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1. Introduction 

There exist many mechanical, electrical, electro-mechanical, thermic, chemical, biological 
and medical linear and nonlinear systems, subject to parametric uncertainties and non 
standard disturbances, which need to be efficiently controlled. Indeed, e.g. consider the 
numerous manufacturing systems (in particular the robotic and transport systems,…) and 
the more pressing requirements and control specifications in an ever more dynamic society. 
Despite numerous scientific papers available in literature (Porter and Power, 1970)-(Sastry, 
1999), some of which also very recent (Paarmann, 2001)-(Siciliano and Khatib, 2009), the 
following practical limitations remain: 
1. the considered classes of systems are often with little relevant interest to engineers; 
2. the considered signals (references, disturbances,…) are almost always standard 

(polynomial and/or sinusoidal ones); 
3. the controllers are not very robust and they do not allow satisfying more than a single 

specification; 
4. the control signals are often excessive and/or unfeasible because of the chattering. 
Taking into account that a very important problem is to force a process or a plant to track 
generic references, provided that sufficiently regular, e.g. the generally continuous 
piecewise linear signals, easily produced by using digital technologies, new theoretical 
results are needful for the scientific and engineering community in order to design control 
systems with non standard references and/or disturbances and/or with ever harder 
specifications. 
In the first part of this chapter, new results are stated and presented; they allow to design a 
controller of a SISO process, without zeros, with measurable state and with parametric 
uncertainties, such that the controlled system is of type one and has, for all the possible 
uncertain parameters, assigned minimum constant gain and maximum time constant or 
such that the controlled system tracks with a prefixed maximum error a generic reference 
with limited derivative, also when there is a generic disturbance with limited derivative, has 
an assigned maximum time constant and guarantees a good quality of the transient. 
The proposed design techniques use a feedback control scheme with an integral action (Seraj 
and Tarokh, 1977), (Freeman and Kokotovic, 1995) and they are based on the choice of a 
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suitable set of reference poles, on a proportionality parameter of these poles and on the 
theory of externally positive systems (Bru and Romero-Vivò, 2009). 
The utility and efficiency of the proposed methods are illustrated with an attractive and 
significant example of position control. 
In the second part of the chapter it is considered the uncertain pseudo-quadratic systems of 

the type 
1 2

1

( , , ) ( , , ) ( , , , )
m

i i
i

y F y y p u F y y p y y f t y y p
=

⎡ ⎤= + +⎢ ⎥⎣ ⎦
∑$$ $ $ $ $ $ , where t R∈  is the time, my R∈  is 

the output, ru R∈  is the control input, p Rμ∈℘⊂  is the vector of uncertain parameters, 

with ℘  compact set, 
1

m rF R ×∈  is limited and of rank m , 
2

mxm

i
F R∈  is limited and mf R∈  is 

limited and models  possible disturbances and/or particular nonlinearities of the system. 
For this class of systems, including articulated mechanical systems, several theorems are 
stated which easily allow to determine robust control laws of the PD type, with a possible 

partial compensation, in order to force y  and y$  to go to rectangular neighbourhoods (of 

the origin) with prefixed areas and with prefixed time constants characterizing the 
convergence of the error. Clearly these results allow also designing control laws to take and 
hold a generic articulated system in a generic posture less than prefixed errors also in the 
presence of parametric uncertainties and limited disturbances. 
Moreover the stated theorems can be used to determine simple and robust control laws  in 
order to force the considered class of systems to track a generic preassigned limited in 
“acceleration” trajectory, with preassigned majorant values of the maximum “position 
and/or velocity” errors and preassigned increases of the time constants characterizing the 
convergence of the error. 

Part I 

2. Problem formulation and preliminary results 

Consider the SISO n-order system, linear, time-invariant and with uncertain parameters, 
described by  

 ,x Ax Bu y Cx d= + = +$ , (1) 

where: nx R∈  is the state, u R∈  is the control signal, d R∈  is the disturbance or, more in 

general, the effect 
d

y  of the disturbance d  on the output, y R∈  is the 

output, ,A A A− +≤ ≤ B B B− +≤ ≤  and C C C− +≤ ≤ .  
Suppose that this process is without zeros, is completely controllable and that the state is 
measurable. 

Moreover, suppose that the disturbance d  and the reference r  are continuous signals with 

limited first derivative (see Fig. 1). 
A main goal is to design a linear and time invariant controller such that: 

1. , , , , ,A A A B B B C C C− + − + − +∀ ∈ ∀ ∈ ∀ ∈⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  the control system is of type one, with 

constant gain ˆ
v v

K K≥  and maximum time constant max max
ˆτ τ≤ , where ˆ

v
K  and max

τ̂  are 

design specifications, or 
2. condition 1. is satisfied and, in addition, in the hypothesis that the initial state of the 

control system is null and that (0) (0) 0r d− = , the tracking error ( )e t  satisfies relation 
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[ ]0 ,

1 ˆ ˆ( ) , 0, ( ),  ( ) :  max ( ) ( )
ˆ r d r d r dt

v

e t t r t d t r d
K σ

δ δ σ σ δ
− − −∈

≤ ∀ ≥ ∀ = − ≤$ $ $$ $ $
$$ , (2) 
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Fig. 1. Possible reference or disturbance signals with limited derivative. 

where the maximum variation velocity ˆ
r d

δ
− $$  of ( ) ( )r t d t−  is a design specification. 

Remark 1. Clearly if the initial state of the control system is not null and/or (0) (0) 0r d− ≠  

(and/or, more in general, ( ) ( )r t d t−  has discontinuities), the error ( )e t  in (2) must be 

considered unless of a “free evolution“, whose practical duration can be made minus that a 

preassigned settling time ˆ
a

t . 

Remark 2.  If disturbance d  does not directly act on the output y , said d
y  its effect on the 

output, in (2) d$  must be substituted with d
y$ .  

This is one of the main and most realistic problem not suitable solved in the literature of 
control (Porter et al., 1970)-(Sastry, 1999). 
There exist several controllers able to satisfy  the 1. and/or  2 specifications. In the following, 

for brevity, is considered the well-known state feedback  control law with an integral (I) 

control action (Seraj and Tarokh, 1977), (Freeman and Kokotovic, 1995). 

By posing 

 1

1 1 11

1

( ) ( ) , , ..., ,
...

n n nn n

n

b
G s C sI A B a a a a a a b b b

s a s a
− − + − + − +

−
= − = ≤ ≤ ≤ ≤ ≤ ≤

+ + +
, (3) 

in the Laplace domain  the considered control scheme is the one of Fig. 2. 

 

1+nk

s
1

1
...

n n

n

b

s a s a
−+ + +

1 2

1 2
...

n n

n
k s k s k

− −+ + +

r

 

Fig. 2. State feedback control scheme with an I control action. 

Remark 3. It is useful to note that often the state-space model of the process (1) is already in 

the corresponding companion form of the input-output model of the system (3) (think to the 

case in which this model is obtained experimentally by using e.g. Matlab command 

invfreqs); on the contrary, it is easy to transform the interval uncertainties of , ,A B C  into 

the ones (even if more conservative) of ,
i

a b . 
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Moreover note that almost always the controller is supplied with an actuator having gain 

a
g . In this case it can be posed 

a
b bg←  and also consider the possible uncertainty of 

a
g . 

Finally, it is clear that, for the controllability of the process, the parameter b must be always 

not null. In the following, without loss of generality, it is supposed that 0. b− >  
Remark 4. In the following it will be proved that, by using the control scheme of Fig. 2, if (2) 

is satisfied then the overshoot of the controlled system is always null.  

From the control scheme of Fig. 2 it can be easily derived that 

 
1

1 1

1

1 1 1

( ) ... ( )
( ) ( ( ) ( )) ( )( ( ) ( ))

( ) ... ( )

n n

n n

n n

n n n

s a bk s a bk
E s s R s D s S s R s D s

s a bk s a bk s bk

−

+
+

+ + + + +
= − = −

+ + + + + +
. (4) 

If it is posed that 

 1 1

1 1 1 1 1
( ) ( ) ... ( ) ...n n n n

n n n n n
d s s a bk s a bk s bk s d s d s d+ +

+ += + + + + + + = + + + + , (5) 

from (4) and by noting that the open loop transfer function is 

 1 1

1 1

1 1 1

( )
( ) ... ( ) ( ... )

n n

n n n n

n n n

k b d
F s

s s a bk s a bk s s d s d
+ +

− −
= =

+ + + + + + + +
, (6) 

the sensitivity function ( )S s  of  the error and the constant gain 
v

K  turn out to be: 

 
1

1 1 1

1

1 1

...
( ) , .

...

n n

n n n

vn n

n n n n n

s d s d d bk
S s s K

s d s d s d d a bk

−
+ +

+
+

+ + +
= = =

+ + + + +
 (7) 

Moreover the sensitivity function ( )W s  of  the output is 

 1

1

1 1

( )
...
n

n n

n n

d
W s

s d s d s d
+

+
+

=
+ + + +

. (8) 

Definition 1. A symmetric set of 1n +  negative real part complex numbers 

{ }1 2 1
,  ,  ...,  

n
P p p p +=  normalized such that 

1

1
( ) 1

n

i
i

p
+

=
∏ − =  is said to be set of reference poles. 

Let be 

 1

1 1
( ) ...n n

n n
d s s d s d s d+

+= + + + +  (9) 

the polynomial whose roots are a preassigned set of reference poles P .  By choosing the 

poles P  of the control system equal to Pρ , with  ρ  positive , it is 

 1 1

1 1
( ) ...n n n n

n n
d s s d s d s dρ ρ ρ+ +

+= + + + + . (10) 

Moreover, said ( )
p

s t  the impulsive response of the system having transfer function  

 
1

1

1

1 1

1 ...
( ) ( )

...

n n

n

p n n

n n

s d s d
S s S s

s s d s d s d

−

+
+

+ + +
= =

+ + + +
, (11) 

from (4) and from the first of (7) it is 

www.intechopen.com



New Robust Tracking and Stabilization Methods  
for Significant Classes of Uncertain Linear and Nonlinear Systems 

 

251 

 ( )1

0

( ) ( ) ( ) ( ) ,  ( ) ( )
t

p p p
e t s r t d t d where s t S sτ τ τ τ −≤ − − − =∫ $$ L , (12) 

from which, if all the poles of ( )
p

S s  have negative real part, it is 

 
1

( )
r d

v

e t
H

δ
−

≤ $$ , (13) 

where 

 
[ ]0 ,

0

1
, max ( ) ( )

( )
v r d t

p

H r d

s d
σ

δ σ σ
τ τ

∞ − ∈
= = −

∫
$$

$$ . (14) 

Remark 5. Note that, while the constant gain 
v

K  allows to compute the steady-state 

tracking error to a ramp reference signal, 
v

H , denoted absolute constant gain, allows to obtain 

t∀  an excess estimate of the tracking error to a generic reference with derivative. On this 

basis, it is very interesting from a theoretical and practical point of view, to establish the 

conditions for which 
v v

H K= . 

In order to establish the condition necessary for the equality of the absolute constant gain  

v
H  with the constant gain 

v
K  and to provide some methods to choose the poles P  and ρ , 

the following preliminary results are necessary. They concern the main parameters of the 

sensitivity function ( )W s  of  the output and the externally positive systems, i.e.  the systems 

with non negative impulse response. 

Theorem 1. Let be s , 
s

t , 
a

t , 
s

ω  the overshoot, the rise time, the settling time and the upper 

cutoff angular frequency  of 

 1 1

1

1 1

( )
( ) ...
n n

n n

n n

d d
W s

d s s d s d s d
+ +

+
+

= =
+ + + +

 (15) 

and 

 
1

11 1

1

1 1

0

1 ...
, ,  ( )

...
( )

n n

n n

v v p n n

n n n
p

d s d s d
K H where s t

d s d s d s d
s dτ τ

−
−+

∞ +
+

⎛ ⎞+ + +
= = = ⎜ ⎟

+ + + +⎝ ⎠∫
L , (16) 

then the corresponding values of , , , , ,
s a s v v

s t t K Hω  when 1ρ ≠  turn out to be: 

 , , , , ,s a

s a s s v v v v

t t
s s t t K K H Hω ρω ρ ρ

ρ ρ
= = = = = = . (17) 

Proof. By using the change of scale property of the Laplace transform, (8) and (10) it is 

 

1

1 1

1 1 1

1 1

1 1

11

1 1

1

( ) ( ) ... ( )

1
                = ( ).

...

n

n

n n n n

n n

n

n n

n n

t d
w

ss d s d s d

d
w t

ss d s d s d

ρρ
ρ ρρ ρ ρ ρ ρ ρ

+
− +

− + +
+

− +
−+

+

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟ + + + +⎝ ⎠ ⎝ ⎠

⎛ ⎞
=⎜ ⎟

+ + + +⎝ ⎠

L

L

 (18) 
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By using again the change of scale property of the Laplace transform, by taking into 
account (10) and (11) it is 

 

1

1 1

1 1

1 1

1

1 1

1

1 1

( ) ( ) ...

( ) ( ) ... ( )

...
                = ( ),

...

n n n

n

p n n n n

n n

n n

n

pn n

n n

t s d s d
s

s d s d s d

s d s d
s t

s d s d s d

ρ ρ ρ ρρ
ρ ρ ρ ρ ρ ρ ρ

−
−

+ +
+

−
−

+
+

⎛ ⎞⎛ ⎞ + + +
= =⎜ ⎟⎜ ⎟ + + + +⎝ ⎠ ⎝ ⎠

⎛ ⎞+ + +
=⎜ ⎟

+ + + +⎝ ⎠

L

L

 (19) 

from which 

 ( )
0 0 0

1 1
( )

p p p

t
s d s dt s t dtτ τ

ρ ρ ρ

∞ ∞ ∞⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∫ ∫ ∫ . (20) 

From the second of (7) and from (10), (14), (18), (20) the proof easily follows.  

Theorem 2. Let be , , 1,2,..., ,
i i i

a a a i n− +∈ =⎡ ⎤⎣ ⎦  and ,b b b− +∈⎡ ⎤⎣ ⎦  the nominal values of the 

parameters of the process and ˆ ˆP Pρ=   the desired nominal poles. Then the parameters of 

the controller, designed by using the nominal parameters of the process and the nominal 
poles, turn out to be:  

 
1

1

1

ˆ ˆˆ ˆ, 1, 2, ..., ,
i n

i i n

i n

d a d
k i n k

b b

ρ ρ +
+

+

−
= = = . (21) 

Moreover the polynomial of the effective poles and the constant gain are: 

 ˆ ˆ( ) ( ) ( ) ( )d s d s hn s sδ= + +  (22) 

 
1

1 1
ˆˆ

ˆˆ
1 1

n

n n

v
nn n

n n n n

d d
K

a a
a d a d

h h

ρ

ρ

+
+ += =

− + − +
+ +

, (23) 

where: 

 1 1 1

1 1 1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ... ...n n n n n n

n n n n
d s s d s d s d s d s d s dρ ρ ρ+ + +

+ += + + + + = + + + +  (24) 

 1

1 1 1 1
ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ... ...n n n n

n n n n
n s d s d s d d s d s dρ ρ ρ +

+ += + + + = + + +  (25) 

 
1

1

1

1 1 1

, ( ) ...

, , ..., .

n n

n

n

n n n

b a b a b
h s a s a s

a ab b b

b b b a a a a a a

δ
⎛ ⎞⎛ ⎞Δ Δ Δ Δ Δ

= = − + + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ = − Δ = − Δ = −

 (26) 

Proof. The proof is obtained by making standard manipulations starting from (5), from the 

second of (7) and from (10). For brevity it has been omitted. 

Theorem 3. The coefficients d  of the polynomial 

 1 1

max
ˆ ˆ ˆ( ) [ ... 1] , 1n n nd s s s s s dα α τ+ −− = + = , (27) 
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where ( )d s  is the polynomial (5) or (22), are given by using the affine transformation 

 

1

12 2

2

1 2

1

1

1

.

1
ˆ ˆ1 0 . 0

1

ˆ ˆ 11 . 0
ˆ

2
. . . .

. .
1

ˆ ˆ ˆ 1. 1
ˆ1 2

1 1
ˆ ˆ ˆ ˆ.

1 1

n n

nn

n n

n

n

n

a n

a

d
n n

a n
n n

b n
n n

n n

χ α

α χ
α

α α χ
α

α α α χ

− −

−

+

+

+

= +
−

+
− −

−

−

⎛ ⎞
⎡ ⎤ ⎜ ⎟

⎝ ⎠⎢ ⎥
⎛ ⎞⎢ ⎥⎜ ⎟ ⎡ ⎤ ⎛ ⎞⎢ ⎥⎝ ⎠ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎢ ⎥ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎦

1

,

1
ˆ

1

n

n
n

n
α +

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎣⎝ ⎠ ⎦

 (28) 

where 

 

1 1

2 2

1 2

1 1

1

1

.

1 0 . 0 0

ˆ 1 . 0 0
ˆˆ

ˆˆ . . . .

. 1 .
ˆ ˆ . 1 0

ˆˆ 1 2

1 1
ˆ ˆ ˆ. 1

1 1

n n

n n

n n

n

k

k

n n

n n k

n n

n n

α
χ

χ

α α
χ

α α α

− −

+ +

−

=
−

− −

−

−

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎜ ⎟ ⎜ ⎟

⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎦

 (29) 

Proof. The proof is obtained by making standard manipulations and for brevity it has been 

omitted. 

Now, as pre-announced, some preliminary results about the externally positive systems are 

stated. 

Theorem 4. Connecting in series two or more SISO systems, linear, time-invariant and 
externally positive it is obtained another externally positive system. 

Proof. If 
1
( )W s  and 

2
( )W s  are the transfer functions of two SISO externally positive systems 

then ( )1

1 1
( ) ( ) 0w t W s−= ≥L  and ( )1

2 2
( ) ( ) 0w t W s−= ≥L . From this and considering that 

 ( )1

1 2 1 2

0

( ) ( ) ( ) ( ) ( )
t

w t W s W s w t w dτ τ τ−= = −∫L  (30) 

the proof follows. 

Theorem 5. A third-order SISO  linear and time-invariant system with transfer function 

 
( ) 2 2

1
( )

( )
W s

s p s α ω
=

− − +⎡ ⎤⎣ ⎦
, (31) 

i.e. without zeros, with a real pole p  and a couple of complex poles jα ω± , is externally 

positive  iff pα ≤ , i.e. iff the real pole is not on the left of the couple of complex  poles. 
Proof.  By using the translation property of the Laplace transform it is  
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( )

( )1 1

2 2 2 2

0

1 1
( ) sin .

( ) ( )

t

pt pt pw t e e e d
s p s s s p

α τ ωτ τ
α ω α ω

−− −
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − + − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
∫L L  (32) 

Note that the signal ( )( ) sinp tv t e tα ω−=  is composed by a succession of positive and negative 

alternately waves. Therefore the integral ( )
i

v t of this signal is non negative iff the succession 

of the absolute values of the areas of the considered semi-waves is non decreasing. Clearly 

this fact occurs iff the factor ( )p te α−  is non increasing, i.e. iff 0pα − ≤ , from which the proof 

derives. 
From Theorems 4 and 5 easily follows that: 

- a SISO system with a transfer function without zeros and all the poles real is externally 
positive; 

- a SISO system with a transfer function without zeros and at least a real pole not on the 
left of every couple of complex poles is externally positive. 

By using the above proposed results the following main results can be stated. 

3. First main result 

The following main result, useful to design a robust controller satisfying the required 

specifications 1, holds. 

Theorem 6.  Give the process (3) with limited uncertainties, a set of reference poles P  and 

some design values ˆ
v

K  and 
max
τ̂ . If it is chosen b b−=   and   

n n
a a+=  then  ˆ ˆ

K
ρ ρ∀ ≥ , where 

 
1

ˆˆ n

K v

n

d
K

d
ρ

+

= , (33) 

the constant gain 
v

K  of the control system of Fig. 2, with a controller designed by using (21), 

is not minus than ˆ
v

K , , , 1, 2 ,..., ,
i i i

a a a i n− +∀ ∈ =⎡ ⎤⎣ ⎦ and ,b b b− +∀ ∈⎡ ⎤⎣ ⎦ . Moreover, by 

choosing the poles P  all in 1−  or of Bessel or of Butterworth, for ˆ ˆ
τρ ρ4 , where 

 
max

1ˆ
ˆ maxReal( )P

τρ τ
= − , (34) 

the polynomial ˆ( )d s α−  given by (27) is hurwitzian , ,
i i i

a a a− +∀ ∈⎡ ⎤⎣ ⎦ 1, 2 ,..., ,i n=  and 

,b b b− +∀ ∈⎡ ⎤⎣ ⎦ . 

Proof. The proof of the first part of the theorem easily follows from (23) and from the fact 

that b b−=  and 
n n

a a+= . 

In order to prove the second part of the theorem note that, from (22), (24), (25) and (26), for 
ˆ ˆ

τρ ρ4  it is ˆ ˆ( ) ( ) ( ) ( ), 0.d s d s d s hn s h≅ = + ≥#  Since for 0 ( 0)b hΔ = ⇔ =  the roots of ( )d s#  are 

equal to the ones of ˆ( )d s  and the zeros of ˆ( )n s  are always on the right of  the roots of ˆ( )d s  

and on the left of the imaginary axis  (see Figs. 3, 4; from Fig. 4 it is possible to note that if 

the poles P  are all in 1−  then the zeros of ˆ( )n s  have  real part equal to ˆ / 2ρ− ), it is that the 

root locus of ( )d s#  has a negative real asymptote and n  branches which go to the roots of 
ˆ( )n s . From this consideration the second part of the proof follows. 

From Theorems 3 and 6 several algorithms to design a controller such that 

, , 1, 2 ,..., ,
i i i

a a a i n− +∀ ∈ =⎡ ⎤⎣ ⎦  and ,b b b− +∀ ∈⎡ ⎤⎣ ⎦ the controlled system of Fig. 2 is of type one, 
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with constant gain ˆ
v v

K K≥  and maximum time constant 
max max

ˆτ τ≤ , where ˆ
v

K  and  
max
τ̂  are 

design specifications  (robustness of the constant gain and of the maximum time constant with 

respect to  the parametric uncertainties of  the process). 
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Fig. 3. Root locus of ( )d s# , Bessel poles, 1 5
c

n n= + =  and 1ρ = . 
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Fig. 4. Root locus of ( )d s# , coincident poles, 1 5
c

n n= + =  and 1ρ = . 

A very simple algorithm is the following. 

Algorithm 1 

Step 1. By using (33) and (34), { }ˆ ˆ ˆmax ,
K τρ ρ ρ=  is obtained and by using (21) the gains 

ˆ , 1, ..., 1
i

k i n= +  are computed. 

Step 2. ρ̂  is iteratively increased, if necessary, until by using (28) and Kharitonov’s 

theorem, the polynomial ˆ( )d s α−  given by (27) becomes hurwitzian 

, ,
i i i

a a a− +∀ ∈⎡ ⎤⎣ ⎦ 1, 2 ,..., ,i n=  and ,b b b− +∀ ∈⎡ ⎤⎣ ⎦ . If the only uncertain parameter is b  

(e.g. because of the uncertainty of the gain 
a

g  of the “power“ actuator), instead of 

using Kharitonov’s theorem it can be directly plot the root locus of ( )d s with respect 

to b . 
Remark 6. Note that, if the uncertainties of the process are small enough and ρ̂ is chosen big 

enough, it is ˆ( ) ( )d s d s≅ . Therefore, by using Theorem 1, turns out to be: ,s s≅  

,
ˆ
s

s

t
t

ρ
≅ ,

ˆ
a

a

t
t

ρ
≅  ˆ ˆ,  .

s s v v
K Kω ρω ρ= ≅  Moreover, if the poles P  are equal to 1−  or are of 

Bessel or of Butterworth, the values of ,s  ,
s

t ,
a

t  ,  
s v

Kω  (intensively studied in the 

optimization theory) are well-known and/or easily computing (Butterworth, 1930), 
(Paarmann, 2001). 

4. Second main result 

The following fundamental result, that is the key to design a robust controller satisfying the 

required specifications 2., is stated. 
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Theorem 7. Consider the process (3) with limited uncertainties and assigned design values 

of ˆ
v

K  and ˆ
r d

δ
− $$ . If there exist a set of reference poles P  and a ρ̂  such that, with 

ˆ ,  j 1, 2 ,..., 1
j

k n= + , provided by (21), , ,
i i i

a a a− +∀ ∈⎡ ⎤⎣ ⎦  1, 2 ,..., ,i n=  and ,b b b− +∀ ∈⎡ ⎤⎣ ⎦  the 

transfer function 

 1 1

1 1
1 1 1 1 1

ˆ
( )

ˆ ˆ ˆ... ( ) ... ( )
n n

n n n n
n n n n n

d bk
W s

s d s d s d s a bk s a bk s bk
+ +

+ +
+ +

= =
+ + + + + + + + + +

 (35) 

 

is strictly hurwitzian and externally positive and 1
ˆ

v n n v
K d d K+= ≥ , then, in the hypothesis that 

the initial state of the control system of Fig. 2 with ˆ
i i

k k=  is null and that (0) (0) 0r d− = , the 

corresponding tracking error ( )e t , always , ,
i i i

a a a− +∀ ∈⎡ ⎤⎣ ⎦ 1, 2 ,..., ,i n=  and ,b b b− +∀ ∈⎡ ⎤⎣ ⎦ , 

satisfies relation 

 
[ ]0 ,

1 ˆ ˆ( ) , 0, ( ),  ( ) :  max ( ) ( )
ˆ r d r d r dt

v

e t t r t d t r d
K σ

δ δ σ σ δ
− − −∈

≤ ∀ ≥ ∀ = − ≤$ $ $$ $ $
$$ . (36) 

Moreover the overshoot s is always null. 

Proof. Note that the function ( )
p

S s  given by (11) is  

 ( )1
( ) 1 ( )

p
S s W s

s
= − . (37) 

Hence 

 
1

( ) 1 ( )
p

s t w t−= − . (38) 

Since, for hypothesis, ( )w t  is non negative then 1

0

( ) ( )
t

w t w dτ τ− = ∫  is non decreasing with a 

final value 
0

( ) 1
s

W s
=
= . Therefore ( )

p
s t  is surely non negative. From this, by taking into 

account (7), (13) and (14), it follows that 

 1

1
0

0 0

1 1 1 1 ˆ
( )

( ) ( )

n

v v v

n n np s
p p

d
H K K

d d dS s
s d s dτ τ τ τ

+
∞ ∞

+=

= = = = = = ≥

∫ ∫
 (39) 

and hence the proof. 

Remark 7. The choice of P  and the determination of a ρ̂  such that (36) is valid, if the 

uncertainties of the process are null, are very simple. Indeed, by using Theorems 4 and 5,  

it is sufficient to choose P  with all the poles real or with at least a real pole not on the  

left of each couple of complex poles (e.g. { }1,  1P = − − , { }1,  1 ,  1P i i= − − + − − , 

{ }1,  1,  1 ,  1 ,  ...)P i i= − − − + − −  and then to compute ρ̂ by using relation 
1

ˆˆ
v n n

K d dρ += . 

If the process has parametric uncertainties, it is intuitive that the choice of P can be made 

with at least a real pole dominant with respect to each couple of complex poles and then to 

go on by using the Theorems of Sturm and/or Kharitonov or with new results or directly 

with the command roots and with the Monte Carlo method. 

Regarding this the following main theorem holds. 
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Theorem 8. Give the process (3) with limited uncertainties and with assigned nominal 

values of its parameters. Suppose that there exists a set of reference poles { }1 2 1
, ,...,

n
P p p p +=  

such that the system 

 
1

1 1

1 1
1

1
( ) , ( ) ( ) ... ,  ( ) ( ) ,

( ) ( )

n
n n n

h i n n
i

W s d s s p s d s d s d n s d s s
d s hn s

+
+ +

+
=

= = − = + + + + = −
+ ∏  (40) 

is externally positive 0h∀ ≥ . Then for ρ̂  big enough the control system of Fig. 2, with 
ˆ ,  j 1, 2 ,..., 1

j j
k k n= = + , given by (21), , ,

i i i
a a a− +∀ ∈⎡ ⎤⎣ ⎦  1, 2 ,..., ,i n=  and ,b b b− +∀ ∈⎡ ⎤⎣ ⎦   is 

externally positive. 

Proof. Note that, taking into account (22), (24), (25) and (26), for ρ̂  big enough it is 
ˆ ˆ( ) ( ) ( ) ( )d s d s d s hn s≅ = +# . From this the proof easily follows. 

In the following, for brevity, the second, third, fourth-order control systems will be 

considered.  

Theorem 9. Some sets of reference poles P  which satisfy Theorem 8 are: 

{ }1,P α α= − − with 1α > (e.g. 1.5,  2, ...α = ); { } 2 231, ,P i iα α α ωω ω= − − + − − +    with 

1α >  and ω  such that the roots of ( )n s  are real  (e.g. 1.5a = −  and 2.598ω ≥ , 2a = −  and 

2.544, ...ω ≥ ); { } 341, , ,P α α α α= − − − − , 1α >  (e.g. 1.5,  2, ...α = ). 

Proof. The proof easily follows from the root loci of ( ) ( ) ( )d s d s hn s= +#
 (see Figs. 5, 6). 
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Fig. 5. Root locus of ( ),  1 3
c

d s n n + ==# . 
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Fig. 6. Root locus of ( ),  1 4
c

d s n n + ==# . 

To verify the externally positivity of a third-order system the following theorems are 
useful. 
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Theorem 10. Let be 

 3 3

3 2

1 2 3

( )
( )

d d
W s

s d s d s d d s
= =

+ + +
 (41) 

an asimptotically stable system. If 

 ( )1 1 1 2 327 3 2 9 27 0d d d d d dδ = − = − + <  (42) 

then the poles of ( )W s  are all real or the real pole is on the right of the remaining couple of 

complex poles, i.e. the system is externally positive.   

Proof. Let be 
1 2 3
, ,p p p  the poles of ( )W s  note that the ”barycentre” 

1
3

c
x d= −  is in the 

interval [ ]minReal( ), maxReal( )
i i

p p . Hence if relation (42) is satisfied, as  
3

(0) 0d d= > , the 

interval [ ],  0
c

x  contains a real pole (see Figs. 7, 8). From this the proof easily follows. 
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Fig. 7. δ  in the case of real pole on the right of the couple of complex poles. 
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Fig. 8. δ  in the case of all real poles. 

Theorem 11.  Give the control system  

 3

1 1 1 2 2 23 2

1 1 2 2 3

ˆ
( ) , , , , , , ,

ˆ ˆ ˆ( ) ( )

bk
W s a a a a a a b b b

s a bk s a bk s bk

− + − + − += ∈ ∈ ∈⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ + + + +
 (43) 

if 1 2 3
ˆ ˆ ˆ, ,k k k  satisfy the relations: 

{ }
3

3

1 2 1 1 1 1 2 1 3 1 1 1

ˆ 0, ,

ˆ ˆ ˆ ˆ( , , ) 2( ) 9( )( ) 27 0, ,   and  , ,

bk b b b

a a b a bk a bk a bk bk b b b a a aδ

− +

− − − + − +

> ∀ ∈⎡ ⎤⎣ ⎦

= + − + + + < ∀ ∈ =⎡ ⎤⎣ ⎦
 (44) 

then the control system is externally positive 
1 1 1

, ,a a a− +∀ ∈⎡ ⎤⎣ ⎦ 2 2 2
,a a a− +∀ ∈⎡ ⎤⎣ ⎦  and , .b b b− +∀ ∈⎡ ⎤⎣ ⎦  
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Proof. Note that if 
1 2 1 1 1

( , , ) 0,  ,a a b a a aδ − − +< ∀ ∈ ⎡ ⎤⎣ ⎦  and , ,b b b− +∀ ∈⎡ ⎤⎣ ⎦  then 
1 2

( , , ) 0,a a bδ <  

1 1 1 2 2 2
, , ,a a a a a a− + − +∀ ∈ ∀ ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  and ,b b b− +∀ ∈⎡ ⎤⎣ ⎦ . Moreover if 

1 2
( , , ) 0a a bδ − − <  and 

1 2
( , , ) 0,  , ,a a b b b bδ + − − +< ∀ ∈⎡ ⎤⎣ ⎦  then by using Theorem 10 the polynomials 

 
3 2

1 1 2 2 3

3 2

1 1 2 2 3

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ,

d s s a bk s a bk s bk

d s s a bk s a bk s bk

− − −

+ + −

= + + + + +

= + + + + +
 (45) 

,b b b− +∀ ∈⎡ ⎤⎣ ⎦ , have a dominant real root. By taking into account the root loci with respect 

h of the polynomial 

 3 2 2

1 1 2 2 3
ˆ ˆ ˆ( ) ( ) ( )d s s a bk s a bk s bk hs− −= + + + + + + , (46) 

in the two cases of polynomial ( )d s−  with all the roots real negative and of  polynomial 

( )d s−  with a real negative root on the right of the remaining complex roots (see Figs. 9, 10), 

the proof easily follows. 
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Fig. 9. Root locus of the polynomial (46) in the hypothesis that all the roots of ( )d s−  are real. 
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Fig. 10. Root locus of the polynomial (46) under the hypothesis that ( )d s− has a real negative 

root on the right of the remaining complex roots. 

Finally, from Theorems 7, 9, 11 and by using the Routh criterion the next theorem easily 
follows. 

Theorem 12. Give the process (3) with limited uncertainties for  1 3
c

n n= + =  and assigned 

some design values of ˆ
v

K  and ˆ
r d

δ
− $$ . Let be choose { }1 2 2

, ,P p p p= =  

{ } 2 231, ,i iα α α ωω ω− − + − − + , with 1α >  and ω  such that the roots of  
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 3 2

1 2 3 1 2 3
( ) ( ) , ( ) ( )( )( )n s s d s d s d s d d s s p s p s p= − = + + = − − −  (47) 

are real  (e.g. 1.5a = −  and 2.598ω ≥ , 2a = −  and 2.544, ...ω ≥ ). Then said ρ̂ a number not 

minus than 

 
1

ˆˆ n

K v

n

d
K

d
ρ

+

= , (48) 

such that: 

 
{ }

3

1 2 1 1 1 1 2 2 3

1 1 1

ˆ ˆ ˆ ˆ( , , ) 2( ) 9( )(( )) 27 0

,   and  ,

a a b a bk a bk a bk bk

b b b a a a

δ − −

− + − +

= + − + + + <

∀ ∈ =⎡ ⎤⎣ ⎦
 (49) 

 2

1 1 1 2 1 2 3 1 2
ˆ ˆ ˆ ˆ ˆ ˆ0, ( ) 0,  ,a b k k k b b k k k a a b b b− − − − − ++ > + + − + > ∀ ∈⎡ ⎤⎣ ⎦ , (50) 

where 

 
2 3

1 1 2 2 3

1 2 3
ˆ ˆ ˆ, ,

d a d a d
k k k

b b b

ρ ρ ρ− +

− − −

− −
= = = , (51) 

under the hypothesis that the initial state of the control system of Fig. 2, with 1 3
c

n n= + =  

and ˆ
i i

k k= , is null and that (0) (0) 0r d− = , the error ( )e t  of the control system of Fig. 2, 

considering all the possible values of the process, satisfies relation 

 
[ ]0 ,

1 ˆ ˆ( ) , 0, ( ),  ( ) :  max ( ) ( )
ˆ r d r d r dt

v

e t t r t d t r d
K σ

δ δ σ σ δ
− − −∈

≤ ∀ ≥ ∀ = − ≤$ $ $$ $ $
$$ . (52) 

Note that, by applying the Routh conditions (50) to the polynomial ˆ( )d s α− , 
max

ˆ ˆ1α τ= , 

instead of to ( )d s , it is possible to satisfy also the specification about 
max
τ ; so the 

specifications 2. are all satisfied. 

Remark 8.  Give the process (3) with limited uncertainties and assigne the design values of 
ˆ

v
K , 

max
τ̂  and of ˆ

r d
δ

− $$ ; if 1 2, 3,4
c

n n= + = , by choosing P  in accordance with Theorem 9, a 

controller such that, for all the possible values of the parameters of the process, 
max max

ˆτ τ≤  

and the error ( )e t  satisfies relation (2), can be obtained by increasing, if necessary, 

iteratively ρ̂  starting from the value of 
1

ˆˆ
K v n n

K d dρ += with the help of the command  roots 

and with the Monte Carlo method. 

According to this, note that for 4
c

n ≤  the control system of Fig. 2 (for an assigned set of 

parameters) is externally positive and 
max max

ˆτ τ≤  if, denoting with 
j

p  the root of ( )d s having 

the maximum real part, imag( ) 0
j

p = and 
max

ˆreal( ) 1
j

p τ≤ − . 

Note that the proposed design method, by taking into account Theorem 8, can be easily extended in 

the case of 4
c

n ≥ . 
Example 1. Consider a planar robot (e.g. a plotter) whose end-effector must plot dashed 
linear and continuous lines with constant velocities during each line. 
Under the hypothesis that each activation system is an electric DC motor (with inertial load, 
possible resistance in series and negligble inductance of armature) powered by using a 
power amplifier, the model of the process turns out to be 
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2

1 22

1 2

( ) , ,  0,  a

a

b RK K K
G s a a b g

s a s a RI RI

+
= = = =

+ +
. (53) 

If 

 2.5 5%,  0.5 5%,  0.01 5%,  0.05 5%,  100 10%
a a

R K K I g= ± = ± = ± = ± = ± , (54) 

it is 

 1 2
1.8 2.7, 0, 310 512a a b≤ ≤ = ≤ ≤ . (55) 

By choosing { } 2 231, ,P i iα α α ωω ω= − − + − − + , 1.5a = −  and 2.598ω = , 

1
2.25, 310,

n n
a b= =  for ˆ 2

v
K =  it is: ˆ 5.547,

K
ρ =

1
ˆ 0.0271 , k =  

2
ˆ =0.275,k

3
ˆ    0.550k = , 

1 2
max ( , , ) 1.108e3 0,

b
a a bδ − − = − <

1 2
max ( , , ) 1.181e3 0

b
a a bδ + − = − < , 

max
383msτ ≤ . 

Hence the controlled process is externally positive [ ]1
1.8,  2.7a∀ ∈  and [ ]310,  512b∀ ∈ . 

Therefore the overshoot is always null; moreover, said ,  
x y

r r  the components of the 

reference trajectory of the controlled robot, the corresponding tracking errors satisfy 

relations 2 
x x

e r≤ $ and 2
y y

e r≤ $ .  

For ˆ 10
v

K =  it is obtained that: ˆ 27.734,
K

ρ =  
1 2 3

ˆ ˆ ˆ0.165,    =6.877,     68.771 k k k= = , 

1 2 1 2
max ( , , ) 1.436e5 0, max ( , , )   1.454e5 0

b b
a a b a a bδ δ− − + −= − < =− < , max

75.3msτ ≤ . 

Hence 10 
x x

e r≤ $ and 10
y y

e r≤ $ . 

Suppose that a tracking goal is to engrave on a big board of size 22.5 0.70m×  the word 

INTECH  (see Fig. 12 ). In Fig. 11 the time histories of 
x

r , 
x

r$  and, under the hypothesis that 
ˆ 2

v
K = , the corresponding error 

x
e , in accordance with the proposed results are reported.  

Clearly the “tracking precision“ is unchanged 
x

r∀  with the same maximum value of 
x

r$ . 

Figs. 13 and 14 show the engraved words for ˆ 2
v

K =  and ˆ 10
v

K = , respectively. 
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Fig. 11. Time histories of ,
x x

r r$  and x
e for ˆ 2

v
K = . 
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Fig. 12. The desired “word“. 
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Fig. 13. The engraved word with ˆ 2
v

K = . 
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Fig. 14. The engraved word with ˆ 10
v

K = . 

Part II 

5. Problem formulation and preliminary results 

Now consider the following class of nonlinear dynamic system

 

 

1 2 2 2
1

( , , ) ( , , ) ( , , , ), ( , , ) ( , , ) ,
m

i i
i

y F y y p u F y y p y f t y y p F y y p F y y p y
=

= + + =∑$$ $ $ $ $ $ $ $  (56) 

where t R∈  is the time, my R∈  is the output, ru R∈  is the control input, p Rμ∈℘⊂  is the 

uncertain parametric vector of the system, with ℘  a compact set, 
1

m rF R ×∈  is a limited 

matrix with rank m , 2

mxm

i
F R∈  are limited matrices and mf R∈  is a limited vector which 

models possible disturbances and/or particular nonlinearities of the system. 

In the following it is supposed that there exists at least a matrix  ( , )
r m

K y y R
×

∈$  such that the 

matrix 
1

H F K=  is positive definite (p.d.) p∀ ∈℘ . 
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Remark 9. It is important to note that the class of systems (56) includes the one, very 
important from a practical point of view, of the articulated mechanical systems (mechanical 
structures, flexible too, robots,…). Indeed it is well-known that mechanical systems can be 
described as follows 

 ,Bq c g Tu= + +$$  (57) 

where: 

- mq R∈  is the vector of the Lagrangian coordinates, 

- ( , )B q p  is the inertia matrix (p.d.), in which ,p Rμ∈℘⊂  with ℘  a compact set, is the 

vector of the uncertain parameters of the mechanical system, 

- ( , , ) ,c C q q p q= $ $  with C  linear with respect to q$ , is the vector of the generalized 

centrifugal forces, the Coriolis and friction ones, 

- ( , , )g g t q p=  is the vector of the generalized gravitational and elastic forces and of the 

external disturbances, 

- u  is the vector of the generalized control forces produced by the actuators, 
- T  is the transmission matrix of the generalized control forces. 

If system (56) is controlled by using the following state feedback control law with a partial 

compensation  

 ( ) ,
p d c

u K K y K y u= − + −$  (58) 

where 
p

K , m m

d
K R ×∈  are constant matrices, r mK R ×∈  is a matrix depending in general on 

, ,t y y$   and 
c

u  is the partial compensation signal,  the closed-loop system is  

 

1 1 2 1
21 1

1 1

0 0 0 0
,

0

where  , ,

0 , 0 .

m m

m i i m i
p d ii i

c

y

I
x x x x w A x A x x Bw

HK HK F I

H F K w f F u

y I x Cx y I x C x

− + − +
= =

⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤
= + + = + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎜ ⎟− −⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠

= = −

= = = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑ ∑

$

$

$

 (59) 

In order to develop a practical robust stabilization method for system (59) the following 
definition and results are necessary. 

Definition 2. Give system (59) and a symmetric p.d. matrix nxnP R∈ . A positive first-order 

system ( , ),f dρ ρ=$ ( ), ( )p pv vη ρ η ρ= = , where T
P

x x Pxρ = =  and maxd w= , such that  

,  py v y v≤ ≤$  is said to be majorant system of system (59). 

Theorem 13. Consider the quadratic system 

 2 2

1 2 2 1 0 1 2 0
, 0,  , 0, (0) 0, 0.d dρ α ρ α ρ β α ρ α ρ α α α β ρ ρ= + + = + + < ≥ = ≥ ≥$  (60) 

If 2

1 2
 4 0dα α β− >  it is: 

 1 2 0 1

1 0 2

0 2 2 2 1

( ) 1
( ) ,  where ( ) ,  , lim ( ) ,  ,

1 ( ) ( )
t

t

t
t t e t

t
τρ ρ ϕ ρ ρρ ϕ τ ρ ρ ρ ρ

ϕ ρ ρ α ρ ρ
−

→∞

− −
= = = ≤ ∀ <

− − −
 (61) 
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where 
1 2
,ρ ρ , 

1 2
ρ ρ< , are the roots of the algebraic equation 2

2 1 0 0α ρ α ρ α+ + =
 
(see Fig. 

15). Moreover for 0d =  the practical convergence time 5% 5% 0( ) 5%t tρ ρ=5  is given by (see 

Fig. 16): 

 0 20

5% 1 20 1 2

0 20

20
, 1 , ln , ,

1
l l

t
ρ ρ

γτ τ α γ ρ α α
ρ ρ
−

= = − = = −
−

 (62) 

in which 
l
τ  is the time constant of the linearized of system (60) and 

20
ρ  is the upper bound 

of the convergence interval of  ( )tρ  for 0d = , i.e. of system (60) in free evolution. 
 
 

 
 

Fig. 15. Graphical representation of system(60). 

Proof. The proof of (61) easily follows by solving, with the use of the method of separation 

of variables, the equation ( )( )2 1 2
d dtρ α ρ ρ ρ ρ= − −  and from Fig. 15. Instead (62) easily 

derives by noting that the solution of (60) for 0d =  is 

 20

/0 0 20

0

( ) 1
.

1 1 t l

t

e τ

ρ ρ
ρ ρ ρ

ρ

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

 (63) 
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Fig. 16. Time history of ρ  and γ  as a function of 0ρ  
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Theorem 14. Give a matrix n nP R ×∈  p.d. and a matrix m nC R ×∈  with rank m . If  
P

x ρ≤  

then the  smallest α  such that ,
P

v xα αρ≤ ≤  where v Cx= , turns out to be 
1

max
( ).TCP Cα λ −=  

Proof. The proof is standard. 

Theorem 15. Let be 

 
{ }

1 2

1 2

1 2

... 1 1 2 2
, ,..., 0,1

( ) ( ) ... ( )
ii i m m

i i i
i i i

A A g g g Rμ

μ
μ

μ μπ π π ×

∈

= ∈∑  (64) 

a symmetric matrix, where  

 { }1 2
[ ... ] :T Rμ

μπ π π π π π π π− += ∈∏ = ∈ ≤ ≤  (65) 

and each function , 1,..., ,
i

g i μ=  is continuous with respect to its argument, and n nP R ×∈  a 

symmetric p.d. matrix. Then the minimum (maximum) of 1

min
( )QP

π
λ −

∈∏
 ( 1

max( )QPλ − ), where 

( )TQ A P PA= − + : is assumed in one of the 2μ  vertices of Γ , in which 

 { }1 1
: min[ ... ] max[ ... ] .R g g g gμ

μ μγ γΓ = ∈ ≤ ≤  (66) 

Proof. The proof can be found in (Celentano, 2010).  

6. Main results 

Now the following main result, which provides a majorant system of the considered control 

system, is stated. 

Theorem 16. Give a symmetric p.d. matrix n nP R ×∈ . Then a majorant system of the system 

(59) is 

 2

1 2 ,  , ,
p p

d v c v cρ α ρ α ρ β ρ ρ= + + = =$  (67) 

in which:  

 
,

1
min 1

1 1 1 1
,

( )
min ,  ( ),

2P

T

x C p

Q P
Q A P PA

ρ

λα
−

∈ ∈℘
= − = − +  (68) 

 
,1

1
min 2 1

1
2 2 2 2

,

( )

min ,  ( ),
2P

m

i m i
Ti

i i i
x C p

Q P x

Q A P PA

λ
α

−
+ −

=

∈ ∈℘
= − = − +

∑
 (69) 

 ( ) ( ) ( )
,

1 1
max max max

, ,
,   , , max ,

P

T T T
p y y

t R x C p
B PB c CP C c C P C d w

ρ

β λ λ λ− −

∈ ∈ ∈℘
= = = =$ $  (70) 

where { }2

,
: .T

P
C x x Pxρ ρ= =

 
 

Proof. By choosing as "Lyapunov function" the quadratic form 
2 2T

P
V x Px x ρ= = = ,  for x  

belonging to a generic hyper-ellipse 
,P

C ρ , it is 
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, , ,

1
2

11

, , , ,
min  min  max .

2 2P P P

n
T

i iT T
i

T T Tx C p x C p t x C p

x Q x P x
x Q x x PBw

x Px x Px x Pxρ ρ ρ

ρ

−

=

∈ ∈℘ ∈ ∈℘ ∈ ∈℘
≤ − − +

∑
$  (71) 

The proof easily follows from (71)   
It is valid the following  important “non-interaction” theorem. 
Theorem 17. If in Theorem 16 it is 

 2

2

, 2 , , 0,2p d

aI I

K Ia K Ia P a
I I

a

⎡ ⎤
⎢ ⎥= = = >⎢ ⎥
⎢ ⎥⎣ ⎦

 (72) 

then: 

 
,

min min1
min 1

1
, ,

min

[ ( ) 1], if ( ) 2
( ) 2

min
2

, if ( ) 2,
2

P

T T

x C p T

a
H H H H

Q P

a
H Hρ

λ λ
λα

λ

−

∈ ∈℘

⎧− + − + <⎪⎪= − = ⎨
⎪ − + ≥
⎪⎩

 (73) 

 
,1

2 2
min 1

1 2 2 2
2

,

2

2 2
min ,

2P

m
i i

m iT
i i i i

x C p

A A
x

A A A
λ

α
+ −

=

∈ ∈℘

⎛ ⎞⎡ ⎤−
⎜ ⎟⎢ ⎥
⎜ ⎟− −⎢ ⎥⎣ ⎦⎝ ⎠= −

∑
 (74) 

 
4 4

42 2
, , 2 .

p
c c a

a a
β = = =  (75) 

Proof. First note that, by making the change of variable 1z T x−= , with T  such that 

[ ]1 1 2 2
... ,

T

m m
z y y y y y y= $ $ $

 
the matrix ˆ TP T PT=  is block-diagonal with blocks on the 

principal diagonal equal to  

 

2 1
ˆ .2

1
ii

a

P

a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (76) 

Since ˆ
ii

P  is p.d. 0a∀ > , it follows that P̂  is p.d. and, therefore, also P  is p.d. . 
Now note that  

 

2 2
0

;2 0
2

aI I
II I

a
II I

I aIa

⎡ ⎤ ⎡ ⎤
− ⎡ ⎤⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (77) 

hence  

 1

2

.

2

I I
P a

I aI

−

⎡ ⎤
−⎢ ⎥= ⎢ ⎥

⎢ ⎥−⎣ ⎦

 (78) 
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Then it is 

 

1 1 1

1 1 1 1

2

2

2

2

2 2

( )

2 200
2 22

2

2
0 2

2 02

0 2 ( 2 )

2 2

T T

T

T

T

T

T

T

QP A P PA P A PA P

aI I Ia H I I
a

a H aHI aH I I
I aIa

aI I
a H I aI

a HI aH I I
a

a H aI a H I

I aH I

− − −= − + = − − =

⎡ ⎤ ⎡ ⎤
−⎡ ⎤ ⎡ ⎤ −⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎡ ⎤−⎢ ⎥= + =⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤ −

= +⎢ ⎥
−⎢ ⎥⎣ ⎦

22 ( 2 )
.

( ) 0 2 ( )

T

T

aI a H H I

a H I a H H I

⎡ ⎤ ⎡ ⎤+ −
=⎢ ⎥ ⎢ ⎥

− + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (79) 

Therefore 

 1( ) ( 2 ) ( 2 ( )),TQP aI a H H Iλ λ λ− = ∪ + −  (80) 

from which (73) easily follows. 

In order to prove (74) note that, if T  is a symmetric nonsingular matrix, it is  

 ( ) ( ) ( )1 1 1 1 1 1 1

2 2 2 2 2 2
ˆ ˆ ˆˆ ˆ ˆ ˆ( ) , , .T

i i i i i i
Q P TQ P T A P PA P A TA T P T PTλ λ λ− − − − − − −= = − + = =  (81) 

By choosing a matrix 
0

0

aI
T

I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 it is: 

2

2 2

2 21 1

2 2

2 2 2

2
0 0 0 0 0 20 0 0 1ˆ ˆ, ,20 0 0 20 0 0

2 2ˆ ˆˆ ˆ ˆ ˆ, ( )
2 2 2

i

i i

i iT

i i T

i i i

I I aI I I
aI I I

A Pa a a
I F F a I II II I Ia

I I A A
P a A P PA P

I I A A A

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤− −

= − + =⎢ ⎥ ⎢ ⎥
− − −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

.
⎥

(82) 

From (69), (81) and (82) the relation (74) easily follows. 
Relations (75) easily follow from the third of (59), from (70), from the third of (72) and by 
considering (78). 

Remark 10. It is easy to note that the values of c  and 
p

c  provided by (75) are the same if, 

instead of y  and y$ , their components 
i

y  e 
i

y$  are considered. 
Now the main result can be stated. It allows determining the control law which guarantees 

prefixed majorant values of the time constant 
2 2 1

1

( )
τ

α ρ ρ
=

−
 related to ( )tϕ  and of the time 

constant 
1

1
l
τ

α
= −  of the linearized majorant system and prefixed majorant values of the 

“steady-state” ones of 
i

y  e 
i

y$ . 

Theorem 18. If system (56) is controlled by using the control law 

 ( )2 2 ,
c

u K a y ay u= − + −$  (83) 
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with ,  ,  
c

K a u  such that 

 ( ) 2 25
min 1 1 2

2, 2.463 ,T TK F F K a dλ α+ ≥ ≥  (84) 

where 

  

2 2

min 1

1
2 2 2

1 2
,, , ,1,

2

2 2
, min 0,

2

2

                                           ,2

max

m
i i

m i
T

i
i i i

c
x C pt R x C p PP

A A
x

A A A
d f F u

aI I

P
I I

a

ρ

λ

α
+ −

=

∈ ∈℘∈ ∈ ∈℘

−

− −
= − = − >

=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

 (85) 

said 1 2
,  ρ ρ  the roots of the equation 

 
4

2

2

2
0

2

a
d

a
α ρ ρ− + = , (86) 

0 0 0 0 2
: T

P
x x x Px ρ∀ = <  it is: 

 

4

4 1 2

0 1

0 2 2 2 1

2 ( )
( ) ( ), ( ) 2 ( ), ( ) ,

1 ( )

1
where   ( ) ,  ,

( )

i i

t

t
y t t y t a t t

ta

t e τ

ρ ρ ϕρ ρ ρ
ϕ

ρ ρϕ τ
ρ ρ α ρ ρ

−

−
≤ ≤ =

−
−

= =
− −

$
 (87) 

with time constant 
2

l
a

τ = ; moreover, for a  big enough such that 1 2
,ρ ρ2   it is:  

 
4

4

1 12

2 2 2 2
lim ( ) , lim ( ) 2 , .

i i lt t
y t d y t a d

a a aa
ρ ρ τ τ

→∞ →∞
≤ ≅ ≤ ≅ ≅ =$  (88) 

Proof. The proof of (87) follows from Theorems 13, 16 and 17. The proof of (88) derives from 

the fact that if 
1 2

ρ ρ2  it is 
4

1 2 1

2

2
,  .

2 2

aa

a
ρ ρ ρ

α
≅ − ≅  

Remark 11. As regards the determination of K  in order to satisfy the first of (84), the 

computation of 
c

u  to decrease d  and regarding the computation of 
2

α  and d , for 

limitation of pages, it has to be noted at least that for the mechanical systems, being 1

1
,F B−=  

taking into account that the inertia matrix B  is symmetric and  p.d.   and  mp y q R∀ ∈℘ ∀ = ∈ , 

under the hypothesis that T I=  it can be chosen ,K kI=  with 
max

( ).k Bλ≥  Moreover it can 

be posed ˆ( , , )
c

u g t y p= , with p̂  nominal value of the parameters. Finally the calculation of 

max
( )Bλ , 

2
α  and d  can be facilitated by suitably using Theorem 15. 

Remark 12. The stated theorems can be used for determining simple and robust control laws 
of the PD type, with a possible compensation action, in order to force system (56) to track a 
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generic preassigned limited in “acceleration” trajectory, with preassigned increases of the 
maximum “position and/or velocity” errors and preassigned increases of the time constants 
characterizing the convergence of the error. 

7. Conclusion 

In this chapter it is has been considered one of the main and most realistic control problem 
not suitable solved in literature (to design robust control laws to force an uncertain 
parametric system subject to disturbances to track generic references but regular enough 
with a maximum prefixed error starting from a prefixed instant time). 
This problem is satisfactorily solved for SISO processes, without zeros, with measurable 
state and with parametric uncertainties by using theorems and algorithms deriving from 
some proprierties of the most common filters, from Kharitonov’s theorem and from the 
theory of the externally positive systems. 
The considered problem has been solved also for a class of uncertain pseudo-quadratic 
systems, including articulated mechanical ones, but for limitation of pages only the two 
fundamental results have been reported. They allow to calculate, by using efficient 
algorithms, the parameters characterizing the performances of the control system as a 
function of the design parameters of the control law. 
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