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Partially Decentralized Design Principle in
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Anna Filasova and Dusan Krokavec
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1. Introduction

A number of problems that arise in state control can be reduced to a handful of standard
convex and quasi-convex problems that involve matrix inequalities. It is known that the
optimal solution can be computed by using interior point methods (Nesterov & Nemirovsky
(1994)) which converge in polynomial time with respect to the problem size, and efficient
interior point algorithms have recently been developed for and further development of
algorithms for these standard problems is an area of active research. For this approach, the
stability conditions may be expressed in terms of linear matrix inequalities (LMI), which have
a notable practical interest due to the existence of powerful numerical solvers. Some progres
review in this field can be found e.g. in Boyd et al. (1994), Hermann et al. (2007), Skelton et al.
(1998), and the references therein.

Over the past decade, Hoo norm theory seems to be one of the most sophisticated frameworks
for robust control system design. Based on concept of quadratic stability which attempts to
find a quadratic Lyapunov function (LF), He norm computation problem is transferred into
a standard LMI optimization task, which includes bounded real lemma (BRL) formulation
(Wu et al. (2010)). A number of more or less conservative analysis methods are presented to
assess quadratic stability for linear systems using a fixed Lyapunov function. The first version
of the BRL presents simple conditions under which a transfer function is contractive on the
imaginary axis of the complex variable plain. Using it, it was possible to determine the Heo
norm of a transfer function, and the BRL became a significant element to shown and prove
that the existence of feedback controllers (that results in a closed loop transfer matrix having
the Hoo norm less than a given upper bound) is equivalent to the existence of solutions of
certain LMIs. Linear matrix inequality approach based on convex optimization algorithms
is extensively applied to solve the above mentioned problem (Jia (2003), Kozakova & Vesely
(2009)), Pipeleers et al. (2009).

For time-varying parameters the quadratic stability approach is preferable utilized (see.
e.g. Feronetal. (1996)). In this approach a quadratic Lyapunov function is used which is
independent of the uncertainty and which guarantees stability for all allowable uncertainty
values. Setting Lyapunov function be independent of uncertainties, this approach guarantees
uniform asymptotic stability when the parameter is time varying, and, moreover, using a
parameter-dependent Lyapunov matrix quadratic stability may be established by LMI tests
over the discrete, enumerable and bounded set of the polytope vertices, which define the
uncertainty domain. To include these requirements the equivalent LMI representations of
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362 Recent Advances in Robust Control — Novel Approaches and Design Methods

BRL for continuous-time, as well as discrete-time uncertain systems were introduced (e.g. see
Wu and Duan (2006), and Xie (2008)). Motivated by the underlying ideas a simple technique
for the BRL representation can be extended to state feedback controller design, performing
system He, properties of quadratic performance. When used in robust analysis of systems
with polytopic uncertainties, they can reduce conservatism inherent in the quadratic methods
and the parameter-dependent Lyapunov function approach. Of course, the conservativeness
has not been totally eliminated by this approach.

In recent years, modern control methods have found their way into design of interconnected
systems leading to a wide variety of new concepts and results. In particular, paradigms
of LMIs and He norm have appeared to be very attractive due to their good promise of
handling systems with relative high dimensions, and design of partly decentralized schemes
substantially minimized the information exchange between subsystems of a large scale
system. With respect to the existing structure of interconnections in a large-scale system
it is generally impossible to stabilize all subsystems and the whole system simultaneously
by using decentralized controllers, since the stability of interconnected systems is not
only dependent on the stability degree of subsystems, but is closely dependent on the
interconnections (Jamshidi (1997), Lunze (1992), Mahmoud & Singh (1981)). Including into
design step the effects of interconnections, a special view point of decentralized control
problem (Filasova & Krokavec (1999), Filasovéa & Krokavec (2000), Leros (1989)) can be such
adapted for large-scale systems with polytopic uncertainties. This approach can be viewed
as pairwise-autonomous partially decentralized control of large-scale systems, and gives the
possibility establish LMI-based design method as a special problem of pairwise autonomous
subsystems control solved by using parameter dependent Lyapunov function method in the
frames of equivalent BRL representations.

The chapter is devoted to studying partially decentralized control problems from above given
viewpoint and to presenting the effectiveness of parameter-dependent Lyapunov function
method for large-scale systems with polytopic uncertainties. Sufficient stability conditions for
uncertain continuous-time systems are stated as a set of linear matrix inequalities to enable
the determination of parameter independent Lyapunov matrices and to encompass quadratic
stability case. Used structures in the presented forms enable potentially to design systems
with the reconfigurable controller structures.

The chapter is organized as follows. In section 2 basis preliminaries concerning the Heo
norm problems are presented along with results on BRL, improved BRLs representations and
modifications, as well as with quadratic stability. To generalize properties of non-expansive
systems formulated as He problems in BRL forms, the main motivation of section 3 was to
present the most frequently used BRL structures for system quadratic performance analyzes.
Starting work with such introduced formalism, in section 4 the principle of memory-less
state control design with quadratic performances which performs He properties of the
closed-loop system is formulated as a feasibility problem and expressed over a set of LMIs. In
section 5, the BRL based design method is outlined to posse the sufficient conditions for the
pairwise decentralized control of one class of large-scale systems, where Lyapunov matrices
are separated from the matrix parameters of subsystem pairs. Exploring such free Lyapunov
matrices, the parameter-dependent Lyapunov method is adapted for pairwise decentralized
controller design method of uncertain large-scale systems in section 6, namely quadratic
stability conditions and the state feedback stabilizability problem based on these conditions.
Finally, some concluding remarks are given in the end. However, especially in sections 4-6,
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Partially Decentralized Design Principle in Large-Scale System Control 363

numerical examples are given to illustrate the feasibility and properties of different equivalent
BRL representations.

2. Basic preliminaries

2.1 System model
The class of the systems considering in this section can be formed as follows

q(t) = Aq(t) + Bu(t) e

y(t) = Cq(t) + Du(t) )

where g(t) € R", u(t) € R", and y(t) € R™ are vectors of the state, input and measurable
output variables, respectively, nominal system matrices A € R"*", B € R"*", C € R™*" and
D € R™*" are real matrices.

2.2 Schur complement
Proposition 1. . Let Q > 0, R > 0O, S are real matrices of appropriate dimensions, then the next
inequalities are equivalent

Q S
[sT -R

Q+SR71sT o
0 —R

<0 & <0< Q+SR'sT<0, R>0 (3)

Proof. Let the linear matrix inequality takes the starting form in (3), det R # 0 then using
Gauss elimination principle it yields

ISR'][Q S I 0] [Q+SR'sT o @
0 I ST —R| |R7IsTT1| ™ 0 —R
Since .
ISR |
det [ 0 1 ] =1 ©)
and it is evident that (4) implies (3). This concludes the proof. a

Note that in the next sections the matrix notations Q, R, S, can be used in another context, too.

2.3 Bounded real lemma

Proposition 2. System (1), (2) is stable with quadratic performance |C(sI—A)~'B +D|% < v if
there exist a symmetric positive definite matrix P > 0, P € R"*" and a positive scalar v > 0, v € R
such that

[ATP+PA PB CT

i * —vI, DT | <0

* *  —Iy

PAT+AP PCT B
il. * —I, D | <0
* * —1I,
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(p'AT+AP! B pICT
iii. * —~I, DT <0
i * * -1,
FATp—1 1 T 1 ©)
A'P"+P"A C' P 'B
iv. * —vI,, D <0
i * * —I,
where I, € R™", I,,, € R™*™ are identity matrices, respectively.
Hereafter, * denotes the symmetric item in a symmetric matrix.
Proof. i. Defining Lyapunov function as follows (Gahinet et al. (1996))
t
o(q(t)) = q'()Pq(t) + /(yT(r)y(V) —qu' (r)u(r))dr >0 )
0

where P = PT > 0, P € R™", v > 0 € R, and evaluating the derivative of v(q(t)) with
respect to t along a system trajectory then it yields

o(q(t)) = 4" ()Pq(t) + 4" ()Pg(t) +y" (t)y(t) —yu’ (tu(t) <0 (8)
Thus, substituting (1), (2) into (8) gives

9(q(t)) = (Aq(t) + Bu(t)) " Pq(t) + q" (t)P(Aq(t)+Bu(t)) —yu'(t)u(t)}+

9
+(Cq(t)+Du(t))T(Cq(t)+Du(t)) <0 ®)
and with the next notation
al(t) = [q"(t) uT(t)] (10)
it is obtained
9(q(t)) = ql(t)Peq (t) <0 (11)
where . . .
_|A'P+PA PB c'cCD
Pe = [ * —')/Ir} [ * DTD} <0 (12)
Since . . A
c'cCcD C
Schur complement property implies
00 CT
*x0 DT | >0 (14)
* % —Iy,

and using (14) the LMI condition (12) can be written compactly as i. of (2).
ii. Since He norm is closed with respect to complex conjugation and matrix transposition
(Petersen et al. (2000)), then

IC(sI1-A)'B+D|5, <v & [B'(sI-A")"'CT+DT|% <o (15)
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and substituting the dual matrix parameters into i. of (2) implies ii. of (2).
iii. Defining the congruence transform matrix

L, =diag [P~ I, I, (16)

and pre-multiplying left-hand side and right-hand side of i. of (2) by (16) subsequently gives
ii. of (16).

iii. Analogously, substituting the matrix parameters of the dual system description form into
iii. of (2) implies iv. of (2). O

Note, to design the gain matrix of memory-free control law using LMI principle only the
condition ii. and iii. of (2) are suitable.

Preposition 2 is quite attractive giving a representative result of its type to conclude the
asymptotic stability of a system which He norm is less than a real value v > 0, and can be
employed in the next for comparative purposes. However, its proof is technical, which more
or less, can brings about inconvenience in understanding and applying the results. Thus, in
this chapter, some modifications are proposed to directly reach applicable solutions.

2.4 Improved BRL representation
As soon as the representations (2) of the BRL is given, the proof of improvement BRL
representation is rather easy as given in the following.

Theorem 1. System (1), (2) is stable with quadratic performance ||C(sI—A) "B +D||3, < v if there
exist a symmetric positive definite matrix P > 0, P € R™*", matrices S1, Sp € R"*", and a scalar
v >0, v € R such that

[—S1A—ATST —§;B P+S,—ATST CT 7
_ _nTcT T
; * vI, B SZT D <0
* * S2+S; 0
L * * * —1Iy |
_ - (17)
~$AT—AST —s,cT P+S,-AS!] B
g ¢ —yL, -CSI D
ii. . . 52+52T 0 <0
L * * * —I ]
Proof. i. Since (1) implies
q(t) — Aq(t) — Bu(t) = 0 (18)
then with arbitrary square matrices Sy, S, € R"*" it yields
(9"(S1+4"(+)S2)(q(t) —Aq(t)—Bu(t)) =0 (19)
Thus, adding (19), as well as its transposition to (8) and substituting (2) it yields
o(q(t)) =
= q'(t)Pq(t)+q"(t)P4(t) —yu'(H)u(t) + (Cq(t)+Du(t))" (Cq(t)+Du(t))+
T (20)
+(q'(t)S1+4 ( )S2)(q(t)—Aq(t)—Bu(t))+
+(@"(t)—q"() AT —uT()BT)(S{q(t)+534(1)) < 0
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and using the notation

al(t) = [q7(t) uT(t) 47 (1)] (21)
it can be obtained
o(q(t)) = gl ()Pg(t) <0 (22)
where
c'c ¢ o ~S1A—ATSI —8,B P+S,—ATS]
PP=1| « DpDo| T * —qI, -BTs] |<0 (23)
* % 0 * * Sz+82T

Thus, analogously to (13), (14) it then follows the inequality (23) can be written compactly as
i. of (17).

ii. Using duality principle, substituting the dual matrix parameters into i. of (17) implies ii. of
(17). O

2.5 Basic modifications

Obviously, the aforementioned proof for Theorem 1 is rather simple, and connection between
Theorem 1 and the existing results of Preposition 2 can be established. To convert it into basic
modifications the following theorem yields alternative ways to describe the Hoo-norm.

Theorem 2. System (1), (2) is stable with quadratic performance |C(sI—A)~'B +D|2, < vy if there
exist a symmetric positive definite matrix P > 0, P € R"*", amatrix Sp € R"*", and a scalar -y > 0,
v € R such that

P 1AT+AP ! B P lAT  p1cTT
s —qI, BT DT
1. I <0
* * =S5, —§, 0
i * * * —IL, | (24)
PAT+AP pPCT A B
.. * —vIy C D
' * x —S;1-8T 0 <0
| * * * —I,

Proof. i.Since S, Sy are arbitrary square matrices selection of §; can now be made in the form
S1 = —P, and it can be supposed that det(S;) # 0. Thus, defining the congruence transform
matrix

L, = diag [P7! I, —S,! I,,] (25)

and pre-multiplying right-hand side of i. of (17) by L,, and left-hand side of i. of (17) by L}
leads to i. of (24).

ii. Analogously, selecting S = —P, and considering det(S;) # 0 the next congruence
transform matrix can be introduced
Ly = diag (I, I, —S; " I,] (26)

and pre-multiplying right-hand side of ii. of (17) by L3, and left-hand side of ii. of (17) by LI
leads to ii. of (24). O
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2.6 Associate modifications
Since alternate conditions of a similar type are also available, similar to the proof of Theorem
2 the following conclusions can be given.

Corollary 1. Similarly, setting Sy = —06P, where 6 > 0,6 € R the inequality ii. given in (24) reduces
to

PAT+AP PCT A B
* —vIpy C D
* x —2671p71 0 5 @7)
* * * —1I,

PAT+AP PCT AP B
* —qI, CP D

2

* « —20-1p o | <Y (28)
* * * —1I,

respectively, and using Schur complement property then (28) can now be rewritten as

A1 +056A;, <0 (29)
where
AP+PAT PCT B
* x —I,
AP APAT APCT 0
A, = | CP| P 1[PAT PCT 0] = | cPAT cPCT 0o (31)
0 0 0 o0
Choosing 6 as a sufficiently small scalar, where
0<d0<2M/A (32)
A = Apax(—Aq), A2 = Apin(A2) (33)
(28) be negative definite for a feasible P of ii. of (2). |

Remark 1. Associated with the second statement of the Theorem 2, setting Sp = —0d1, then ii. of
(24) implies
AP+PAT P A B

* —vIy C D
* « 26, o | <" (54)
* * * —1I,
and (34) can be written as (29), with (30) and with
AAT ACT o
Ar=|CcAT cCT o (35)
0 0 o
Thus, satisfying (32), (33) then (34) be negative definite for a feasible P of iii. of (2). |

Note, the form (34) is suitable to optimize a solution with respect to both LMI variables vy, §
in an LMI structure. Conversely, the form (28) behaves LMI structure only if ¢ is a prescribed
constant design parameter, and only 7y can by optimized as an LMI variable if possible, or to
formulate design task as BMI problem.
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Corollary 2. By the same way, setting Sp = —0P, where 5 > 0,5 € R the inequality i. given in (24)
be reduced to

P lAT+Ap1 B p AT p-icT]
* —I, BT DT
* « —2671p71 0 <0 (36)
* * * —Iy |
Then (36) can be written as (29), with
P AT+AP1 B P 1CT]
Al = s —~I, DT (37)
* * Iy |
P 'ATPAP ! P7'AT™PB 0
Ar=| B'™PAP™' B'PB o0 (38)
0 0 0
Thus, satisfying (32), (33) then (36) be negative definite for a feasible P of iii. of (2). |

Remark 2. By a similar procedure, setting Sp = —61,, where 5 > 0,6 € R then i. of (24) implies the
following
P'AT+Ap ! B p AT picT

* —I1, BT DT
0 39
* x —26711, 0 < (39)
* * * -1,
It is evident that (39) yields with the same A as given in (37) and
P~'ATAP~1 P7'A™B 0
A= 1| BTAP' BB o (40)
0 0 0

Thus, this leads to the equivalent results as presented above, but with possible different interpretation.
u
3. Control law parameter design

3.1 Problem description
Through this section the task is concerned with the computation of a state feedback u(t),
which control the linear dynamic system given by (1), (2), i.e.

q(t) = Aq(t) + Bu(t) (41)
y(t) = Cq(t) + Du(t) (42)

Problem of the interest is to design stable closed-loop system with quadratic performance
v > 0 using the linear memoryless state feedback controller of the form

u(t) = —Kq(t) (43)

where matrix K € R™*" is a gain matrix.
Then the unforced system, formed by the state controller (43), can be written as

q(t) = (A — BK)q(t) (44)
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y(t) = (C—DK)q(t) (45)
The state-feedback control problem is to find, for an optimized (or prescribed) scalar v > 0,
the state-feedback gain K such that the control law guarantees an upper bound of /7 to Heo
norm of the closed-loop transfer function. Thus, Theorem 2 can be reformulated to solve this
state-feedback control problem for linear continuous time systems.

Theorem 3. Closed-loop system (44), (45) is stable with performance ||Cc(sI—A.)"'B||%, < 7,
A. = A—BK, C. = C—DK if there exist reqular square matrices T,U,V € R"*", a matrix
W € R"™™", and a scalar v > 0, v € R such that

T=T">0, v>0 (46)
'VAT-WTBT+AVT—BW —B T-UT+VAT—WTBT —vcT+WTDT]
* —qI, —BT DT
<0 (47
* * —u-u’ 0
L * * * -1, ]
The control law gain matrix is now given as
K=wvT (48)

Proof. Considering that detS; # 0, detS, # 0 the congruence transform L4 can be defined as
follows
Ly =diag [S;' I, S;' Iy ] (49)

and multiplying left-hand side of i. of (17) by L4, and right-hand side of (17) by L] gives

—~AS;T-8'AT —B s/'Ps;T+s,;T—s1AT s 1cT

* —qI, -BT DT
* * Sy 48T o | <Y 0
* * * —I,
Inserting A <— A., C < C. into (50) and denoting
—1pc—T -1 ~1
s;'ps;T =1, s;l=-v, s;'=-u (51)
(50) takes the form
[(A—-BK)VT+V(A-BK)T —-B T-U"+V(A-BK)T —V(C — DK)™
* —qI, -BT DT
<0 (52
* s —u-u’ 0
L * * * —In i
and with
W =KvT (53)
(50) implies (47). O
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v,
Y, [

t[s] tls]
Fig. 1. System output and state response

3.2 Basic modification
Corollary 3. Following the same lines of that for Theorem 2 it is immediate by inserting A < A,
C < C. intoi. of (24) and denoting

Pl=X$=z (54)
that
AX+XAT-BKX-XK'BT B —XxAT + xXKTBT xcT — xKTDT
* —I, —BT DT
* * 77T 0 <0 (55)
E 3 * E S _Im
Thus, using Schur complement equivalency, and with
Y = KX (56)
(58) implies
X=X">0 >0 (57)
AX+XAT-BY-Y'BT B XxAT —yTBT xcT —yIDT
* —qI, BT DT
* * —z-7T 0 <0 (58)
* * % —I,
]

lllustrative example
The approach given above is illustrated by an example where the parameters of the (41), (42)
are

0 1 0 13 1 1

A=| 0 0 1|, B=|21|, cT= 21], D=0
-5 -9 -5 15 -2 0

Solving (57), (568) with respect to the next LMI variables X, ¥, Z, and § using SeDuMi

(Self-Dual-Minimization) package for Matlab (Peaucelle et al. (1994)) given task was feasible

with

0.6276 —0.3796 —0.0923 5.0040 0.1209 0.4891
X = {—-03796 0.7372 0.3257|, Z = |{0.1209 4.9512 0.4888
—0.0923 0.3257 0.9507 0.4891 0.4888 5.2859
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y — [0.4917 3.2177 0.7775] , v = 8.4359

0.6100 —1.5418 —0.3739
and results the control system parameters

K — 5.1969 7.6083 —1.2838
| —0.5004 —2.5381 0.4276

} , p(Ac) = {—5.5999, —8.3141 + 1.65281}

The example is shown of the closed-loop system response in the forced mode, where in the
Fig. 1 the output response, as well as state variable response are presented, respectively. The
desired steady-state output variable values were set as [y y2| = [1-0.5].

3.3 Associate modifications
Remark 3. Inserting A <— A., C < C. into (39) and setting X = PlLy=KX 1= ¢, as well
as inserting the same into (34) and setting X = P, Y = KX, 6~ = & gives

X=X">0, v>0, >0 (59)
[AX+XAT-BY-Y'BT B XAT-Y'BT xc"-Y'DT
* —I, BT DT
! * * —2¢1, 0 <0
i * * * —1I
[AX+XAT—BY—YTBT XCT—Y'™DT AX—BY B ] (60)
* —vI,, CX-DY D
ii. <0
* * -2¢I, 0
i * * * -1, ]
where feasible X, Y, y, ¢ implies the gain matrix (48). |

lllustrative example
Considering the same parameters of (41), (42) and desired output values as is given above
then solving (59), (59) with respect to LMI variables X, Y, and < given task was feasible with

—0.5590 —2.6022  0.4694 —0.4874 —1.5510 —0.1984
p(A;) = {—6.3921, —7.7931 £ 1.8646i}  p(A.) = {—2.3005, —3.8535, —8.7190}

i,y =8.3659 ii. y = 35.7411
& = 5.7959 & = 30.0832

0.6402 —0.3918 —0.1075 8.7747 —4.7218 —1.2776
X = |-03918 07796 0.3443 X = |-4.7218 5.8293 0.4784
—0.1075 0.3443 0.9853 —1.2776 04784 8.4785

0.5451 3.3471 0.6650 2.7793 14.7257 5.1591

N [0.6113 —1.6481 —0.3733] = 133003 _6.8347 —1.8016]
. [ 3.1145 4.9836 0.7966]

[ 5.2296 7.5340 —1.3870]
K =

The closed-loop system response concerning ii. of (60) is in the Fig. 2.
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t[s] t[s]

Fig. 2. System output and state response

2.5 . . . . . . ; 15
v,
¥,(t)

N

(
qa(t)

0.5

\

05 i i i i i i i 15 i i i i i i i
0 0.5 1 1.5 2 25 3 3.5 4 0 0.5 1 1.5 2 2.5 3 35 4
tfs] tls]

o

Fig. 3. System output and state response

Remark 4. The closed-loop system (44), (45) is stable with quadratic performance v > 0 and the
inequalities (15) are true if and only if there exists a symmetric positive definite matrix X > 0, X €
R™ ", g matrix Y € R™*", and a scalar v > 0, v € R such that

X=X">0 v>0 ¢&>0 (61)

[AX+XAT-BY-Y'BT B Xc-vy'DT

1. * —vI, 0 <0
i * * —Iy
r T TRT T_vyT (62)
AX+XA'—-BY-Y'B* XC-YD" B
ii. * ~7Im D | <0
* * —1I,
|
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lllustrative example
Using the same example consideration as are given above then solving (61), (62) with respect
to LMI variables X, Y, and vy given task was feasible with

i. v = 6.8386 ii. v = 17.6519

1.1852 0.1796 0.6494 6.0755 —0.9364 1.0524

X = [0.1796 1.4325 1.1584 X = |—0.9364 5.1495 2.4320
0.6494 1.1584 2.1418 1.0524 2.4320 7.2710

[2.0355 3.7878 —3.2286] [6.3651  9.9547 —8.7603

Y= 10.6142 —2.1847 —3.0636 | Y= 12.2941 —5.3741 —6.2975
[4.4043  7.8029 —7.0627 [2.0688 3.5863 —2.7038]

k= 11.5030 —0.3349 —1.7049 k= 10.4033 —0.6338 —0.7125

0(Ac) = {—4.3952, —4.6009 +14.8095i}  p(A.) = {—2.2682, —3.1415 + 9.634i}

The simulation results are shown in Fig. 3, and are concerning with i. of (62).

It is evident that different design conditions implying from the equivalent, but different,
bounded lemma structures results in different numerical solutions.

3.4 Dependent modifications
Similar extended LMI characterizations can be derived by formulating LMI in terms of

product ¢P, where ¢ is a prescribed scalar to overcome BMI formulation (Vesely & Rosinova
(2009)).

Theorem 4. Closed-loop system (1), (2) is stable with quadratic performance ||C¢(sI—A¢) " 'B||%, <
v, Ac = A—BK, C. = C—DK if for given ¢ > 0 there exist a symmetric positive definite matrix
X > 0, X € R"™", a reqular square matrix Z € R™", a matrix Y € R"™", and a scalar v > 0,
v € R such that

X=XT>0 v>0 (63)
AX+XAT-BY-Y'BT B XAT—-Y'BT xcT-yIDT]
* —1I, BT DT
1 <0
* * —2¢X 0
| * * * -1, ] (64)
[AX+XAT-BY-Y'BT xcT-Y'DT AX—-BY B
.. * —qI,, CX-DY D
11. . “ 26X 0 <0
i * * * —1I,

where K is given in (48).

Proof. i.Inserting A <— A, C < C, into (36) and setting X = P, Y =KX,and & = 6! then
(36) implies ii. of (64).

ii. Inserting A <— A, C < C. into (28) and setting X = P, Y = KX, and ¢ = 5~ then (28)
implies i. of (64). O
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Fig. 4. System output and state response

Note, other nontrivial solutions can be obtained using different setting of S§;, [ =1, 2.

lllustrative example

Considering the same system parameters of (1), (2), and the same desired output values as are
given above then solving (63), (64) with respect to LMI variables X, Y, and -y with prescribed
¢ = 10/xi = 30, respectively, given task was feasible with

i. v = 83731 ii. v = 17.6519
&=10 & =30
0.5203 —0.2338 0.0038 0.8926 —0.2332 0.0489
X = [—0.2338 0.7293 0.2359 X = [-0.2332 1.2228 0.3403
0.0038 0.2359 0.7728 0.0489  0.3403 1.3969
0.8689 3.2428 0.6068 3.0546 8.8611 0.2482
Y= 0.3503 —1.6271 —0.1495] Y= 2.0238 —2.8097 3.0331]
K =

44898 6.2565 —1.1462 58920 8.9877 —2.2185
K =
—0.4912 —2.5815  0.5968 1.3774 —2.8170  2.8094
p(A.) ={—83448, —5.7203 +3.6354i}  p(A.) ={—4.6346, —12.3015, —25.0751}

The same simulation study as above was carried out, and the simulation results concerning ii.
of (64) for the states and output variables of the system are shown in Fig. 4.

It also should be noted, the cost value v will not be a monotonously decreasing function with
the decreasing of ¢, if 6 = ¢ —1 is chosen.

4. Uncertain continuous-time systems

The importance of Theorem 3 is that it separates T from A, B, C, and D, i.e. there are no terms
containing the product of T and any of them. This enables to derive other forms of bonded real
lemma for a system with polytopic uncertainties by using a parameter-dependent Lyapunov
function.
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4.1 Problem description
Assuming that the matrices A, B, C, and D of (1), (2) are not precisely known but belong to a
polytopic uncertainty domain O,

0= {(A,B, C,D)(a): (A,B,C,D)(a) = iai (A;,B;,C;,D;), ac Q} (65)
=1

1

S
Q= {(al,az,--- ,as) - Zaizl; a; >0,i=1,2, ...,s} (66)
i=1

where Q is the unit simplex, A;, B;, C;, and D; are constant matrices with appropriate
dimensions, and a4;, i = 1,2, ..., s are time-invariant uncertainties.

Since a is constrained to the unit simplex as (66) the matrices (A, B, C,D) (a) are affine
functions of the uncertain parameter vector a € R® described by the convex combination
of the vertex matrices (A;,B;, C;,D;),i=1,2,...,s.

The state-feedback control problem is to find, for a ¢y > 0, the state-feedback gain matrix K
such that the control law of
u(t) = —Kq(t) (67)

guarantees an upper bound of /7 to Heo norm.
By virtue of the property of convex combinations, (48) can be readily used to derive the robust
performance criterion.

Theorem 5. Given system (65), (66) the closed-loop Heo norm is less than a real value /v > 0, if
there exist positive matrices T; € R"*", i =1,2,...,s, real square matrices U,V € R"*", and a real
matrix W € R"™" such that

v >0 (68)
VA -WTBI+A, VT -B,W —B; T;—u'+VAI-W!B! —vcl+WTD]]
s —v1 —B! D'
' 1 l <0 (69)
* * —u-ur’ 0
L * * * —I, i
If the existence is affirmative, the state-feedback gain K is given by
K=wvT (70)
Proof. It is obvious that (47), (48) implies directly (69), (70). a

Remark 5. Thereby, robust control performance of uncertain continuous-time systems is guaranteed
by a parameter-dependent Lyapunov matrix, which is constructed as

T(a) = iﬂliT,‘ (71)
i=1
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4.2 Dependent modifications

Theorem 6. Given system (65), (66) the closed-loop Heo norm is less than a real value /v > 0, if
there exist positive symmetric matrices T; € R"*", i =1,2,...,n, a real square matrices V.€ R"*",
a real matrix W € R"™*", and a positive scalar § > 0, 6 € R such that

T;>0,i=12...,n, >0 (72)
VAl +A VT -W'B[ -BW —B; T;~éV'+VA/-W'B] —VC[+W'D;
T T
i * —l B b <0
* * —6(V+V*) 0
B %k £ ES _Im
_ (73)
VAT +A; VI -W'BI —B,w vCl —W'D! T;—VT+5A,V—6BW B;
.. * —’)’Im (5CiV—5DiW Di
' * * —5(V4+VT) o | <"
L %k *k ES _Ir
If the existence is affirmative, the state-feedback gain K is given by
K=wvT (74)
Proof. i. Setting U = 6V then (69) implies i. of (73).
ii. Setting S1 = —V, and S, = —JV then ii. of (17) implies ii. of (73). O

lllustrative example
The approach given above is illustrated by the numerical example yielding the matrix
parameters of the system D(t) =D =0

0 1 0 13 1 1
A)=| 0 0 1|, B)=B= 21|, cT(H)=cT=| 2-1
—5 —6r(t) —5r(t) 15 -2 0

where the time varying uncertain parameter r(t) lies within the interval (0.5, 1.5).
In order to represent uncertainty on r(t) it is assumed that the matrix parameters belongs to
the polytopic uncertainty domain O,

O = {(A,B, C,D)(a): (A,B,C,D) (a) = iai (A;,B;,C;,D;), ac Q}
i=1

Q={(ay,ap):ap=1—a;; 0<a; <1}

01 0 01 0
Ai=| 0 0 1 Ay=1| 0 0 1
—5-3-25 ~5-9-75

Bi=B,=B, Cl=cl=c’, D =D,=0
A=A+ (1—111)A2, A, =A—BK A, = Ayp—BK

Thus, solving (72) and i. of (73) with respect to the LMI variables Tq, T>, V, W, and J given
task was feasible for a; = 0.2, § = 20. Subsequently, with

v = 10.5304
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Fig. 5. System output and state response

[7.0235 24579  2.6301
T, =

24579 7.4564 0.4037} , Ty =

2.6301 —0.4037 5.3152

0.0940 0.1801 —0.0241

2.6832 7.4909 —0.2568

6.6651 2.6832 2.0759
2.0759 —0.2568 6.2386

3.0209 0.2881

0.1473  0.0375 0.1992 0.1964 —0.7401 0-7382}

the control law parameters were computed as

0.2250 —0.0758 —0.0350
V- [ }’ W — {0.7191

K — [6.5392 12.5891 —5.7581

0.2809 —3.6944 4.1922}' IK|| = 16.3004

and including into the state control law the were obtained the closed-loop system matrix
eigenvalues set

p(Ac) = {—2.0598, —22.2541, —24.7547}
Solving (72) and ii. of (73) with respect to the LMI variables Ty, T, V, W, and J given task
was feasible for a; = 0.2, 6 = 20, too, and subsequently, with

v = 10.5304

108.9248 307.9712 13.8497 121.9115 341.0193 63.4202
250.1206 13.8497 397.1333 251.6458 63.4202 445.9279

|:6.5513 —2.0718 —0.2451]
V =

|:239.1234 108.9248 250.1206 | |:222.8598 121.9115 251.6458]
Tl i s TZ k.

2.1635 22173 0.1103
0.2448 0.2964 0.4568 |

the closed-loop parameters were computed as

1.7874 —0.7898 4.3214

W= [4.6300 6.6167 —2.6780]

K — {1.1296 22771 —7.9446

0.2888 —1.1375 10.0427} + K|l =13.1076

p(Ac) = {—50.4633, —1.1090 + 2.1623 i}

It is evident, that the eigenvalues spectrum p(Ay) of the closed control loop is stable in
both cases. However, taking the same values of 7, the solutions differ especially in the
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q(t)

t[s] tls]
Fig. 6. System output and state response

closed-loop dominant eigenvalues, as well as in the control law gain matrix norm, giving
together closed-loop system matrix eigenstructure. To prefer any of them is not as so easy as
it seems at the first sight, and the less gain norm may not be the best choice.

Fig. 5 illustrates the simulation results with respect to a solution of i. of (73) and (72).
The initial state of system state variable was setting as [71 42 3]7 = [0.510]7, the desired
steady-state output variable values were set as [y; y2]7 = [1-0.5]T, and the system matrix
parameter change from p = 1 to p = 0.54 was realized 5 seconds after the state control
start-up.

The same simulation study was carried out using the control parameter obtained by solving
ii. of (73), (72), and the simulation results are shown in Fig. 6. It can be seen that the presented
control scheme partly eliminates the effects of parameter uncertainties, and guaranteed the
quadratic stability of the closed-loop system.

5. Pairwise-autonomous principle in control design

5.1 Problem description
Considering the system model of the form (1), (2), i.e.

q(t) = Aq(t) + Bu(t) (75)
y(t) = Cq(t) + Du(t) (76)

but reordering in such way that
A=1[A;],C=][C;], B=diag|[B;], D=0 (77)

wherei, [ =1,2, ..., p, and all parameters and variables are with the same dimensions as it is
given in Subsection 2.1. Thus, respecting the above give matrix structures it yields

p
g (t) = Apg, () + Y. (Aq;(t) + Buuy(t)) (78)
=1 14h
p
y,(t) = Congy () + Y. Crug;(t) (79)
=1 14h
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where g, (t) € R™, u,(t) € R™, y,(t) € R™, Ay € R">*™, By € R™*™, and Cj; € R™*™,
respectively, and n = Zle n;,r = Zle r,m= Zle m;.
Problem of the interest is to design closed-loop system using a linear memoryless state
feedback controller of the form

u(t) = —Kq(t) (80)

in such way that the large-scale system be stable, and

K11 K12 < \. Klp
K21 K22 e sz p
K = , ,  Ky= Y K, (81)
: 1=1, I#h
Kpl sz PR Kpp

p

wy(t) = =Ky, () — Y, Kpqy(t), h=12,...,p (82)
1=1, 1h

Lemma 1. Unforced (autonomous) system (75)-(77) is stable if there exists a set of symmetric matrices

Pk p
o _ h *hk
Pk [th P! ] (83)
such that
p—1 p k k
P; P pP; P
- T n Thk T n Lhk| .
Tii(t) { h ] dn(t) + gy (1) { I } qhk(t)) <0 (84)
h:lkz%l( & Py, Py ik Py, Py
where )
: App Ahk] [Ahl}
t) = t) + t 85
9 (t) {Akh Age T (1) 1_1,Zl;:£h,k Ay q,(t) (85)
G (t) = [af (1) gL (1)] (86)
Proof. Defining Lyapunov function as follows
o(q(t)) = q'(t)Pq(t) >0 (87)

where P = PT > 0, P € R"*", then the time rate of change of v(g(t)) along a solution of the
system (75), (77) is
9(4(H)) = q'(H/Pq(t) + 4" (HP4(t) < 0 (88)
Considering the same form of P with respect to K, i.e.
Pll P12 “ee PlM

Py; Py ... Poy p ]
P = : , Py= ). P, (89)

Py Py - Pum
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then the next separation is possible

P? P;p0 ...0 Pl o ...0Py,
Py P10 ...0 00..00
P = + .4 +
0 00...0 P, 0 ...0 P,
(90)
0...0 O 0
00 Py Py
o
0..0P,, 1 P}
Writing (78) as
: App Ahk] ¢ [Ahl] [Bh 0] [”h(t)]
t) = t) 4+ t) + 91
Tpic(t) {Akh Age Ty (1) l:l,zl;;éh,k Ay q,(t) 0 By| | m(t) 91)

and considering that for unforced system there are #;(t) = 0, /=1, ... p then (91) implies (85).
Subsequently, with (90), (91) the inequality (88) implies (84). a

5.2 Pairwise system description
Supposing that there exists the partitioned structure of K as is defined in (81), (82) then it
yields

p
w(t)=— Y [Kj, Ky] [qh((:))] =
1=1, [#h qi ©2)
_ [Kk th] [qh(t)} . £ [Kl Khl} [qh(t)] _ uk(t) + {: 4l ()
h ()] o T " q,(t) h =1 Thj |
where forl =1,2, ... ,p,i #h,k
uy (1) = — [K}, K] Bﬁlffﬂ (93)
Definingwithh =1,2 ... ,p—Lk=h+1,h+2...,p
k k
”h(ﬂ] _ [Kh th] [qh(t)] _ _ o [qh(t)}
[uz@ K Ki ) Lae() ] = 750 [ g1 ©9
o [ KE Ky
o[
and combining (92) for / and k it is obtained
2 i [‘ih(f)}
] | K K | [09] - T K KT 0
uy(t) Ky K} | [ 4,(t) i (KL Ky | qk(t)}
=1 Tenk - q,(t)
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uh(t)] _ () 4 [ul (t)] 97
] = o]+ 2 v
respectively. Then substituting (97) in (91) gives

Gi(t) =

_ [[Am Aw] By 07 [K} Ky P [Buul (t) + Apgy(t) (98)
Ay Aul 10 Bl K., K" T+ X !
kh ik K Rk K 1=1,1#hk |Bruy () + Agq;(t)

Using the next notations

) App Ahk] {Bh 0} K} th} o b Da
A°, — > h =A%, —B) K 99
ke [Akh Age 0 By |Ky, K ik~ BrieKig (99)
I
Wo (1) = P By () + Ay ()| _ f By, ul, () L |An ) =
ik 1=1, I£h,k Bkui(t)JrAqul(t) 1=1, I£hk ui(t) Al (100)
p
=B+ 3 Aija(t)
where l
P () lo _ | An
w(t) =Y, [5’ ;A= (101)
121, Tenk |4k (8) Al
o _ |Ann Ank| po _ |Bn O o _ [KL K
Ay = {Akh Ay | Bie= 1o B, | K= |k, % (102)
(98) can be written as
p
. o lo o
Ane(t) = Apeetie () + ) A (1) + B (1) (103)
1=1, T£hk

where wy () can be considered as a generalized auxiliary disturbance acting on the pair &, k
of the subsystems.

On the other hand, if
p k
o Cy Cuk lo _ |Cni
Cp = cl, cC :{h } cle = (104)
l:lzl;éh " " lew T O
then
p—1 p i p z
yB =3 ) (Chkqhk(t) ) Ch‘h(ﬂ) (105)
h=1 k=l +1 1=1, 1#h
p
Ye(t) = Cdige() + Y- Ciie (1) + 0wy (1) (106)
1=1, 1£h
Now, taking (103), (106) considered pair of controlled subsystems is fully described as
p
G(t) = Ao () + Y ARy (1) + By (£) (107)
=1, Ik
o . lo
V() = Ce(t) + ) ey (1) + 0wpie(t) (108)
1=1, 1#h
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5.3 Controller parameter design

Theorem 7. Subsystem pair (91) in system (75), (77), controlled by control law (97) is stable with
quadratic performances || Cyy(sI— A7) By |2 < ik HCL‘,’((SI—AZ,(C) 1Blk||2 < epp 1If for
h=12...,p—1,k=h+1,h+2...,p,1 =1,2...,p, | # h,k, there exist a symmetric positive
definite matrix X}, € Rt < (mitn) atrices VAS R (i) x () Y;, € R(rutre) < (ntne)
and positive scalars 7y, ey € R such that

Xp =Xl >0, eu>0, >0, hl=1,...,p, 1 #hk h<k<p (109)
O 1o pe o oT oT poT
Qe Ay Ay By XA =Y By thC
* —€hk11n1' - 0 0 A%zZT ClOT
. . . . . -OT -OT
* ok o—gply, 0 Al ch <0 (110)
* * s 3k —’)/th(rh_H,k) BZ; 0
* * .. ok * —sz—Zzg 0
ok ok * * Lty |

where Ay, By, Ahk' Crir C;l‘;( are defined in (99), (101), (104), respectively,
o __ o oT o o o 4,0 oT poT
q)hk - thAhk + Athhk - Bhkyhk - th Bhk (111)

and where AZ,‘E, A’;li, as well as Chk, C'fl; are not included into the structure of (110). Then KZk is
Qiven as
o—1
K = Y Xop (112)

Note, using the above given principle based on the the pairwise decentralized design of
control, the global system be stable. The proof can be find in Filasova & Krokavec (2011).

Proof. Considering wy, (t) givenin (100) as an generalized input into the subsystem pair (107),
(108) then using (83) - (86), and (107) it can be written

p-1 p
Yo Y (@ (OPdn () + ap (D) Phidpe (1) < 0 (113)
1 k1
o P T
p-1 p (Ahkcqhk<t)+l_1zl: VA Al q,(t) + By (1)) Priaye(8)+
Z Z =117 ) <0 (114
h=1k=h+ +q;k(t)PZk(Alo1kcqhk(t)+l 1%& i Aloq; () + Bjwp(t))

respectively. Introducing the next notations

10 7 o [oT __ TP T
Bjj = [{Ahk}l_l,l#h’k Bhk] ;o Wy = [{‘71 Y=, 1k whk(t)} (115)
(114) can be written as

p—1 p

Yo Y (A () +Blwis) TPy (t) + af (D P (Ap @y () + Bjrwiy)) <0 (116)
=1 khit1
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Analogously, (106) can be rewritten as

p
V() = Crege() + Y. Cloq(t) + 0wy (t) = Cipqyue(t) + Dl
I=1, 14k

where
Dji = [{Chk}le,z;éh,k 0]
Therefore, defining
I = diag [{Shkllnz}f:u#h,k 7hk1(m+rk)}
and inserting appropriate into (57), (58) then (109), (110) be obtained.

lllustrative example

(117)

(118)

(119)

To demonstrate properties of this approach a simple system with four-inputs and four-outputs

is used in the example. The parameters of (75)-(77) are

3 1 2-1 3 121
-1 2 0 1 0 610 .
A= 1-1 1 3 , C= 5 _130 ,B=diag[1111],
1-2-2 2 0 013
To solve this problem the next separations were done

Bhk - |:g) S[):| ,h=1,23 k=234 h<k

o 31 2 o _1 o 1 1 2 o
Ap= {_1 2} A12 = |:0] s Azll2 = [ 1:| ’ C12 = [0 2} C12_ |:1] ’ CAILZ

A3 = ? ﬂ Aj= { ﬂ Ay = {_?1)] , Ci3= B ﬂ , CI5 = [_} , Ci3=
Apy= ? _; A14— _; ’ A?Z: _ﬂ , Cly= [(1) i C14— (1) ’ C?Z:
Ay = _i (1) Ay = _} Ay = :.1;] , C3= [_% i €35 = g Cy5=
A3= :_33 A=) an=| ) = ]0d] = fo) chi-
e = e[ e . e}

Solving e.g. w1th respect to X355, Y53, Z33, €231, €234 023 it means to rewrite (109)-(111) as

X5 =X3] >0, €31 >0, €34>0, 723 >0

o O 1o 4o o oT oT oTA
(I)ZS A23 A23 BZ3 X23A23 YZSB X23C23

*  —&€231 0 0 A%gT ClOT

* * —&234 0 A%gT C4OT

oT <0
o oT

* * * * —Z53—Z5 0

| * * * * * -, |
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o __ wo oT o o o 40 oT poT
Qo3 = Xp3A23 + Ay Xos — By3Yo3 — Y53 Bo3
Using SeDuMi package for Matlab given task was feasible with
€231 = 9.3761, €234 = 6.7928, Y23 = 6.2252

xo. — 0.5383 —0.0046 Yo, — 4.8075 —0.0364 7o _ 4.2756 0.1221
237 1-0.0046 0.8150|" 227 |—0.4196 5.1783|’ ©23 7 |0.1221 4.5297

Ko — 1.1255 —0.0384
237 1-0.1309 1.1467

By the same way computing the rest gain matrices the gain matrix set is

K°. — 7.3113 3.8869 K. — 7.9272 4.0712 K°. — 7.4529 1.5651
12711.4002 10.0216 | 7 13 7 |4.2434 8.8245| " 14 T 11,6990 5.6584

Ko _ | 72561 07243 Ko _ [6:3680 41515
247 | 27951 4.4839 |’ 34~ 10.8099 5.2661

Note, the control laws are realized in the partly-autonomous structure (94), (95), where every
subsystem pair is stable, and the large-scale system be stable, too. To compare, an equivalent
gain matrix (81) to centralized control can be constructed

22.6914 3.8869 4.0712 1.5651
1.4002 18.4032 —0.0384 0.7243
4.2434 —0.1309 16.3393 4.1515
1.6990 —2.7951 0.8099 15.4084

K =

Thus, the resulting closed-loop eigenvalue spectrum is
p(A—BK) = {—13.0595 + 0.4024i —16.2717 —22.4515}

Matrix K structure implies evidently that the control gain is diagonally dominant.

6. Pairwise decentralized design of control for uncertain systems

Consider for the simplicity that only the system matrix blocks are uncertain, and one or none
uncertain function is associated with a system matrix block. Then the structure of the pairwise
system description implies

Ay U {A;‘,f };’:—11 U {A’ﬁ}f:h .1 ; upper triagonal blocks (h <k)
Aer(t) €S {Ag Ay, ; diagonal blocks (h=k) (120)
AL, U{Al };‘:_11 U {AF s 11 ; lower triagonal blocks (i > k)

Analogously it can be obtained equivalent expressions with respect to Byr(t), Cpr(t),
respectively. Thus, it is evident already in this simple case that a single uncertainty affects
p—1 from q = (}) linear matrix inequalities which have to be included into design.
Generally, the next theorem can be formulated.
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Theorem 8. Uncertain subsystem pair (91) in system (75), (77), controlled by control law (97) is stable
with quadratic performances ||Cy(sI— A7) !By |13 < Yk HC;ZC;{(SI—AZ,(C)_lBﬁH%o < eppy if
ford >0,6 e Rh=12...,p—1, k=h+1,h+2...,p,1 =1,2...,p, | # h,k, there exist
symmetric positive definite matrices T, €€ RUWFm)*(mtm) matrices V5, € RUwHm)x(mtm),
Wy, € RUwtr)x(mwtn) g positive scalars vy, €px; € R such that fori =1,2...,s

Ty =Tk >0, e >0, Y >0, bl =1,...,p, L #hk, h<k<p, i=12,...,5 (121)

@i A Al B Tii OVl + VAR~ Wik il Vi G |
* —epglng - 0 0 Al Citi
* * o~ epkpln, 0 AZI(;'T CZI(;'T <0 (122
% * ... % _'thI(rh+rk) BZ;{Z 0
* * ... %k * —5(V2k+VZ,?) 0
| * * . * * * —I(mﬁ_mk)_

where Ay, By, A;ﬁc, Cii C,l;;{ are equivalently defined as in (99), (101), (104), respectively,
o _ yo apoT o ol o o oT poT
Puki = VieAnki T AnkiVik — BriWik — Whie Bk (123)

ar;d where Aﬁ,‘(’i, Alflii, as well as CZ,‘;-, C’;lii are not included into the structure of (122). Then K, is
Qiven as
Kip = Wi Vil ™! (124)

Proof. Considering (109)-(112) and inserting these appropriate into (72), i 0of(73), and (74) then
(121)-(124) be obtained. O

lllustrative example

Considering the same system parameters as were those given in the example presented in
Subsection 5.3 but with As4r(t), and 7(t) lies within the interval (0.8,1.2) then the next matrix
parameter have to be included into solution

4o -1 4o -1 4o 1 4o 1
A= {2.4} - Ain = {3.6} Ao = [2.4] P A= [3.6]

o 124 o 136
Az = {_2 2} Az = [_2 2} ’
i.e. a solution be associated with T{;;, T5,;, and T5,,, i = 1,2, and in other cases only one

matrix inequality be computed (T7,, T74, T5,)-
The task is feasible, the Lyapunov matrices are computed as follows

To. _ 5.7244 —0.3591 To. 5.0484 0.0232 To. — 6.3809 0.5280
1317101748  5.6673 |7 ~ 1327 10.0232 5.0349| " " 127 | —0.6811 6.3946

7o _ 6.1360 0.0841 7o, — 5.5035 0.0258 7o _ 7.2453 0.9196
2317 10.0090 6.2377|” ~ 2327 10.0258 5.5252 |’ 147 | —-1.0352 7.5124
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7o 2.4585 3.9935 IO _
3417 | 37569 1.5487 | ~ 3427

the control law matrices takes form

13.2095 0.7495 o 14.2051 4.4679 o 12.6360 —1.6407
’ K13: ’ K14:

[5.7297 2.5560 2.1220]

5.7249} T = [—1.9076 2.9055

Ky, = { 2.2753 14.1033 1.9440 13.4616 2.9881 10.6109

Ko | 143977 —04237) . [-2.9867 5.9950] L. _ [ 5369927480
237 | 1.0494 123509]" T4 | —6.8459 —2.6627| " T3 | —0.6542 6.1362

and with the common ¢ 10 the subsystem interaction transfer functions Heo-norm
upper-bound squares are

€123 = 109960, €124 = 76712, Y12 = 71988, €132 = 77242, €134 — 87654, Y13 = 6.4988
€142 = 8.9286, €143 = 12.1338, Y14 = 8.1536, €231 = 10.3916, €234 = 8.2081, Y23 = 7.0939
€241 = 5.3798, €243 = 6.6286, Y24 = 5.4780, €341 = 16.1618, €340 — 15.0874, Y34 = 9.0965

In the same sense as given above, the control laws are realized in the partly-autonomous
structure (94), (95), too, and as every subsystem pair as the large-scale system be stable.

Only for comparison reason, the composed gain matrix (defined as in (81)), and the resulting
closed-loop system matrix eigenvalue spectrum, realized using the nominal system matrix
parameter A, and the robust and the nominal equivalent gain matrices K, A;, respectively,
were constructed using the set of gain matrices Ky, k = 1,2,3, h = 2,3,4, h # k. As it can
see

[40.0507 07495 4.4679 —1.6407 ] —15.0336
22753 255144 —04237 5.9950 20,6661

K= 79440 10494 311824 27480 |+ PAn=BK)=1 ~gc/7
| 29881 —6.8459 —0.6542 14.0844 | —37.0846
[39.6876 07495 4.2372 —1.6407 ] 153818
22753 24.8764 —0.4500 5.9950 —19.6260

Kn=| 5318 ~1.0008 303905 32206 | PAn—BKn)=1 59057
| 29881 —6.8459 —0.6666 14.0725 | 36,9918

and the resulted structures of both gain matrices imply that by considering parameter
uncertainties in design step the control gain matrix K is diagonally more dominant then K
reflecting only the system nominal parameters. |

It is evident that Lyapunov matrices T}, are separated from A}, Aiﬁci, B, CZki' and C]lﬁ(i
h=12...,p—1L,k=h+1,h+2...,p,1 =1,2...,p, | # h,k, i.e. there are no terms containing
the product of T},;; and any of them. By introducing a new variable V;,, the products of type
P A} and AZIZ;'PZki are relaxed to new products AZkiVZkT and VZkAZkTi where V}; needs not
be symmetric and positive definite. This enables a robust BRL can be obtained for a system
with polytopic uncertainties by using a parameter-dependent Lyapunov function, and to deal
with linear systems with parametric uncertainties.

Although no common Lyapunov matrices are required the method generally leads to a larger
number of linear matrix inequalities, and so more computational effort be needed to provide
robust stability. However, used conditions are less restrictive than those obtained via a
quadratic stability analysis (i.e. using a parameter-independent Lyapunov function), and
are more close to necessity conditions. It is a very useful extension to control performance
synthesis problems.
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7. Concluding remarks

The main difficulty of solving the decentralized control problem comes from the fact that
the feedback gain is subject to structural constraints. At the beginning study of large scale
system theory, some people thought that a large scale system is decentrally stabilizable under
controllability condition by strengthening the stability degree of subsystems, but because of
the existence of decentralized fixed modes, some large scale systems can not be decentrally
stabilized at all. In this chapter the idea to stabilize all subsystems and the whole system
simultaneously by using decentralized controllers is replaced by another one, to stabilize
all subsystems pairs and the whole system simultaneously by using partly decentralized
control. In this sense the final scope of this chapter are quadratic performances of one
class of uncertain continuous-time large-scale systems with polytopic convex uncertainty
domain. It is shown how to expand the Lyapunov condition for pairwise control by using
additive matrix variables in LMIs based on equivalent BRL formulations. As mentioned
above, such matrix inequalities are linear with respect to the subsystem variables, and
does not involve any product of the Lyapunov matrices and the subsystem ones. This
enables to derive a sufficient condition for quadratic performances, and provides one way
for determination of parameter-dependent Lyapunov functions by solving LMI problems.
Numerical examples demonstrate the principle effectiveness, although some computational
complexity is increased.
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