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1. Introduction   

There is huge number of developed methods of design of robust control and some of them 
even become classical. Commonly all of them are dedicated to defining the ranges of 
parameters (if uncertainty of parameters takes place) within which the system will function 
with desirable properties, first of all, will be stable. Thus there are many researches which 
successfully attenuate the uncertain changes of parameters in small (regarding to 
magnitudes of their own nominal values) ranges. But no one existing method can guarantee 
the stability of designed control system at arbitrarily large ranges of uncertainly changing 
parameters of plant. The offered approach has the origins from the study of the results of 
catastrophe theory where nonlinear structurally stable functions are named as ‘catastrophe’.  
It is known that the catastrophe theory deals with several functions which are characterized 
by their stable structure. Today there are many classifications of these functions but 
originally they are discovered as seven basic nonlinearities named as ‘catastrophes’: 
 

3

1
x k x+

 (fold); 
4 2

2 1
x k x k x+ +

 (cusp); 
5 3 2

3 2 1
x k x k x k x+ + +  (swallowtail); 

6 4 3 2

4 3 2 1
x k x k x k x k x+ + + +  (butterfly); 

3 3

2 1 1 2 1 2 2 3 1
x x k x x k x k x+ + − +  (hyperbolic umbilic);   

( )3 2 2 2

2 2 1 1 1 2 2 2 3 1
3x x x k x x k x k x− + + − −  (elliptic umbilic); 

2 4 2 2

2 1 1 1 2 2 1 3 2 4 1
x x x k x k x k x k x+ + + − −  (parabolic umbilic). 

 

Studying the dynamical properties of these catastrophes has urged to develope a method of 
design of nonlinear controller, continuously differentiable function, bringing to the new 
dynamical system the following properties:  
1. new (one or several) equilibrium point appears so there are at least two equilibrium 

point in new designed system,  
2. these equilibrium points are stable but not simultaneous, i.e. if one exists (is stable) then 

another  does not exist (is unstable),  
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3. stability of the equilibrium points are determined by values or relations of values of 
parameters of the system,  

4. what value(s) or what relation(s) of values of parameters would not be, every time there 
will be one and only one stable equilibrium point to which the system will attend and 
thus be stable. 

Basing on these conditions the given approach is focused on generation of the euilibria 
where the system will tend in the case if perturbed parameter has value from unstable 
ranges for original system. In contrast to classical methods of control theory, instead of zero 
–poles addition, the approach offers to add the equilibria to increase stability and sometimes 
to increase performance of the control system.  
Another benefit of the method is that in some cases of nonlinearity of the plant we do not 
need to linearize but can use the nonlinear term to generate desired equilibria. An efficiency 
of the method can be prooved analytically for simple mathematical models, like in the 
section 2 below,  and by simulation when the dynamics of the plant is quite complecated.  
Nowadays there are many researches in the directions of cooperation of control systems and 
catastrophe theory that are very close to the offered approach or have similar ideas to 
stabilize the uncertain dynamical plant. Main distinctions of the offered approach are the 
follow: 
- the approach does not suppress the presence of the catastrophe function in the model 

but tries to use it for stabilization; 
- the approach is not restricted by using of the catastrophe themselves only but is open to 

use another similar functions with final goal to generate additional equilibria that will 
stabilize the dynamical plant. 

Further, in section 2 we consider second-order systems as the justification of presented 
method of additional equilibria. In section 3 we consider different applications taken from 
well-known examples to show the technique of design of control. As classic academic 
example we consider stabilization of mass-damper-spring system at unknown stiffness 
coefficient. As the SISO systems of high order we consider positioning of center of 
oscillations of ACC Benchmark. As alternative opportunity we consider stabilization of 
submarine’s angle of attack.  

2. SISO systems with control plant of second order  

Let us consider cases of two integrator blocks in series, canonical controllable form and 
Jordan form. In first case we use one of the catastrophe functions, and in other two cases we 
offer our own two nonlinear functions as the controller. 

2.1 Two integrator blocks in series 
Let us suppose that control plant is presented by two integrator blocks in series (Fig. 1) and 
described by equations (2.1) 
 

 

      u                     x2                  x1=y
ST

2

1

ST
1

1
 

 

Fig. 1. 
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1

2

1

2

2

1

1

,

.

dx
x

dt T

dx
u

dt T

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

 (2.1) 

Let us use  one of the catastrophe function as controller:  

 ( )3 2 2 2

2 2 1 1 1 2 2 2 3 1
3u x x x k x x k x k x= − + − + + + , (2.2) 

and in order to study stability of the system let us suppose that there is no input signal in 
the system (equal to zero). Hence, the system with proposed controller can be presented as: 

( )( )

1

2

1

3 2 2 22

2 2 1 1 1 2 2 2 3 1

2

1

1
3

,

.

dx
x

dt T

dx
x x x k x x k x k x

dt T

⎧ =⎪⎪
⎨
⎪ = − + − + + +
⎪⎩

  

 1
y x=

. (2.3) 

The system (2.3) has following equilibrium points 

 1

1
0sx = , 1

2
0sx = ; (2.4) 

 2 3

1

1

s

k
x

k
= , 2

2
0sx = . (2.5) 

Equilibrium (2.4) is origin, typical for all linear systems. Equilibrium (2.5) is additional, 
generated by nonlinear controller and provides stable motion of the system (2.3) to it.  
Stability conditions for equilibrium point (2.4) obtained via linearization are 

 

2

2

3

1 2

0

0

,

.

k

T

k

T T

⎧− >⎪⎪
⎨
⎪ <
⎪⎩

 (2.6) 

Stability conditions of the equilibrium point (2.6) are 

 

2 2

3 2 1

2

1 2

3

1 2

3
0

0

,

.

k k k

k T

k

T T

⎧ +
− >⎪
⎪
⎨
⎪ >⎪⎩

 (2.7) 

By comparing the stability conditions given by (2.6) and (2.7) we find that the signs of the 
expressions in the second inequalities are opposite. Also we can see that the signs of 
expressions in the first inequalities can be opposite due to squares of the parameters k1 and 
k3 if we properly set their values. 
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Let us suppose that parameter T1 can be perturbed but remains positive. If we set k2 and k3 

both negative and 
2

3

2 2

1

3
k

k
k

<  then the value of parameter T2 is irrelevant. It can assume any 

values both positive and negative (except zero), and the system given by (2.3) remains 

stable. If T2 is positive then the system converges to the equilibrium point (2.4)  (becomes 

stable). Likewise, if T2 is negative then the system converges to the equilibrium point (2.5) 

which appears (becomes stable). At this moment the equilibrium point (2.4) becomes 

unstable (disappears). 

Let us suppose that T2 is positive, or can be perturbed staying positive. So if we can set the k2 

and k3 both negative and 
2

3

2 2

1

3
k

k
k

>   then it does not matter what value (negative or 

positive) the parameter T1 would be (except zero), in any case the system (2) will be stable. If 

T1 is positive then equilibrium point (2.4) appears (becomes stable) and equilibrium point 

(2.5) becomes unstable (disappears) and vice versa, if T1 is negative then equilibrium point 

(2.5) appears (become stable) and equilibrium point (2.4) becomes unstable (disappears). 

Results of MatLab simulation for the first and second cases are presented in Fig. 2 and 3 

respectively. In both cases we see how phase trajectories converge to equilibrium points 

( )0 0,  and 3

1

0;
k

k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In Fig.2 the phase portrait of the system (2.3) at constant k1=1, k2=-5, k3=-2, T1=100 and 

various (perturbed) T2 (from -4500 to 4500 with step 1000) with initial condition x=(-1;0) is 

shown. In Fig.3 the phase portrait of the system (2.3) at constant k1=2, k2=-3, k3=-1, T2=1000 

and various (perturbed) T1 (from -450 to 450 with step 100) with initial condition x=(-0.25;0) 

is shown.  

  

 

Fig. 2. Behavior of designed control system in the case of integrators in series at various T2. 
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Fig. 3. Behavior of designed control system in the case of integrators in series at various T1. 

2.2 Canonical controllable form 
Let us suppose that control plant is presented (or reduced) by canonical controllable form:  

1

2

2

2 1 1 2

,

.

dx
x

dt
dx

a x a x u
dt

⎧ =⎪⎪
⎨
⎪ = − − +
⎪⎩

   

 1
y x=  (2.8) 

Let us choose the controller in following parabolic form: 

 2

1 1 2 1
u k x k x= − +  (2.9) 

Thus, new control system becomes nonlinear:  

1

2

22

2 1 1 2 1 1 2 1

,

.

dx
x

dt
dx

a x a x k x k x
dt

⎧ =⎪⎪
⎨
⎪ = − − − +
⎪⎩

 

 
1

y x= . (2.10) 

and has two following equilibrium points: 

 1

1
0sx = , 1

2
0sx = ; (2.11) 

 2 2 2

1

1

s

k a
x

k

−
= , 2

2
0sx = ; (2.12) 
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Stability conditions for equilibrium points (2.11) and (2.12) respectively are 

1

2 2

0,

.

a

a k

>⎧
⎨ >⎩

 

   1

2 2

0,

.

a

a k

>⎧
⎨ <⎩

 

Here equlibrium (2.12) is additional and provides stability to the system (2.10) in the case 

when k2 is negative.  

2.3 Jordan form 
Let us suppose that dynamical system is presented in Jordan form and described by 

following equations:  

 

1

1 1

2

2 2

,

.

dx
x

dt
dx

x
dt

ρ

ρ

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

 (2.13) 

Here we can use the fact that states are not coincided to each other and add three 

equilibrium points. Hence, the control law is chosen in following form: 

 2

1 1 1a bu k x k x= − + , 2

2 2 2a cu k x k x= − +  (2.14) 

Hence, the system (2.13) with set control (2.14) is: 

 

21

1 1 1 1

22

2 2 2 2

,

.

a b

a c

dx
x k x k x

dt
dx

x k x k x
dt

ρ

ρ

⎧ = − +⎪⎪
⎨
⎪ = − +
⎪⎩

 (2.15) 

Totaly, due to designed control (2.14) we have four equilibria: 

 1

1
0sx = , 1

2
0sx = ; (2.16) 

 2

1
0sx = , 2 2

2

c
s

a

k
x

k

ρ +
= ; (2.17) 

 3 1

1

b
s

a

k
x

k

ρ +
= , 3

2
0sx = ; (2.18) 

 4 1

1

b
s

a

k
x

k

ρ +
= , 4 2

2

c
s

a

k
x

k

ρ +
= ; (2.19) 

Stability conditions for the equilibrium point (2.16) are: 
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1

2

0

0

,

.
b

c

k

k

ρ
ρ
+ >⎧

⎨ + >⎩
 

Stability conditions for the equilibrium point (2.17) are: 

1

2

0

0

,

.
b

c

k

k

ρ
ρ
+ >⎧

⎨ + <⎩
 

Stability conditions for the equilibrium point (2.18) are: 

1

2

0

0

,

.
b

c

k

k

ρ
ρ
+ <⎧

⎨ + >⎩
 

Stability conditions for the equilibrium point (2.19) are: 

1

2

0

0

,

.
b

c

k

k

ρ
ρ
+ <⎧

⎨ + <⎩
 

These four equilibria provide stable motion of the system (2.15) at any values of unknown 

parameters ρ1 and ρ2 positive or negative. By parameters ka, kb, kc we can set the coordinates 
of added equilibria, hence the trajectory of system’s motion will be globally bound within a 
rectangle, corners of which are the equilibria coordinates (2.16), (2.17), (2.18), (2.19) 
themselves.  

3. Applications  

3.1 Unknown stiffness in mass-damper-spring system 
Let us apply our approach in a widely used academic example such as mass-damper-spring 

system (Fig. 4).  

 

 

Fig. 4. 

The dynamics of such system is described by the following 2nd-order deferential equation, 

by Newton’s Second Law 

 mx cx kx u+ + =$$ $ , (3.1) 

where x is the displacement of the mass block from the equilibrium position and F = u is the 
force acting on the mass, with m the mass, c the damper constant and k the spring constant.  

www.intechopen.com



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

10

We consider a case when k is unknown parameter. Positivity or negativity of this parameter 
defines compression or decompression of the spring. In realistic system it can be unknown if 
the spring was exposed by thermal or moisture actions for a long time. Let us represent the 
system (3.1) by following equations:  

 
( )

1 2

2 1 2

1 1

,

.

x x

x kx cx u
m m

=⎧
⎪
⎨

= − − +⎪⎩

$

$
 (3.2) 

that correspond to structural diagram shown in Fig. 5. 
 

 

Fig. 5. 

Let us set the controller in the form: 

 2

1uu k x= , (3.3) 

Hence, system (3.2) is transformed to: 

 
( )

1 2

2

2 1 2 1

1 1

,

.u

x x

x kx cx k x
m m

=⎧
⎪
⎨

= − − +⎪⎩

$

$
 (3.4) 

Designed control system (3.4) has two equilibira: 

 
1

0x = , 
2

0x = ; (3.5) 

that is original, and 

 
1

u

k
x

k
= , 

2
0x = . (3.6) 

that is additional. Origin is stable when following conditions are satisfaied: 

 0
c

m
> , 0

k

m
>  (3.7) 

This means that if parameter k is positive then system tends to the stable origin and 
displacement of x is equal or very close to zero. Additional equilibrium is stable when  

 0
c

m
> , 0

k

m
<  (3.8) 
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Thus, when k is negative the system is also stable but tends to the (3.6). That means that 

displacement x is equal to 
u

k

k
 and we can adjust this value by setting the control parameter ku. 

In Fig. 5 and Fig. 6 are presented results of MATLAB simulation of behavior of the system 
(3.4) at negative and positive values of parameter k. 

 

Fig. 6. 

 

Fig. 7. 

In Fig. 6 changing of the displacement of the system at initial conditions x=[-0.05, 0] is 
shown. Here the red line corresponds to case when k = -5, green line corresponds to k = -4, 
blue line corresponds to k = -3, cyan line corresponds to k = -2, magenta line corresponds to 
k = -1. Everywhere the system is stable and tends to additional equilibria (3.6) which has 

different values due to the ratio  
u

k

k
. 

In Fig. 7 the displacement of the system at initial conditions x=[-0.05, 0] tends tot he origin. 
Colors of the lines correspond tot he following values of k: red is when k = 1, green is when 
k = 2, blue is when k = 3, cyan is when k = 4, and  magenta is when k = 5. 
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3.2 SISO systems of high order. Center of oscillations of ACC Benchmark 
Let us consider ACC Benchmark system given in MATLAB Robust Toolbox Help. The 
mechanism itself is presented in Fig. 8.  
 

 

Fig. 8. 

Structural diagram is presented in Fig. 9, where  

1 2

1

1
G

m s
= , 

2 2

2

1
G

m s
= . 

 

 

Fig. 9.  

Dynamical system can be described by following equations:  

 

1 2

2 1 3

2 2

3 4

4 1

1 1 1

1

,

,

,

.

x x

k k
x x x

m m

x x

k k
x x u

m m m

=⎧
⎪
⎪ = − +
⎪⎪
⎨ =⎪
⎪

= − +⎪
⎪⎩

$

$

$

$

 (3.9) 

Without no control input the system produces periodic oscillations. Magnitude and center 
of the oscillations are defined by initial conditions.  For example, let us set the parameters of 
the system k = 1, m1 = 1, m2 = 1. If we assume initial conditions x = [-0.1, 0, 0, 0] then center 
of oscillations will be displaced in negative (left) direction as it is shown in Fig. 10a. If initial 
conditions are   x = [0.1, 0, 0, 0] then the center will be displaced in positive direction as it is 
shown in Fig. 10b. 
After settting the controller 
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2

1 1 1
u x k x= − , 

and obtaining new control system  

 

( )

1 2

2 1 3

2 2

3 4

2

4 1 1 1

1 1 1

1

,

,

,

.u

x x

k k
x x x

m m

x x

k k
x x x k x

m m m

=⎧
⎪
⎪ = − +
⎪⎪
⎨ =⎪
⎪

= − + −⎪
⎪⎩

$

$

$

$

 (3.11) 

we can obtain less displacement of the center of oscillations. 
 

 
Fig. 10.a                                                            Fig. 10.b 

Fig. 10. 

In Fig. 11 and Fig.12 the results of MATLAB simulation are presented. At the same 
parameters k = 1, m1 = 1, m2 = 1 and initial conditions x = [-0.1, 0, 0, 0], the center is ‘almost‘ 
not displaced from the zero point (Fig. 11).  
 

 

Fig. 11. 
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At the same parameters k = 1, m1 = 1, m2 = 1 and initial conditions x = [0.1, 0, 0, 0], the center 
is also displaced very close from the zero point (Fig. 12).  
 
 

 
 

 
 

Fig. 12. 

3.3 Alternative opportunities. Submarine depth control  
Let us consider dynamics of angular motion of a controlled submarine. The important 
vectors of submarine’s motion are shown in the Fig.13.  

Let us assume that θ is a small angle and the velocity v is constant and equal to 25 ft/s. The 

state variables of the submarine, considering only vertical control, are x1 = θ, 
2

d
x

dt

θ
= ,  x3 = 

α, where  α is the angle of attack and output. Thus the state vector differential equation for 
this system, when the submarine has an Albacore type hull, is: 

 ( )sx Ax B tδ= +$ , (3.12) 

where  

12

21 22 23

32 33

0 0

0

a

A a a a

a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
2

3

0

B b

b

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

parameters of the matrices are equal to: 

12
1a = , 

21
0 0071.a = − , 

22
0 111.a = − , 

23
0 12.a = , 

32
0 07.a = , 

33
0 3.a = − , 

2
0 095.b = − , 

3
0 072.b = , 

and δs(t) is the deflection of the stern plane.  
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Fig. 13. Angles of submarine’s depth dynamics. 

Let us study the behavior of the system (3.12). In general form it is described as:  

( )

( )

1

2

2

21 1 22 2 23 3 2

3

32 2 33 3 3

,

,

.

S

S

dx
x

dt
dx

a x a x a x b t
dt

dx
a x a x b t

dt

δ

δ

⎧ =⎪
⎪
⎪ = + + +⎨
⎪
⎪

= + +⎪⎩

  (3.13) 

where input δs(t)=1. By turn let us simulate by MATLAB the changing of the value of each 

parameter deviated from nominal value.   

In the Fig.14 the behavior of output of the system (3.13) at various value of 
21

a  (varies from -

0.0121 to 0.0009 with step 0.00125) and all left constant parameters with nominal values is 

presented.  

In the Fig.15 the behavior of output of the system (3.13) at various value of 
22

a  (varies from -

0.611 to 0.289 with step 0.125) and all left constant parameters with nominal values is 

presented.  

In the Fig.16 the behavior of output of the system (3.13) at various value of 
23

a  (varies from -

0.88 to 1.120 with step 0.2) and all left constant parameters with nominal values is presented.  

In the Fig.17 the behavior of output of the system (3.13) at various value of 
32

a  (varies from -

0.43 to 0.57 with step 0.125) and all left constant parameters with nominal values is 

presented.  

In the Fig.18 the behavior of output of the system (3.13) at various value of 
33

a  (varies from -

1.3 to 0.7 to with step 0.25) and all left constant parameters with nominal values is 

presented.  

It is clear that the perturbation of only one parameter makes the system unstable.  
Let us set the feedback control law in the following form: 

 ( )2 2

1 3 2 2 3 3 2
u k x x k x k x= − + + + . (3.14) 
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Fig. 14. Behavior of output dynamics of submarine’s depth at various a21. 

 

 

Fig. 15. Behavior of output dynamics of submarine’s depth at various a22. 

 

 

Fig. 16. Behavior of output dynamics of submarine’s depth at various a23.      
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Fig. 17. Behavior of output dynamics of submarine’s depth at various a32. 

 

Fig. 18. Behavior of output dynamics of submarine’s depth at various a33. 

Hence, designed control system is: 

 ( )

( ) ( )

1

2

2

21 1 22 2 23 3 2

2 23

32 2 33 3 3 1 2 3 2 3 3 2

,

,

.

S

S

dx
x

dt
dx

a x a x a x b t
dt

dx
a x a x b t k x x k x k x

dt

δ

δ

⎧ =⎪
⎪
⎪ = + + +⎨
⎪
⎪

= + + − + + +⎪⎩

 (3.15) 

The results of MATLAB simulation of the control system (3.15) with each changing 
(disturbed) parameter are presented in the figures 19, 20, 21, 22, and 23. 

In the Fig.19 the behavior designed control system (3.15) at various value of 
21

a  (varies from 

-0.0121 to 0.0009 with step 0.00125) and all left constant parameters with nominal values is 

presented  

In the Fig.20 the behavior of output of the system (3.15) at various value of 
22

a  (varies from -

0.611 to 0.289 with step 0.125) and all left constant parameters with nominal values is 

presented.  
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In the Fig.21 the behavior of output of the system (3.15) at various value of 
23

a  (varies from -

0.88 to 1.120 with step 0.2) and all left constant parameters with nominal values is presented.  

In the Fig.22 the behavior of output of the system (3.15) at various value of 
32

a  (varies from -

0.43 to 0.57 with step 0.125) and all left constant parameters with nominal values is 

presented.  

In the Fig.23 the behavior of output of the system (3.15) at various value of 
33

a  (varies from -

1.3 to 0.7 to with step 0.25) and all left constant parameters with nominal values is 

presented. 
Results of simulation confirm that chosen controller (3.14) provides stability to the system. 
In some cases, especially in the last the systems does not tend to original equilibrium (zero) 
but to additional one.  

 
 

 
 

 

Fig. 19. Behavior of output of the submarine depth control system at various a21. 

 
 

 
 

Fig. 20. Behavior of output of the submarine depth control system at various a22. 
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Fig. 21. Behavior of output of the submarine depth control system at various a23. 

 

 

 

Fig. 22. Behavior of output of the submarine depth control system at various a32. 

 

 

Fig. 23. Behavior of output of the submarine depth control system at various a33. 
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4. Conclusion  

Adding the equilibria that attracts the motion of the system and makes it stable can give 
many advantages. The main of them is that the safe ranges of parameters are widened 
significantly because the designed system stay stable within unbounded ranges of 
perturbation of parameters even the sign of them changes. The behaviors of designed 
control systems obtained by MATLAB simulation such that control of linear and nonlinear 
dynamic plants confirm the efficiency of the offered method. For further research and 
investigation many perspective tasks can occur such that synthesis of control systems with 
special requirements, design of optimal control and many others.  
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