i
i

v z M z M

c z f z

φ η φ γ
γ

δ − +

=

+ + −

= − −∑

$ $#

 

Thus we proved the first statement of the theorem. The rest of the statements can be easily 
proved following those of the proof of theorem 1, hence omitted here for saving space.  
Remark 5: It is now clear the two proposed control schemes to mitigate the hysteresis 
nonlinearities can be applied to many systems and may not necessarily be limited to the 
system (2). However, we should emphasize that our goal is to show the fusion of the 
hysteresis model with available control techniques in a simpler setting that reveals its 
essential features.  

5. Simulation results 

In this section, we illustrate the methodologies presented in the previous sections using a 
simple nonlinear systems (Su, et al, 2000; Zhou et al, 2004) described by 

 
( )

( )

1
( )

1

x t

x t

e
x a bw t

e

−

−
−

= +
+

$  (33) 

where w represents the output of the hysteresis nonlinearity. The actual parameter values 

are 1a = , and 1b = . Without control, i.e., ( ) 0w t = , (33) is unstable, because 

( ) ( )(1 ) /(1 ) 0x t x tx e e− −= − + >$ for 0x > , and ( ) ( )(1 ) /(1 ) 0x t x tx e e− −= − + <$ for 0x < . The 

objective is to control the system state x to follow the desired trajectory 12.5sin(2.3 )dx t= .  

In the simulations, the robust adaptive control law (19) of Scheme I was used, taking 

1 0.9,c = 0.2γ =  , 0.1η = , 0.1Γ = , ˆ(0) 0.8 / 3φ = , ˆ (0) 2M = , ˆ(0) 3.05x = , (0) 0v = , 1 0.505B = , 
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26.7(0.1 1)( ) rp r e− −= for (0,50]r∈ . The simulation results presented in the Figure 3 is the 

comparison of system tracking errors for the proposed control Scheme I and the scenario 
without considering the effects of the hysteresis. For Scheme II, we choose the same initial 

values as before and 0.35δ = . The simulation results presented in the Figure 4 is the 

comparison of system tracking errors for the proposed control Scheme II and the scenario 
without considering the effects of the hysteresis. Clearly, the all simulation results verify our 
proposed schemes and show their effectiveness. 
 

 

Fig. 3. Tracking errors -- control Scheme I (solid line) and the scenario without considering 
hysteresis effects (dotted line) 

 

Fig. 4. Tracking errors -- control Scheme II (solid line) and the scenario without considering 
hysteresis effects (dotted line) 
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6. Conclusion 

We have for the first time constructed a class of new hysteresis model based on play-like 
operators and named it Prandtl-Ishlinshii-Like model where the play-like operators play a 
role of building blocks. We have proposed two control schemes to accomplish robust 
adaptive control tasks for a class of nonlinear systems preceded by Prandtl-Ishlinshii-Like 
models to not only ensure stabilization and tracking of the hysteretic dynamic nonlinear 

systems, but also derive the transient performance in terms of 2L  norm of tracking error as 

an explicit function of design parameters. By proposing Prandtl-Ishlinshii-Like model and 
using the backstepping technique, this paper has address a challenge that how to fuse a 
suitable hysteresis model with available robust adaptive techniques to mitigate the effects of 
hysteresis avoid constructing a complicated inverse operator of the hysteresis model. After 
this preliminary result, the idea in this paper is being further explored to deal with a class of 
perturbed strict-feedback nonlinear systems with unknown control directions preceded by 
this new hysteresis model.  
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