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1. Introduction  

Practical systems are often modelled by nonlinear dynamics. Controlling nonlinear systems 
are still open problems due to their complexity nature. This problem becomes more complex 
when the system parameters are uncertain. To control such systems, we may use the 
linearization technique around a given operating point and then employ the known 
methods of linear control theory.  This approach is successful when the operating point of 
the system is restricted to a certain region. Unfortunately, in practice this approach will not 
work for some physical systems with a time-varying operating point. The fuzzy model 
proposed by Takagi-Sugeno (T-S) is an alternative that can be used in this case. It has been 
proved that T-S fuzzy models can effectively approximate any continuous nonlinear 
systems by a set of local linear dynamics with their linguistic description. This fuzzy 
dynamic model is a convex combination of several linear models. It is described by fuzzy 
rules of the type If-Then that represent local input output models for a nonlinear system. The 
overall system model is obtained by “blending” these linear models through nonlinear 
fuzzy membership functions. For more details on this topic, we refer the reader to (Tanaka 
& al 1998 and Wand & al, 1995) and the references therein. 
The stability analysis and the synthesis of controllers and observers for nonlinear systems 
described by T-S fuzzy models have been the subject of many research works in  recent 
years. The fuzzy controller is often designed under the well-known procedure: Parallel 
Distributed Compensation (PDC). In presence of parametric uncertainties in T-S fuzzy 
models, it is necessary to consider the robust stability in order to guarantee both the stability 
and the robustness with respect to the latter. These may include modelling error, parameter 
perturbations, external disturbances, and fuzzy approximation errors. So far, there have 
been some attempts in the area of uncertain nonlinear systems based on the T-S fuzzy 
models in the literature. The most of these existing works assume that all the system states 
are measured. However, in many control systems and real applications, these are not always 
available. Several authors have recently proposed observer based robust controller design 
methods considering the fact that in real control problems the full state information is not 
always available. In the case without uncertainties, we apply the separation property to 
design the observer-based controller: the observer synthesis is designed so that its dynamics 
are fast and we independently design the controller by imposing slower dynamics. Recently, 
much effort has been devoted to observer-based control for T-S fuzzy models. (Tanaka & al, 
1998) have studied the fuzzy observer design for T-S fuzzy control systems. Nonetheless, in 
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the presence of uncertainties, the separation property is not applicable any more. In (El 
Messousi & al, 2006), the authors have proposed sufficient global stability conditions for the 
stabilization of uncertain fuzzy T-S models with unavailable states using a robust fuzzy 
observer-based controller but with no consideration to the control performances and in 
particular to the transient behaviour.  
From a practical viewpoint, it is necessary to find a controller which will specify the desired 
performances of the controlled system. For example, a fast decay, a good damping can be 
imposed by placing the closed-loop poles in a suitable region of the complex plane. Chilali 
and Gahinet (Chilali & Gahinet, 1996) have proposed the concept of an LMI (Linear Matrix 
Inequality) region as a convenient LMI-based representation of general stability regions for 
uncertain linear systems. Regions of interest include ǂ-stability regions, disks and conic 
sectors. In (Chilali & al 1999), a robust pole placement has been studied in the case of linear 
systems with static uncertainties on the state matrix. A vertical strip and ǂ-stability robust 
pole placement has been studied in (Wang & al, 1995, Wang & al, 1998 and Wang & al, 2001) 
respectively for uncertain linear systems in which the concerned uncertainties are polytopic 
and the proposed conditions are not LMI. In (Hong & Man 2003), the control law synthesis 
with a pole placement in a circular LMI region is presented for certain T-S fuzzy models. 
Different LMI regions are considered in (Farinwata & al, 2000 and Kang & al, 198), for 
closed-loop pole placements in the case of T-S fuzzy models without uncertainties. 
In this work, we extend the results of (El Messoussi & al, 2005), in which we have developed 
sufficient robust pole placement conditions for continuous T-S fuzzy models with 
measurable state variables and structured parametric uncertainties.  
The main goal of this paper is to study the pole placement constraints for T-S fuzzy models 
with structured uncertainties by designing an observer-based fuzzy controller in order to 
guarantee the closed-loop stability. However, like (Lo & Li, 2004 and Tong & Li, 2002), we do 
not know the position of the system state poles as well as the position of the estimation error 
poles. The main contribution of this paper is as follows: the idea is to place the poles associated 
with the state dynamics in one LMI region and to place the poles associated with the 
estimation error dynamics in another LMI region (if possible, farther on the left). However, the 
separation property is not applicable unfortunately. Moreover, the estimation error dynamics 
depend on the state because of uncertainties. If the state dynamics are slow, we will have a 
slow convergence of the estimation error to the equilibrium point zero in spite of its own fast 
dynamics. So, in this paper, we propose an algorithm to design the fuzzy controller and the 
fuzzy observer separately by imposing the two pole placements. Moreover, by using the H∞ 
approach, we ensure that the estimation error converges faster to the equilibrium point zero. 
This chapter is organized as follows: in Section 2, we give the class of uncertain fuzzy 
models, the observer-based fuzzy controller structure and the control objectives. After 
reviewing existing LMI constraints for a pole placement in Section 3, we propose the new 
conditions for the uncertain augmented T-S fuzzy system containing both the fuzzy 
controller as well as the observer dynamics. Finally, in Section 4, an illustrative application 
example shows the effectiveness of the proposed robust pole placement approach.  Some 
conclusions are given in Section 5. 

2. Problem formulation and preliminaries 

Considering a T-S fuzzy model with parametric uncertainties composed of r plant rules that 
can be represented by the following fuzzy rule: 
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Plant rule i :   

If 1( )z t is M1i and …and ( )z tν  is iMν  Then 
( ) ( ) ( ) ( ) ( ),

( ) ( ) 1,...,
i i i i

i

x t A A x t B B u t

y t C x t i r

= + Δ + + Δ⎧
⎨ = =⎩

�
 (1) 

The structured uncertainties considered here are norm-bounded in the form: 

 
( ) ,

( ) , 1,...,
i ai ai ai

i bi bi bi

A H t E

B H t E i r

Δ = Δ
Δ = Δ =

  (2) 

Where , , ,ai bi ai biH H E E are known real constant matrices of appropriate dimension, and 

( ), ( )ai bit tΔ Δ  are unknown matrix functions satisfying: 

 
( ) ( ) ,

( ) ( ) 1,...,

t
ai ai

t
bi bi

t t I

t t I i r

Δ Δ ≤

Δ Δ ≤ =
  (3) 

( )t
ai tΔ is the transposed matrix of ( )ai tΔ and I is the matrix identity of appropriate 

dimension. We suppose that pairs ( ),i iA B  are controllable and ( ),i iA C are observable. ijM  

indicates the  jth fuzzy set  associated to the ith  variable ( )iz t , r is the number of fuzzy model 

rules, ( ) nx t ∈ℜ is the state vector, ( ) mu t ∈ℜ  is the input vector, ( ) ly t R∈  is the output vector, 

n n
iA ×∈ℜ , n m

iB ×∈ℜ  and l n
iC ×∈ℜ . 1( ),..., ( )vz t z t  are premise variables. 

From (1), the T-S fuzzy system output is  : 

 
[ ]

1

1

( ) ( ( )) ( ) ( ) ( ) ( )

( ) ( ( )) ( )

r

i i i i i
i

r

i i
i

x t h z t A A x t B B u t

y t h z t C x t

=

=

⎧ = + Δ + + Δ∑⎪⎪
⎨
⎪ = ∑
⎪⎩

�
 (4) 

where  

1

( ( ))
( ( ))

( ( ))

i
i r

i
i

w z t
h z t

w z t
=

=
∑

 and 
1

( ( )) ( ( ))
ij

v

i M j
j

w z t z tμ
=

= ∏  

Where ( ( ))
ijM jz tμ is the fuzzy meaning of symbol Mij. 

In this paper we assume that all of the state variables are not measurable. Fuzzy state 
observer for T-S fuzzy model with parametric uncertainties (1) is formulated as follows: 
Observer rule i:  

 If 1( )z t is M1i and …and ( )z tν  is iMν Then  
ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( )),

ˆ ˆ( ) ( ) 1,...,
i i i

i

x t A x t B u t G y t y t

y t C x t i r

⎧ = + − −⎪
⎨

= =⎪⎩

�
   (5) 

The fuzzy observer design is to determine the local gains n l
iG ×∈ℜ  in the consequent part. 

Note that the premise variables do not depend on the state variables estimated by a fuzzy 

observer. 

The output of (5) is represented as follows: 
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{ }
1

1

ˆ ˆ ˆ( ) ( ( )) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ( )) ( )

r

i i i i
i

r

i i
i

x t h z t A x t B u t G y t y t

y t h z t C x t

=

=

⎧
= + − −⎪

⎪
⎨
⎪ =⎪⎩

∑

∑

�

              (6) 

To stabilize this class of systems, we use the PDC observer-based approach (Tanaka & al, 
1998). The PDC observer-based controller is defined by the following rule base system: 
Controller rule i :   

 If 1( )z t is M1i and …and ( )z tν  is iMν Then ˆ( ) ( ) 1,...,iu t K x t i r= =          (7) 

The overall fuzzy controller is represented by: 

 1

1

1

ˆ( ( )) ( )

ˆ( ) ( ( )) ( )

( ( ))

r

i i r
i

i ir
i

i
i

w z t K x t

u t h z t K x t

w z t

=

=

=

= =
∑

∑
∑

                        (8) 

Let us denote the estimation error as: 

 ˆ( ) ( ) ( )e t x t x t= −                                                (9) 

The augmented system containing both the fuzzy controller and observer is represented as 
follows: 

 
( ) ( )

( ( ))
( ) ( )

x t x t
A z t

e t e t

⎡ ⎤ ⎡ ⎤
= ×⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

�
�

                                                  (10) 

where 

 

( ) ( )

1 1

( ( )) ( ( )) ( ( ))

( ) ( ) ( )

r r

i j ij
i j

i i i i j i i j

ij
i i j i i j i j

A z t h z t h z t A

A A B B K B B K
A

A B K A G C B K

= =
=

+ Δ + + Δ − + Δ⎡ ⎤
⎢ ⎥=

Δ + Δ + − Δ⎢ ⎥⎣ ⎦

∑∑
   (11) 

The main goal is first, to find the sets of matrices iK  and iG  in order to guarantee the global 

asymptotic stability of the equilibrium point zero of (10) and secondly, to design the fuzzy 
controller and the fuzzy observer of the augmented system (10) separately by assigning both 
“observer and controller poles” in a desired region in order to guarantee that the error 
between the state and its estimation converges faster to zero. The faster the estimation error 
will converge to zero, the better the transient behaviour of the controlled system will be. 

3. Main results 

Given (1), we give sufficient conditions in order to satisfy the global asymptotic stability of 
the closed-loop for the augmented system (10). 
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Lemma 1:  The equilibrium point zero of the augmented system described by (10) is globally 

asymptotically stable if there exist common positive definite matrices 1P  and 2P , matrices 

iW , jV  and positive scalars 0ijε ;  such as 

 
0,  1,...,

0,  
ii

ij ji

i r

i j r

Π ≤ =
Π +Π ≤ < ≤

 (12) 

And 

 
0,  1,...,

0,   
ii

ij ji

i r

i j r

Σ ≤ =
Σ + Σ ≤ < ≤

                                                  (13) 

with 

1

1 0.5 0 0 0

0 0.5 0 0

0 0 0

0 0 0

t t t
ij ai j bi i bi

ai ij

bi j ijij

t
i ij

t
bi ij

D P E V E B H

E P I

E V I

B I

H I

ε

ε

ε

ε

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−Π = ⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

*
2 2

1

1
2

1
2

1

0 0 0

0 0 0

0 0 0.5 0

0 0 0

t t t
ij j bi ai bi j

bi j ij

t
ij ai ij

t
bi ij

j ij

D K E P H P H K

E K I

H P I

H P I

K I

ε

ε

ε

ε

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥∑ = −
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

1 1

* 1
2 2

t t t t t
ij i i i j j i ij ai ai ij bi bi

t t t t t
ij i i i j j i ij j bi bi j

D A P P A BV V B H H H H

D P A A P W C C W K E E K

ε ε

ε −
= + + + + +

= + + + +
 

Proof: using theorem 7 in (Tanaka & al, 1998), property (3), the separation lemma (Shi & al, 
1992)) and the Schur’s complement (Boyd & al, 1994), the above conditions (12) and (13) 
hold with some changes of variables. Let us briefly explain the different steps… 
From (11), in order to ensure the global, asymptotic stability, the sufficient conditions must 
be verified: 

 0 : ( , ) 0
tt

ij ijDX X M A X A X XA∃ = > = + <  (14) 

Let: 11

22

0

0

X
X

X

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

where 0 is a zero matrix of appropriate dimension. From (14), we have: 

 1 2( , )D D DM A X M M= +  (15) 

With 11

2

0

0D

D
M

D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

where  

 1 11 11 11 11
t t t

i i i j j iD A X X A B K X X K B= + + +  (16) 

and  

 2 22 22 22 22
t t t

i i i j j iD A X X A G C X X C G= + + +  (17) 
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From (15),  

1 11 11 22 222

11 11 22 22 2

t t t
i j i i j i j

D t t t t
i i j j i j i

X A X K B B K X B K X
M

A X B K X X K B X K B

⎡ ⎤Δ Δ + Δ − − Δ
⎢ ⎥=
⎢ ⎥Δ + Δ − − Δ Δ⎣ ⎦

  

where 1 11 11 11 11
t t t

i i i j j iA X X A B K X X K BΔ = Δ + Δ + Δ + Δ  and 2 22 22
t t

i j j iB K X X K BΔ = −Δ − Δ  

From (15), we have:  

2
1 2 3DM = Σ + Σ + Σ with

22 22

1
22 22

0

0

i j i j

t t t t
j i j i

B K X B K X

X K B X K B

− − Δ⎡ ⎤
⎢ ⎥Σ =
− − Δ⎢ ⎥⎣ ⎦

,

11 11
2

11 11

0

0

t t t
i j i

i i j

X A X K B

A X B K X

⎡ ⎤Δ + Δ
⎢ ⎥Σ =
Δ + Δ⎢ ⎥⎣ ⎦

and 1
3

2

0

0

Δ⎡ ⎤
Σ = ⎢ ⎥Δ⎣ ⎦

 

Let 1
11 1 11 2,  X P X P−= = . From the previous equation and (2), we have: 

 

1 1 1 1
2 2 2

1
2

0 0 0 0 0 00 0 0 00

0 00 0 00 0

0 00

00 0

i
t t tt t t
j j j bii bi bi

bi bi

bi j

B

P K K P P K EB H

H

E K P

− − −

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
Σ = × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − − Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤Δ
+ × ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (18)  

And, 

 

11 1
2

1

0 0 0 0 00 0 0

0 0 0 00 0 0 0 0 0

0 0

0 00 0

t t t
bi jai ai ai ai

ai ai bi bi

t t t t
j bi bi bi

E K PE P P E H

H H

P K E H

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ Δ
Σ = × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ

+ ×⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (19) 

And finally: 

 

1 1 1
3

1

1 1
2 2

0 0

00 0 0 0 0

0 0 0 00 0 0 0

0 00 0

t tt t t
ai ai aiai j biai ai bi bi

t t
bi j bi bi

t t t t
bi j j bibi bi bi bi

E P HP E P K EH H

E K P H

E K P P K EH H
− −

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ΔΔ Δ
Σ = × + × ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

Δ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

+ × + ×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
− Δ −Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (20) 

From (18), (19) and (20) and by using the separation lemma (Shi & al, 1992)), we finally obtain: 

 12

2

0

0D

T
M

T

⎡ ⎤
≤ ⎢ ⎥
⎣ ⎦

 (21) 

Where:  

1 1 1 1
1 1 1 1 1

1 1
1 1 1 1

t t t t t t
ij i i ij bi bi bi bi ij ai ai ij j bi bi j

t t t t t t t
ij ai ai ai ai ij bi bi bi bi ij ai ai ij j bi bi j

T B B H H P E E P P K E E K P

H H H H P E E P P K E E K P

ε ε ε ε

ε ε ε ε

− − − −

− −

= + Δ Δ + +

+ Δ Δ + Δ Δ + +
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and  

1 1 1 1
2 2 2 2 2

1 1 1
2 2

t t t t t
ij j j ij j bi bi j ij ai ai ai ai

t t t t t t
ij bi bi bi bi ij bi bi bi bi ij j bi bi j

T P K K P P K E E K P H H

H H H H P K E E K P

ε ε ε

ε ε ε

− − − −

− − −

= + + Δ Δ

+ Δ Δ + Δ Δ +
 

From (15), (16), (17) and (21), we have: 

 1 1 1

2 2 2

0 0
( , )

0 0D

D T R
M A X

D T R

+⎡ ⎤ ⎡ ⎤
≤ =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 (22) 

In order to verify (14), we must have: 

 1

2

0
0

0

R

R

⎡ ⎤
<⎢ ⎥

⎣ ⎦
 (23) 

Which implies:  

 1

2

0

0

R

R

<⎧
⎨ <⎩

 (24) 

First, from (24), by using (3), using the Schur’s complement (Boyd & al, 1994) as well as the 

introduction of the new variable: 1i jV K P= : 

 

1

1

1

0

0.5 0 0 0

0 0.5 0 0 0

0 0 0

0 0 0

t t t
ij ai j bi i bi

ai ij

bi j ij

t
i ij

t
bi ij

R

D P E V E B H

E P I

E V I

B I

H I

ε

ε

ε

ε

<

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⇔ <⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (25) 

Where I is always the identity matrix of appropriate dimension and 

1 1
t t t t t

ij i i i j j i ij ai ai ij bi biD A P P A BV V B H H H Hε ε= + + + + +  

Then, from (24), by using (3), using the Schur’s complement (Boyd & al, 1994) as well as the 

introduction of the new variable: 2i iW P G= : 

 

2

*
2 2

1

1
2

1
2

1

0

0 0 0

00 0 0

0 0 0.5 0

0 0 0

t t t
ij j bi ai bi j

bi j ij

t
ai ij

t
bi ij

j ij

R

D K E P H P H K

E K I

H P I

H P I

K I

ε

ε

ε

ε

−

−

−

−

<

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⇔ <−
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (26) 
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Where * 1
2 2

t t t t t
ij i i i j j i ij j bi bi jD P A A P W C C W K E E Kε −= + + + +  

Thus, conditions (12) and (13) yield for all i, j from (25) and (26) and by using theorem 7 in 
(Tanaka & al, 1998) which is necessary for LMI relaxations. 

Remark 1: In lemma 1, the positive scalars ijε  are optimised unlike (Han & al, 2000), (Lee & 

al, 2001), (Tong & Li, 2002), (Chadli & El Hajjaji, 2006). We do not actually need to impose 

them to solve the set of LMIs. The conditions are thus less restrictive. 

Remark 2: Note that it is a two-step procedure which allows us to design the controller and 

the observer separately. First, we solve (12) for decision variables 1( , , )j ijP K ε  and secondly, 

we solve (13) for decision variables 2( , )iP G by using the results from the first step. 

Furthermore, the controller and observer gains are given by: 1
2i iG P W−=  and 1

1j jK V P−= , 

respectively, for , 1,2,..., .i j r=  
Remark 3:  From lemma 1 and (10), the location of the poles associated with the state 
dynamics and with the estimation error dynamics is unknown. However, since the design 
algorithm is a two-step procedure, we can impose two pole placements separately, the first 
one for the state and the second one for the estimation error. In the following, we focus in 
the robust pole placement.  
We hereafter give sufficient conditions to ensure the desired pole placements by using the 
LMI conditions of (Chilali & Gahinet (1996) and (Chilali & al, 1999) to the case of uncertain 
T-S fuzzy systems with unavailable state variables. Let us recall the definition of an LMI 
region and pole placement LMI constraints. 

Definition 1 (Boyd & al, 1994): A subset D of the complex plane is called an LMI region if 

there exists a symmetric matrix [ ] m m
klα α ×= ∈ℜ  and a matrix [ ] m m

klβ β ×= ∈ℜ  such as: 

 { }: ( ) 0t
DD z C f z z zα β β= ∈ = + + <                           (27) 

Definition 2 (Chilali and Gahinet, 1996):  Let D be a subregion of the left-half plane. A 
dynamical system described by: x Ax=� is called D-stable if all its poles lie in D. By 
extension, A is then called D-stable. 
From the two previous definitions, the following theorem is given. 
Theorem 1 (Chilali and Gahinet , 1996): Matrix A is D-stable if and only if there exists a 
symmetric matrix 0X >  such as 

 ( , ) 0t t
DM A X X AX XAα β β= ⊗ + ⊗ + ⊗ <                       (28) 

where ⊗ denotes the Kronecker product. 

From (10) and (11), let us define: ( ) ( )ij i i i i jT A A B B K= + Δ + + Δ  and ij i i j i jS A G C B K= + − Δ .  

We hereafter give sufficient conditions to guarantee that 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t T
= =
∑∑ and 

1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t S
= =
∑∑  are TD -stable and SD -stable respectively in order to impose the 

dynamics of the state and the dynamics of the estimation error.   

Lemma 2: Matrix 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t T
= =
∑∑  is TD -stable if and only if there exist a symmetric 

matrix 1 0P >  and positive scalars 0ijμ ;  such as 
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0,  1,..., ,

0,  .
ii

ij ji

i r

i j r

Ω ≤ =
Ω +Ω ≤ < ≤

                                                   (29) 

With 

 

( ) ( )
( )

( )
( ) ( )

1

1

1 1 1

1

0

0

t t t t
ij ai j bi

ij ai ij

bi j ij

t t
ij ij ij ai ai ij bi bi

t t t t t
ij i i i j j i

j j

E P E V E

E P I

E V I

E I H H I H H

P A P P A BV V B

V K P

β β

β μ

β μ

ξ μ μ

ξ α β β β β

⎛ ⎞⊗ ⊗⎜ ⎟
⎜ ⎟Ω = ⊗ −
⎜ ⎟
⎜ ⎟⊗ −⎝ ⎠

= + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

=

 (30) 

 

Proof: Using theorem 1, matrix ijT  is DT-stable if and only if there exists a symmetric matrix 

0X >  such that: 

 ( , ) 0
T

t t
D ij ij ijM T X X T X XTα β β= ⊗ + ⊗ + ⊗ <  (31) 

 
( , )

T

t t t t t
D ij i i i j j i ai ai ai

t t t t t t t t t
ai ai ai bi bi bi j j bi bi bi

M T X X A X XA B K X XK B H E X

XE H H E K X XK E H

α β β β β β

β β β

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ Δ

+ ⊗ Δ + ⊗ Δ + ⊗ Δ
 (32) 

Let 1X P=  and 1j jV K P= : 

1 1( , ) ( )( ) ( )( ) ( )( )

( )( )

T

t t t t
D ij ij ai ai ai ai ai ai bi bi bi j

t t t t t
j bi bi bi

M T X I H E P P E I H I H E V

V E I H

ξ β β β

β

= + ⊗ Δ ⊗ + ⊗ ⊗Δ + ⊗ Δ ⊗

+ ⊗ ⊗Δ
 (33) 

where  

 1 1 1
t t t t t

ij i i i j j iP A P P A BV V Bξ α β β β β= ⊗ + ⊗ + ⊗ + ⊗ + ⊗  (34) 

Using the separation lemma (Shi & al, 1992) and (3), we obtain: 

 

1
1 1

1

( , ) ( ) ( )( )

( ) ( )( )

T

t t t
D ij ij ij ai ai ij ai ai

t t t t
ij bi bi ij j bi bi j

M T X I H H P E E P

I H H V E E V

ξ μ μ β β

μ μ β β

−

−

≤ + ⊗ + ⊗ ⊗

+ ⊗ + ⊗ ⊗
  (35) 

Thus, matrix ijT  is DT-stable if: 

 

1
1 1

1

( ) ( ) ( )( )

( )( ) 0

t t t t
ij ij ai ai ij bi bi ij ai ai

t t t
ij j bi bi j

I H H I H H P E E P

V E E V

ξ μ μ μ β β

μ β β

−

−

+ ⊗ + ⊗ + ⊗ ⊗

+ ⊗ ⊗ ≺
 (36) 

Where, of course, ,ij i jμ ∈ℜ ∀  
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By using the Schur’s complement (Boyd & al, 1994), 

 

( ) ( )
( )

( )
( ) ( )

1

1 0 0,

0

.

t t t t
ij ai j bi

ai ij

bi j ij

t t
ij ij ij ai ai ij bi bi

E P E V E

E P I

E V I

E I H H I H H

β β

β μ

β μ

ξ μ μ

⎛ ⎞⊗ ⊗⎜ ⎟
⎜ ⎟⊗ −
⎜ ⎟
⎜ ⎟⊗ −⎝ ⎠

= + ⊗ + ⊗

≺
 (37) 

Thus, conditions (29) easily yield for all i, j. 

Lemma 3: Matrix 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t S
= =
∑∑  is DS-stable if and only if there exist a symmetric 

matrix 2 0P > , matrices iW , jK  and positive scalars 0ijλ ;  such as 

 
0,  1,...,

0,  
ii

ij ji

i r

i j r

Φ ≤ =
Φ +Φ ≤ < ≤

 (38) 

with 

 

2

2

2 2 2

2

( )( )t t t
ij ij j bi bi j bi

ij t
bi ij

t t t t t
ij i i i j j i

i i

R K E E K I P H

I H P I

R P P A A P W C C W

W P G

λ β β

λ

α β β β β

⎛ ⎞+ ⊗ ⊗ ⊗
⎜ ⎟Φ =
⎜ ⎟⊗ −⎝ ⎠

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

=

 (39) 

Proof: Same lines as previously can be used to prove this lemma. 
Let: 

  
( , )

( ) ( )( ) 0

S

t t t t t
D ij i i i j j i

t t t t t
j bi bi bi bi bi bi j

M S X X A X XA G C X XC G

XK E I H I H E K X

α β β β β

β β

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

− ⊗ ⊗Δ − ⊗Δ ⊗ <
 (40) 

Using the separation lemma (Shi & al, 1992), by pre- and post- multiplying by 1I X−⊗ , we 

obtain: 

 

1 1 1 1 1

1 1

( ) ( ) ( ) ( )

( )( ) 1 / ( )( ) 0

t t t t t
i i i j j i

t t t t
ij j bi bi j ij bi bi

X X A A X X G C C G X

K E E K I X H I H X

α β β β β

λ β β λ

− − − − −

− −

⊗ + ⊗ + ⊗ + ⊗ + ⊗

+ ⊗ ⊗ + ⊗ ⊗ <
 (41) 

Where, of course,  ,ij i jλ ∈ℜ ∀  

Thus, by using the Schur’s complement (Boyd & al, 1994) as well as by defining 1
2P X−= : 

2 2 2 2 2 2

2

( )( )
0

t t t t t t t t
i i i j j i ij j bi bi j bi

ij t
bi ij

P P A A P P G C C G P K E E K I P H

I H P I

α β β β β λ β β

λ

⎛ ⎞⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ ⊗ ⊗
⎜ ⎟Φ = <
⎜ ⎟⊗ −⎝ ⎠

(42) 

By using 1
i iW X G−= , conditions (38) easily yield for all i, j. The lemma proof is given. 
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Remark 4: Any kind of LMI region (disk, vertical strip, conic sector) may be easily used for 

DS and TD . 
From lemma 2 and lemma 3, we have imposed the dynamics of the state as well as the 

dynamics of the estimation error. But from (10), the estimation error dynamics depend on 

the state.  If the state dynamics are slow, we will have a slow convergence of the estimation 

error to the equilibrium point zero in spite of its own fast dynamics. So in this paper, we add 

an algorithm using the H∞  approach to ensure that the estimation error converges faster to 

the equilibrium point zero. 

We know from (10) that: 

 

( )

( )
1 1

1 1

( ) ( ( )) ( ( )) ( )

( ( )) ( ( )) ( )

r r

i j i i j i j
i j

r r

i j ij i i j
i j

e t h z t h z t A G C B K e t

h z t h z t S A B K x t

= =

= =

= + − Δ

+ Δ + Δ

∑∑

∑∑

�

 (43) 

 

This equation is equivalent to the following system: 

 
1 1

( ( )) ( ( ))
0

r r
i i j i j i i j

i j
i j

A G C B K A B Ke e
h z t h z t

e xI= =

⎛ ⎞+ − Δ Δ + Δ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠
∑∑

�
 (44) 

 

The objective is to minimize the 2L  gain from ( )x t  to ( )e t  in order to guarantee that the 

error between the state and its estimation converges faster to zero. Thus, we define the 

following H∞  performance criterion under zero initial conditions: 

 2

0

{ ( ) ( ) ( ) ( )} 0t te t e t x t x t dtγ
∞

− <∫  (45) 

where *γ +∈ℜ  has to be minimized. Note that the signal ( )x t is square integrable because of 

lemma 1.  

We give the following lemma to satisfy the H∞  performance. 

Lemma 4: If there exist symmetric positive definite matrix 2P , matrices iW  and positive 

scalars 0,  0ijγ β; ;  such as 

 
0,  1,...,

0,  
ii

ij ji

i r

i j r

Γ ≤ =
Γ + Γ ≤ < ≤

                    (46) 

With 

2 2

2

2

0 0

0 0

0 0

t t
ij bi ai ij j bi bi j

t
bi ij

ij t
ai ij

t t
ij j bi bi j ij

Z P H P H K E E K

H P I

H P I

K E E K U

β

β

β

β

⎡ ⎤−
⎢ ⎥
⎢ ⎥−
⎢ ⎥Γ =
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦
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2 2
t t t t t

ij i i i j j i ij j bi bi jZ P A A P W C C W I K E E Kβ= + + + + +  

2 t t t
ij ij j bi bi j ij ai aiU I K E E K E Eγ β β= − + +  

Then, the dynamic system: 

 
1 1

( ( )) ( ( )) 
0

r r
i i j i j i i j

i j
i j

A G C B K A B Ke e
h z t h z t

e xI= =

+ − Δ Δ + Δ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
∑∑

�
 (47) 

satisfies the H∞  performance with a L2 gain equal or less than γ  (44) . 

Proof: Applying the bounded real lemma (Boyd & al, 1994), the system described by the 
following dynamics: 

 ( ) ( )( ) ( ) ( )i i j i j i i je t A G C B K e t A B K x t= + − Δ + Δ + Δ�  (48) 

satisfies the H∞  performance corresponding to the 2L  gain γ  performance if and only if 

there exists 2 2 0TP P= > : 

 
2 2

2 1
2 2

( ) ( )

( )( ) ( ) 0

t
i i j i j i i j i j

t
i i j i i j

A G C B K P P A G C B K

P A B K I A B K P Iγ −

+ − Δ + + − Δ

+ Δ + Δ Δ + Δ + ≺
  (49) 

 

Using the Schur’s complement, (Boyd & al, 1994) yields 

 
2 2

2
2 2

0

ij

ij i i j

t t t
i j i

J P A P B K

A P K B P Iγ

Θ

Δ + Δ⎡ ⎤
⎢ ⎥
Δ + Δ −⎢ ⎥⎣ ⎦

≺

��������	�������


 (50) 

where 

 2 2 2 2 2 2
t t t t t

ij i i i j j i i j j iJ P A A P P G C C G P P B K K B P I= + + + − Δ − Δ +  (51) 

We get: 

2 2 2 22 2 2 2

2
2 2

0

00

ij

t tt t t
i j j i i i ji i i j j i

ij t t t
i j i

P B K K B P P A P B KP A A P P G C C G P I

A P K B PIγ
Δ

⎡ ⎤⎡ ⎤ − Δ − Δ Δ + Δ+ + + +
⎢ ⎥⎢ ⎥Θ = +
⎢ ⎥⎢ ⎥ Δ + Δ−⎣ ⎦ ⎣ ⎦���������	��������


  (52) 

By using the separation lemma  (Shi & al, 1992) yields 

 1 2 2 2 2 0

0 0

t t t t t t t t
j bi bi j j bi bi j bi bi bi bi ai ai ai ai

ij ij ijt t t t t
j bi bi j j bi bi j ai ai

K E E K K E E K P H H P P H H P

K E E K K E E K E E
β β −

⎡ ⎤− ⎡ ⎤Δ Δ + Δ Δ⎢ ⎥Δ ≤ + ⎢ ⎥
⎢ ⎥− + ⎢ ⎥⎣ ⎦⎣ ⎦

 (53) 

 

With substitution into ijΘ  and defining a variable change: 2i iW P G= , yields 
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2

t t
ij ij j bi bi j

ij t t t t t
ij j bi bi j ij j bi bi j ij ai ai

Q K E E K

K E E K I K E E K E E

β

β γ β β

⎡ ⎤−
⎢ ⎥Θ ≤
⎢ ⎥− − + +⎣ ⎦

 (54) 

where 

 

-1 t t -1 t t
ij ij ij 2 bi bi bi bi 2 ij 2 ai ai ai ai 2

t t t t t
ij 2 i i 2 i j j i ij j bi bi j

Q = R +ǃ P H Δ Δ H P + ε P H Δ Δ H P ,

R = P A + A P + W C + C W + I +ǃ K E E K .
 (55) 

Thus, from the following condition 

 
2

0

t t
ij ij j bi bi j

t t t t t
ij j bi bi j ij j bi bi j ij ai ai

Q K E E K

K E E K I K E E K E E

β

β γ β β

⎡ ⎤−
⎢ ⎥
⎢ ⎥− − + +⎣ ⎦

≺  (56) 

and using the Schur’s complement (Boyd & al, 1994), theorem 7 in ( Tanaka & al, 1998) and 
(3), condition (46) yields for all i,j. 
Remark 5: In order to improve the estimation error convergence, we obtain the following 

convex optimization problem: minimization γ  under the LMI constraints (46). 

From lemma 1, 2, 3 and 4 yields the following theorem: 
Theorem 2: The closed-loop uncertain fuzzy system (10) is robustly stabilizable via the 

observer-based controller (8) with control performances defined by a pole placement 

constraint in LMI region TD  for the state dynamics, a pole placement constraint in LMI 

region SD  for the estimation error dynamics and a 2L  gain γ  performance (45) as small as 

possible if first, LMI systems (12) and (29) are solvable for the decision variables 

1( , , , )j ij ijP K ε μ  and secondly, LMI systems (13), (38) , (46) are solvable for the decision 

variables 2( , , , )i ij ijP G λ β . Furthermore, the controller and observer gains are 1
1j jK V P−=  and 

1
2i iG P W−= , respectively, for , 1,2,..., .i j r=  

Remark 6: Because of uncertainties, we could not use the separation property but we have 

overcome this problem by designing the fuzzy controller and observer in two steps with 

two pole placements and by using the H∞ approach to ensure that the estimation error 

converges faster to zero although its dynamics depend on the state.  

Remark 7: Theorem 2 also proposes a two-step procedure: the first step concerns the fuzzy 

controller design by imposing a pole placement constraint for the poles linked to the state 

dynamics and the second step concerns the fuzzy observer design by imposing the second 

pole placement constraint for the poles linked to the error estimation dynamics and by 

minimizing the H∞ performance criterion (18). The designs of the observer and the 

controller are separate but not independent. 

4. Numerical example 

In this section, to illustrate the validity of the suggested theoretical development, we  
apply the previous control algorithm to the following academic nonlinear system (Lauber, 
2003): 
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( )

2
1 2 22 2

1 1

2 2 1 22
1

2
2

1

1 1
( ) cos ( ( )) - ( ) 1 ( )

1 ( ) 1 ( )

1
( ) 1 sin( ( )) - 1.5 ( )- 3 ( )

1 ( )

cos ( ( )) - 2 ( )

( ) ( )

x t x t x t u t
x t x t

x t b x t x t x t
x t

a x t u t

y t x t

⎧ ⎛ ⎞ ⎛ ⎞
= + +⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎪ ⎝ ⎠ ⎝ ⎠

⎪ ⎛ ⎞⎪ = +⎜ ⎟⎨ ⎜ ⎟+⎝ ⎠⎪
⎪ +⎪
⎪ =⎩

�

�    (57) 

y∈ℜ  is the system output, u∈ℜ is the system input, [ ]1 2
t

x x x= is the state vector which 

is supposed to be unmeasurable. What we want to find is the control law u which globally 

stabilizes the closed-loop and forces the system output to converge to zero but by imposing 

a transient behaviour.  

Since the state vector is supposed to be unmeasurable, an observer will be designed. 

The idea here is thus to design a fuzzy observer-based robust controller from the nonlinear 

system (57). The first step is to obtain a fuzzy model with uncertainties from (57) while the 

second step is to design the fuzzy control law from theorem 2 by imposing pole placement 

constraints and by minimizing the H∞ criterion (46). Let us recall that, thanks to the pole 

placements, the estimation error converges faster to the equilibrium point zero and we 

impose the transient behaviour of the system output. 

First step: 

The goal is here to obtain a fuzzy model from (57). 

By decomposing the nonlinear term 
2
1

1

1 ( )x t+
 and integring nonlinearities of 2( )x t  into 

incertainties, then (20) is represented by the following fuzzy model: 
Fuzzy model rule 1: 

 1 1 1 1
1 1

( ) ( )
( )  

x A A x B B u

y Cx
If x t is M then

= +Δ + +Δ
=

⎧
⎨
⎩

�
 (58) 

Fuzzy model rule 2:  

 2 2 2 2
1 2

( ) ( )
( )

x A A x B B u

y Cx
If x t is M then

= +Δ + +Δ
=

⎧
⎨
⎩

�
    (59) 

where 

1 1

0 0.5 1

,1
1.5 3 2

2 2

A Bm a
b

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =+⎜ ⎟ ⎜ ⎟− − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 2

0 0.5

1.5 3 (1 )
A

m b

⎛ ⎞
= ⎜ ⎟− − + +⎝ ⎠

,  2

2

2
2

B a

⎛ ⎞
⎜ ⎟= ⎜ ⎟−⎜ ⎟
⎝ ⎠

, 

1 2

0.1 0 0
, , 0.5

0 0.1 1ai bi b bH H E E a
⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1 2

0 0.5
0 0.5

,1
0 (1 )0

2

a aE Em
m bb

⎛ ⎞ ⎛ ⎞⎜ ⎟= =− ⎜ ⎟⎜ ⎟ −⎜ ⎟ ⎝ ⎠⎝ ⎠

, ( )1 0C = , 

m=-0.2172, b=-0.5, a=2 and i=1,2 
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Second step: 

The control design purpose of this example is to place both the poles linked to the state 
dynamics and to the estimation error dynamics in the vertical strip given by: 

( ) ( )1 2 1 6α α = − − . The choice of the same vertical strip is voluntary because we wish to 

compare results of simulations obtained with and without the H∞ approach, in order to 

show by simulation the effectiveness of our approach.  

The initial values of states are chosen: [ ](0) 0.2 0.1x = − −  and [ ]ˆ(0) 0 0x = .  
By solving LMIs of theorem 2, we obtain the following controller and observer gain matrices 
respectively: 

 [ ] [ ] [ ] [ ]t tK = -1.95   -0.17 ,K = -1.36   -0.08 ,G = -7.75  -80.80 ,G = -7.79   -82.271 2 1 2  (60) 

The obtained H∞ criterion after minimization is: 

 0.3974γ =  (61) 

Tables 1 and 2 give some examples of both nominal and uncertain system closed-loop pole 

values respectively. All these poles are located in the desired regions. Note that the 

uncertainties must be taken into account since we wish to ensure a global pole placement. 

That means that the poles of (10) belong to the specific LMI region, whatever uncertainties 

(2), (3). From tables 1 and 2, we can see that the estimation error pole values obtained using 

the H∞ approach are more distant (farther on the left) than the ones without the 

H∞ approach.  
 

 With the H∞ approach Without the H∞ approach 

Pole 1 Pole 2 Pole 1 Pole 2 

1 1 1A B K+  -1.8348 -3.1403 -1.8348 -3.1403 

2 2 2A B K+  -2.8264 -3.2172 -2.8264 -3.2172 

1 1 1A G C+  -5.47 +5.99i -5.47- 5.99i -3.47 + 3.75i -3.47- 3.75i 

2 2 2A G C+  -5.59 +6.08i -5.59 - 6.08i -3.87 + 3.96i -3.87 - 3.96i 

Table 1. Pole values (nominal case).  

 

 With the H∞ approach Without the H∞ approach 

 Pole 1 Pole 2 Pole 1 Pole 2 

1 1 1 1 1 1 1( )a a b bA H E B H E K+ + +  -2.56 + .43i -2.56 - 0.43i -2.56+ 0.43i -2.56 - 0.43i 

2 2 2 2 2 2 2( )a a b bA H E B H E K+ + +  -3.03 +0.70i -3.032- 0.70i -3.03 + 0.70i -3.03 - 0.70i 

1 1 1 1 1 1 1( )a a b bA H E B H E K− + +  -2.58 +0.10i -2.58- 0.10i -2.58 + 0.10i -2.58 - 0.10i 

2 2 2 2 2 2 2( )a a b bA H E B H E K− + +  -3.09 +0.54i -3.09-0.54i -3.09 + 0.54i -3.09 - 0.54i 

1 1 1 1 1 1b b
A G C H E K+ −  -5.38+5.87i -5.38 - 5.87i -3.38 + 3.61i -3.38 - 3.61i 

2 2 2 2 2 2b b
A G C H E K+ −  -5.55 +6.01i -5.55 - 6.01i -3.83 + 3.86i -3.83 - 3.86i 

Table 2. Pole values (extreme uncertain models). 
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Figures 1 and 2 respectively show the behaviour of error 1( )e t  and 2( )e t  with and without 

the H∞ approach and also the behaviour obtained using only lemma 1. We clearly see that 

the estimation error converges faster in the first case (with H∞ approach and pole 

placements) than in the second one (with pole placements only) as well as in the third case 

(without H∞ approach and pole placements). At last but not least, Figure 3 and 4 show 

respectively the behaviour of the state variables with and without the H∞ approach whereas 

Figure 5 shows the evolution of the control signal. From Figures 3 and 4, we still have the 

same conclusion about the convergence of the estimation errors.   
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Fig. 1. Behaviour of error 1( )e t . 

         With the H∞ approach 

         Without the H∞ approach 

         Using lemma 1 
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Fig. 3. Behaviour of the state vector and its estimation with the H∞ approach. 
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Fig. 4.  Behaviour of the state and its estimation without the H∞ approach. 
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Fig. 5. Control signal evolution u(t). 
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5. Conclusion 

In this chapter, we have developed robust pole placement constraints for continuous T-S 
fuzzy systems with unavailable state variables and with parametric structured uncertainties. 
The proposed approach has extended existing methods based on uncertain T-S fuzzy 
models. The proposed LMI constraints can globally asymptotically stabilize the closed-loop 
T-S fuzzy system subject to parametric uncertainties with the desired control performances. 
Because of uncertainties, the separation property is not applicable. To overcome this 
problem, we have proposed, for the design of the observer and the controller, a two-step 

procedure with two pole placements constraints and the minimization of a H∞  performance 

criterion in order to guarantee that the estimation error converges faster to zero. Simulation 
results have verified and confirmed the effectiveness of our approach in controlling 
nonlinear systems with parametric uncertainties.  
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