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1. Introduction 

It is important to measure displacement and strain distributions to prevent failures of 

structures. However, one point measurement method such as strain gage is widely used in 

industrial practice. It is time–consuming and difficult for one-point method to find the point 

with the maximum strain on the structures. Whole-field optical methods such as moire 

method, digital image correlation, speckle method and holography are effective to find the 

point with the maximum strain (Sharpe, 2008). Especially, holography provides three 

dimensional displacement information and high resolution. 

In conventional holography, an object beam and a reference beam interfere each other on a 

high-resolution photographic plate. It is necessary to develop the photographic plate 

(hologram) and it is time-consuming and bothersome work. In conventional holographic 

interferometry, holograms recorded before and after deformation are superposed on a 

photographic plate and the displacement is obtained from the interference fringe pattern 

(Valery et al., 1996; Ranson et al., 1993; Hayashi et al. 1986). In digital holography, a 

hologram is usually recorded on a CCD or C-MOS sensor instead of a photographic plate 

(Yaroslavskii et al., 1980; Pedriniet al., 1998; Schnars, et al. 2005). In phase-shifting digital 

holographic interferometry (PSDHI), the complex amplitude of the object is analyzed from 

the phase-shifted holograms obtained by shifting the phase of the reference beam. The 

reconstructed image can be calculated from the complex amplitudes of the hologram using 

the Fresnel diffraction integral with a computer (Yamaguchi et al., 1997; Zhang et al., 1998). 

The displacement at each point of an object is obtained from the phase-difference between 

the reconstructed images analyzed from the digital holograms recorded before and after 

deformation. The equipment is simple and the analysis is fast. It is useful for practical field 

measurement of displacement and strain distributions. 

Holograms and reconstructed images have speckle noise and they provide large error in 

the calculation of displacement and strain analysis. In order to reduce the effect of speckle 

noise, the authors developed a novel method, i.e., the windowed phase-shifting digital 

holographic interferometry (Windowed PSDHI). In holography, any part of a hologram 

has the optical information about the whole reconstructed image. By using this feature of 
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holograms, a hologram is divided into several parts by superposing many different 

windows. The phase-difference values at the same reconstructed point obtained from any 

other different part of the hologram should be the same. If there is speckle noise, the 

phase-difference with higher intensity at a reconstructed point is more reliable than that 

with lower intensity. Therefore, the phase-difference at each point is selected when the 

intensity is the largest at the same point (Morimoto et al. 2004, 2005a), or the phase-

difference is calculated by averaging the phase-differences obtained from all the 

windowed holograms by considering the weight of the intensity (Morimoto et al. 2005b, 

2005c, 2007).  

In this study, in order to check the effect of the number n of the windowed holograms on 

accuracy, the number n is changed. The weight for averaging is also changed. When the 

weight is the m-th power of the absolute amplitude of the complex amplitude of the 

reconstructed object, the accuracy, that is, the standard deviation of the analyzed 

displacement error changes according to the power m. The optimal weight is studied 

experimentally for out-of-plane movement of a flat plate. The resolution becomes better 

when the number of windows becomes larger. However, the spatial resolution may be 

lower when the number of windows becomes larger. Therefore, the effects of the number of 

windows, the window size, the displacement resolution and the spatial resolution on the 

accuracy are also studied.  

Holography has basically three-dimensional information. It is useful to analyze three-

dimensional displacement and strain distributions of an object. (Zhang et al., 1998; 

Kolenovic et. al., 2003) In this study, the Windowed PSDHI is extended to analyze three-

dimensional displacement components. The authors developed three systems for digital 

holographic interferometry using three-directional illuminations. The first one was for a 

laboratory bench system using a microscope (Morimoto et al., 2008a). The second one used 

collimated light beams from one laser source and 3 shutters (Fujigaki et al., 2005). It 

provided a stable system for static measurement (Shiotani et al., 2008). The third one used 

three spherical waves from three laser sources. It provided a compact system for static and 

dynamic measurement. In this study, after discussing the relationship between phase 

differences and displacement components, examples of three measurements using 

microscope, collimated light beams, and three spherical waves from three laser sources, are 

introduced. 

2. Principle of phase-shifting digital holographic interferometry 

2.1 Principle of phase-shifting digital holography (Yamaguchi et al., 1997; Zhang et al., 
1998) 
As an example of phase-shifting digital holography, a Twyman-Green type interferometer 

shown in Figure 1 is used. A collimated light from a laser is divided into an object wave and 

a reference wave by a beam splitter. The phase of the reference wave is shifted by  with a 

PZT stage. The value  is set as 0, /2,  and 3/2 in this phase-shifting digital holography. 

The four phase-shifted digital holograms are recorded on the CCD plane in a CCD camera 

without any focusing lens. The intensity of the hologram with a phase-shift value  at the 

pixel coordinates (X, Y) on the CCD plane is expressed as I(X, Y, ). The amplitude a0(X, Y), 

the phase 0(X, Y) and the complex amplitude g(X, Y) of the object wave are expressed at 

the pixel coordinates (X, Y) on the CCD plane as follows, respectively. 
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By calculating the Fresnel diffraction integral from the complex amplitudes g(X, Y) on the 
CCD plane, the complex amplitude u(x, y) of the reconstructed image at the position (x, y) 
on the reconstructed object surface being at the distance R from the CCD plane is expressed 
as follows. 
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 (4) 

where k and F denote the wave number of the light and the operator of Fourier transform, 
respectively. The optical axis is normal to the CCD plane and the origin is at the center of the 
CCD plane. By calculating the intensities of these complex amplitudes on the reconstructed 
object surface, a holographically reconstructed image is obtained.  
 

 

Fig. 1. Twyman-Green type interferometer for phase-shifting digital holography 

2.2 Principle of holographic interferometry  
Let us consider the deformation of an object (cantilever) shown in Figure 1. If the out-of-
plane displacement w(x, y) of the object is small, the amplitudes of the reconstructed object 

before and after deformation are almost the same and only the phase changes by (x, y) i.e. 
the phase-difference before and after the deformation. The relationship between the out-of-
plane displacement w(x, y) and the phase-difference (x, y) is expressed as follows. 

 ( , ) ( , )
4

w x y x y
 


   (5) 

where  is the wavelength of the light source. 

2.3 Experiment of displacement measurement (Morimoto et al., 2007) 
As an experiment, the deflection of a cantilever is measured using the optical system shown in 
Figure 1. The light source is a He-Ne laser. The power is 8 mW and the wavelength  is 632.8 
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nm. The pixel size of the CCD sensor is 4.65 µm by 4.65 µm. A captured image is sampled by 
1280(V) by 960(H) pixels and the image is digitized with 8 bits. The image of 960(V) by 960(H) 
pixels near the center of the recorded image is used for the analysis in this study.  
 

        
                       (a) Front view                     (b) Top view                                    (c) Photograph 

Fig. 2. Specimen (Cantilever) 

As a specimen, a cantilever shown in Figure 2 is analyzed. (In this experiment, there is not a 
reference plane shown in the figure. The reference plane is used in Section 4). The cantilever 
is cut out from a thick stainless steel plate. The cantilever size is 10 mm wide, 25 mm long 
and 1mm thick. The loading point is 20 mm from the fixed end. The displacement at the 
loading point is given by a micrometer with a wedge. To improve the reflection from the 
specimen, lusterless white lacquer is sprayed on the surface of the cantilever. The distance R 
from the CCD to the cantilever is 280 mm. The phase of the reference wave is shifted by 

every /2 using a mirror controlled with a PZT stage. Then four phase-shifted digital 
holograms for one cycle of the phase-shifting are recorded in the memory of a personal 
computer. The complex amplitude of the brightness at each pixel on the hologram is 
calculated using the phase-shifting method expressed in Equations (1) to (3). The 
reconstructed complex amplitude of the object wave at a point of the reconstructed object 
surface is calculated from the complex amplitudes of the holograms using the Fresnel 
diffraction integral expressed in Eq. (4). 
After the cantilever is deformed, the reconstructed complex amplitude of the object waves at 
the same point of the reconstructed object is obtained similarly. The reconstructed images 
and the phase distributions are obtained from the holograms with 960 x 960 pixels before 
and after deformation. The phase-difference distribution before and after deformation, that 
is, the out-of-plane displacement distribution is shown in Figure 3(a).  
 

 

Fig. 3. Phase-difference distributions obtained by digital holographic interferometry 
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3. Reduction method of speckle noise error by averaging phase-differences 
obtained by different windowed holograms (Morimoto et al., 2007) 

3.1 Windowed hologram 
As mentioned above, the phase-difference is obtained from the complex amplitudes of the 
reconstructed holographic object before and after deformation. However, because coherent 
light is reflected from a rough surface, it provides random speckle patterns in the 
reconstructed image. And also, any measurement system has measurement error basically. 
Therefore, the obtained displacement distribution has also noise and the results are not so 
accurate. At the point where the intensity of the speckle is weak, the accuracy of the phase 
value of the light at the point becomes low. In holography, any part of a hologram has the 
optical information of the whole reconstructed image. By using this feature of holograms, 
the hologram is divided into many parts. The phase-difference at the same reconstructed 
point obtained from any part of the hologram should be the same if there is no error. The 
phase-difference obtained from the complex amplitude with high intensity is more reliable 
than the phase-difference obtained from the complex amplitude with low intensity. If there 
is speckle noise, among the phase-differences obtained from each divided hologram, the 
phase-difference with higher intensity at a reconstructed point is more reliable. Therefore, in 
our previous papers, the phase-difference was obtained by selecting the phase-difference 
with the maximum intensity at the same point (Morimoto et al. 2004, 2005a), or the phase-
difference at the same point was obtained by averaging the phase-differences obtained from 
all the divided holograms by considering the weight of the intensity (Morimoto et al. 2005b, 
2005c, 2007). It provided the displacement distribution with high-resolution.  
In this section, the divided holograms are considered as windowed holograms using some 
window functions. A window function with value 1 in a small part of the whole hologram 
area and value 0 in the remaining area is superposed on an original hologram. By 
multiplying the window function with values 1 and 0 by the complex amplitude of the 
original hologram, the windowed hologram is obtained. By changing the position of the 
area with value 1 in the window function, many windowed holograms are formed. The 
reconstructed object image is calculated from each windowed hologram using Eq. (4). A 
point of the reconstructed object image has a speckle pattern. The speckle patterns obtained 
by different windowed holograms are all different from each other. However, the speckle 
pattern does not move as a result of small deformation but the phase is changed by the 
deformation. The intensity distributions of the reconstructed object and the phase-difference 
distribution before and after deformation are obtained from the windowed holograms with 
the same window function before and after deformation. After calculating the average 
intensity before and after deformation from n sets of the windowed holograms obtained 
from the different window functions, the average value of the n phase-difference values 
weighted proportional to the average intensity before and after deformation is calculated at 
each reconstructed point. The resultant average phase-difference value is highly reliable.  
In this study, especially, the effect of the size or the number n of the windows is examined. 

At first, for an example, let us consider the case of n=16. The hologram is divided into 16 

square areas. That is, a window with value 1 in a square of 240 x 240 pixels and value 0 in 

the other area in the 960 x 960 pixels is superposed on the original hologram with 960 x 960 

pixels. By moving the area with value 1 in the window, 16 windowed holograms are 

obtained and they are numbered as shown in Figure 4(a). The reconstructed object image is 

calculated from each windowed hologram using Eq. (4). The 16 intensity distributions of the 
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reconstructed object images before deformation are shown in Figure 4(b). At each point on 

the reconstructed object, 16 complex amplitudes are obtained. Sixteen phase-difference 

values before and after deformation at each point are obtained. The average phase-

difference is calculated by considering the weight of the average intensity before and after 

deformation. The result is shown in Figure 3(b) though the details of the displacement are 

described later. It provides more accurate phase-difference distribution than that shown in 

Figure 3(a). 

In order to check the effect of the number of the windows on accuracy, the hologram is 

divided into n square areas by changing n (n=1, 4, 16, 64, 256 and 1024). That is, the original 

hologram with 960 x 960 pixels is windowed with n window functions whose small square 

area has value 1 and the remaining area has value 0 in the each window as in Figure 4(a). 

The average values of the n phase-difference values obtained from the windowed 

holograms are calculated. The results are shown later. 

 
 

 
 

Fig. 4. Divided holograms and reconstructed object images 

3.2 Effect of number of windowed holograms on accuracy 
The effect on accuracy of changing the number of windowed holograms is examined. By 

changing the number n into 1, 4, 16, 64, 256 and 1024, the displacement distributions are 

obtained. The displacement distributions along the centerline of the beam, shown as lines A 

and B in Figure 3 are shown in Figures 5(a) to 5(f). The theoretical displacement distribution 

for a cantilever is obtained by fitting a cubic curve with the minimum error by the least 

square method to each obtained distribution from the fixed point to the loading point. The 

standard deviations of the errors from the theoretical cubic curves are shown in Table 1 and 

Figure 6. The standard deviation decreases according to the number n, and the value 

becomes 670 pm when n=1024. It shows the proposed method provides very high-resolution 

measurement. 
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Fig. 5. Displacement distributions along lines A and B shown in Figure3 

3.3 Effect of weight of averaging on accuracy 
The effect on accuracy of changing the number of windowed holograms and the weight of 

the averaging is examined. When the weight is proportional to the m-th power of the 

amplitude of the complex amplitude, the standard deviations of errors are compared by 

changing the number m. In Section 3.2, the case of m=2 as the weight was examined by 

considering that reliability is larger according to the intensity, i.e., the 2nd power of the 

absolute amplitude of the complex amplitude. In this section, though the theoretical curve of 

the cantilever mentioned in the previous chapter is a cubic function, the experimental curve 

is not cubic in a precise sense because of the anisotropy of the materials, the actual boundary 

conditions, etc. In this section, parallel movement of a flat plate is adopted because the 

anisotropy of the materials, the actual boundary conditions, etc. are almost cut off. The 

parallel movement is a half wavelength, that is, about 316 nano- meters along the direction 

of the normal to the flat surface. The displacement distributions are shown in Figure 7 when 

n= 1 and 1024 and m=2. 

By changing 1, 4, 16, 64, 256 and 1024 as the number n, and 1/4, 1/2, 1, 2, 4 and 8 as m for 

the m-th power of the amplitude of the complex amplitude for the weight of the averaging 

of the phase-difference, i.e., the displacement distributions, the errors are examined. The 

displacement distributions along the centerline of the flat plate are analyzed by phase-

shifting digital holographic interferometry. The theoretical displacement distribution for the 

centerline is obtained by fitting a linear expression with the minimum error by the least 

square method to each obtained distribution. The standard deviations of the errors from the 

theoretical linear expressions are shown in Figure 8. The standard deviation decreases 

according to the number n, as same as in the case of Section 3.2. By changing n and m, the 

standard deviation is examined. In the same n, the standard deviation is the minimum when 

m is 2, that is, when the weight is proportional to the intensity of the complex amplitude. It 

is appropriate to adopt m=2 as the weight of averaging. The minimum standard deviation of 

errors is 88 pico-meters when n=1024 and m=2.  

 

Number of windows n 1 4 16 64 256 1024 

Standard deviation [nm] 16.39 4.02 1.95 1.09 0.78 0.67 
 

Table 1. Relationship between number of windows and standard deviation of errors 
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Fig. 6. Relationship between number of windows and standard deviation of errors 

 

 

Fig. 7. Displacement distributions when flat plate is moved out of plane 

 

 

Fig. 8. Standard deviations of errors when number of windows and power of the amplitude 
as weight of averaging are changed 

4. Effect of window size on accuracy and spatial resolution in windowed 
phase-shifting digital holographic interferometry (Morimoto, 2008b) 

As shown in Figure 6, the accuracy becomes better according to the number of windows. 

However, the spatial resolution may be lower when the number of windows becomes 

larger. In this section, therefore, the effects of the number of windows, the window size, the 

displacement resolution and the spatial resolution on the accuracy are analyzed. 
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4.1 Displacement measurement of cantilever by phase-shifting digital holographic 
interferometry  
As an experiment, the deflection of a cantilever is also measured using the optical system 
shown in Figure 1. As a specimen, a same size cantilever shown in Figure 2 is also analyzed. 
In this experiment, a fixed reference plate is set at 1.3 mm behind the cantilever to check 
spatial resolution, as shown in Figure 1.  
The reconstructed images (the intensity distribution, i.e., the amplitude squared) and the 
phase distributions are obtained from the holograms with 960 x 960 pixels before and after 
deformation. The reconstructed image before deformation is shown in Figure 9(a). The 
phase-difference distribution before and after deformation, that is, the out-of-plane 
displacement distribution is shown in Figure 10(a).  
 

     
            (a) n = 1                 (b) n = 16                 (c) n = 64              (d) n = 1024         (e) n = 57600 

Fig. 9. Reconstructed image obtained by Windowed PSDH 

 

     
            (a) n = 1                 (b) n = 16              (c) n = 64                (d) n = 1024          (e) n = 57600 

Fig. 10. Phase difference distribution obtained by Windowed PSDH 

4.2 Effect of number of windowed holograms on accuracy and computation 
processing time 
The effect on accuracy by changing the number n of windowed holograms into 1, 4, 16, 64, 

256, 1024, 4096, 14400, 25600 and 57600 is examined. Some reconstructed images obtained 

from each one of the windowed holograms are shown in Figure 9. When the number of 

windows becomes larger, that is, the window size becomes smaller, the speckle size 

becomes larger. It is considered that the spatial resolution would be worse when the speckle 

size becomes larger. Figure 10 shows some of the results. The displacement distributions 

along the centerline of the beam are shown in Figure 11. The theoretical displacement 

distribution for a cantilever is obtained by fitting a cubic curve with the minimum error by 

means of the least square method to each obtained distribution from the fixed point to the 

loading point. The standard deviations of the errors from the theoretical cubic curves are 

shown in Table 2 and Figure 11. The standard deviation changes according to the number n. 

Though the standard deviation when n =1 is 22 nm, it is 2.4 nm when n =16. The value 

becomes the minimum value of 680 pm when n =1024. It shows the proposed method 
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provides very high-resolution measurement by selecting appropriate number n. The 

calculation time is, however, almost proportional to the number n as shown in Table 2 and 

Figure 13. In practice, 16, 64 or 256 windowed holograms are recommended by considering 

the balance of the computation time and accuracy. 

 

     
                         (a) n = 1                                       (c) n = 64                                   (e) n = 57600 

Fig. 11. Displacement distributions along centerline of cantilever of Figure 4 

 

Number of 
window n 

Window 
size 

Standard deviation Processing 
time[s] 

Spatial 
resolution 

[pixel] [pixels] [nm] [rad] 

1 960 21.93 0.435 3 0.36 

4 480 4.87 0.097 9 0.44 

16 240 2.35 0.047 29 1.5 

64 120 1.61 0.032 110 2.8 

256 60 0.89 0.018 430 6.66 

1024 30 0.68 0.013 1704 16.24 

4096 15 0.94 0.019 6791 27.68 

14400 8 2.29 0.045 23751 - 

25600 6 2.8 0.056 42237 - 

57600 4 15.7 0.312 95430 - 

Smoothing 
11x11 

-- 
1.69 0.034 4 6.77 

Table 2. Relationship among number of windows, standard deviation of error and 
processing time 

 

 

Fig. 12. Relationship between number of windows and standard deviation 
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Fig. 13. Relationship between number of windows and processing time 

4.3 Effect of window size on standard deviation of errors and spatial resolution 
As shown in Figures 9(e) and 10(e), large speckles cannot provide accurate results. In this 
section, the relationship between window size and spatial resolution is examined. The 
phase-difference distributions along the vertical white line A (x = 632 pixels, y = 260–380 
pixels) in Figure 10(a) are shown in Figure 14. The theoretical phase difference along the line 
A on the cantilever is π/2. The theoretical phase difference along the line A on the fixed 
back plate is 0. Although the theoretical phase-difference distribution has a discontinuity at 
the edge of the cantilever (y = 318), the analysed phase-difference distributions are 
continuous slopes. Figure 14 also shows the result obtained by a conventional averaging 
method using values at the peripheral 11 × 11 pixels. However, the spatial resolution 
obtained from a small window may be bad. That is, bad spatial resolution changes a step 
function along line A into a continuous function. In order to define the spatial resolution 
quantitatively in this study, it is defined as the distance (in pixels) between the positions at 
the 25% and 75% values of the step of the phase difference as shown in Figure 15. 
 

 

 

Fig. 14. Phase difference distribution along line A in Figure 10 

The results of the relationships between the number of windows, the standard deviation of error 
and the spatial resolution are shown in Table 2 and Figure 16. When the window size becomes 
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smaller, the standard deviation of errors becomes better and the spatial resolution becomes 
worse. The computation time becomes worse. By comparing the spatial resolution (6.77 pixels) of 
the conventional averaging method using 11 × 11 pixels and the spatial resolution (2.80 pixels) 
when the number of windows is 64, which have almost the same standard deviation of error, the 
windowed PSDHI is better than the conventional averaging method. 
 

 

Fig. 15. Definition of special resolution 

Although the standard deviation of error when n = 1024 is the best in Table 2, the data when 
n = 1024 in Figure 14 show a bad slope function far from the step function. Although the 
result from the hologram with a small window has good accuracy in an area with almost 
constant values of intensity near the centerline, it is not very accurate in the area with non-
constant values near the edge because of large speckle size. 
 

 

Fig. 16. Standard deviation and spatial resolution against number of windows in Table 2 

4.4 Effect of larger window size on standard deviation of error and spatial resolution 
In the previous section, the effect of window size on the standard deviation of error and the 

spatial resolution were examined. However, the numbers of windows are different. In this 

section, the effect of window size on the standard deviation of error and the spatial 

resolution are examined when the numbers of the windows are the same (n = 256). The 

standard deviation and the spatial resolution when the window sizes are 480, 240, 120, 60 
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and 30 are shown in Table 3 and Figure 17. The spatial resolution becomes worse when the 

window size becomes smaller. The standard deviation becomes also better when the 

window size becomes smaller. However, the standard deviation is the best when the 

window size is 60. The standard deviation when the window size is 30 is worse than that 

when the window size is 60. Although the case w = 60 and n = 256 uses all the data of the 

hologram, the case w = 30 and n = 256 does not use all the data of the hologram. Large 

speckles cannot provide accurate results. 

 

 

Fig. 17. Relationship between standard deviation and spatial resolution in Table 3 

 

Window 

size w 

Number of 

windows n 

Standard 

deviation [nm] 

Spatial resolution 

[pixels] 

Processing time 

[s] 

480 256 3.81 0.93 493 

240 256 1.68 1.81 457 

120 256 1.07 3.55 439 

60 256 0.89 6.66 430 

30 256 1.06 12.16 428 

Table 3. Relationship among Window size, standard deviation of error and spatial 

resolution 

In this windowed PSDHI study, the effect of the number of windows or window size on 

accuracy, spatial resolution and computation time were examined. When the number of 

windows increases, accuracy becomes better at first because of speckle noise reduction and 

then it becomes worse because of larger speckle size. The best accuracy is of the subnano-

meter scale when the number of windows is 1024 in our experiment. However, the accuracy 

is better than that when using the conventional averaging method with 11 × 11 pixels. The 

spatial resolution becomes worse when the number of windows becomes larger, and 

correspondingly the window size becomes smaller. If the number of windows is constant, 

the spatial resolution is better when the window size becomes larger and the accuracy is 

better when all the data are used and the window size is smaller. The computation time 

increases according to the number of windows. In practice, it is useful when the number of 
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windows is 16, 64 or 256, as in our experiment by considering the balance of the 

computation time and accuracy. 

5. Three-dimensional displacement analysis by digital holographic 
interferometry 

In order to measure three-dimensional displacement components, a three-directional-
illumination method or three-directional-observation method is usually employed (Zhang et 
al., 1998; Kolenovic et al. 2003). However, in order to analyze strain distributions, the 
displacement is spatially differentiated which requires accurate measurement of 
displacement distributions. Windowed PSDHI is useful for measuring quantitatively nano-
meter displacement of objects (Morimoto et al., 2007; 2008b). The authors previously 
proposed a method of simultaneous measurement of in-plane and out-of-plane 
displacements using two beam illuminations. (Okazawa et al. 2005)  A three-directional 
illumination method was also proposed (Fujigaki et al. 2005; Morimoto et al. 2008a, 2008c). 
To miniaturize the equipment for practical use, laser beams with spherical wavefronts were 
used. However, if spherical waves are used, the incident angles are different for each point 
and then each point has different sensitivity vectors. The incident angle for each point on an 
object is determined by the three-dimensional position of the point and the point source of 
the laser beam. It is, however, difficult to measure the incident angle accurately. The authors 
proposed a calibration method with a reference flat plane. The reference plane was installed 
on an XYZ three-axis piezo stage which was movable in the XYZ directions by a very small 
amount (Morimoto et al., 2008a).  
By calculating the each phase-difference between before and after deformation using digital 
holography, the parameter for the relationship between the displacement and the phase-
difference can be obtained. Tabulation of parameters for each point helps to measure the 
displacement in high speed from the phase-difference of a specimen. Displacement 
measurement using spherical waves can be realized with this calibration method. The 
theoretical treatment and experimental results of some three-dimensional displacement 
measurements using this method are shown in this study. 

5.1 Relationship between phase-differences and displacement components  
The schematic positions of an object and an observation direction when the object is 
illuminated at a particular incident angle are shown in Figure 18. The phase-difference for a 
unit displacement depends on the position of the object (Morimoto et. al., 2008; Fujigaki et 
al., 2006). When the positional relationship is as expressed in Figure 18, the equation at a 
point P before deformation on an object is expressed as shown in Equation (6).  

 e d    (6) 

where, e is the sensitivity vector which depends on the half of the angle between the 
incident angle i and the observation angle  of the point P, and d is the displacement 
vector for the point P before deformation which moves to a point P’ after deformation. As 
the displacement is very small compared with the distance between the light source and the 

object, it is assumed that the incident angle 1 and the observation angle 0 do not change. 
And  is the phase-difference resulted from the displacement at the point P.   
The displacement vector d and the sensitivity vector e each have components in the x, y, and 
z directions. Then Eq. 6 is written as 
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dx
e e e d e d e d e dx y z y x x y y z z

dz



 
 

           
 
 

 (7) 

 

 
 

Fig. 18. Relationship between displacement of object, observation direction and incident 
angle at Point P 

When an object is illuminated from three different directions, the number of parameters of 
the sensitivity vector components increases, and Equation (7) can be extended as Equation 
(8); 

 

1 1 11

2 2 2 2

3 3 3 3

x y z x

x y z y

x y z z

e e e d

e e e d

e e e d


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                         

 (8) 

 

1 1 1

2 2 2

3 3 3

x y z

x y z

x y z

e e e

S e e e

e e e

 
 

  
 
  

 (9) 

where the suffixes 1, 2 and 3 show the corresponding illumination directions. 

Each component of the sensitivity vector matrix S is obtained by the geometric parameters 

of the optical system. When each component of the matrix S of Equation (7) is specified, the 

displacement components dx dy and dz can be obtained from the phase-difference 

and  for each incident light, respectively, using the inverse matrix S-1 of the 

sensitivity vector matrix S as follows; 
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1 2 3 1

1 2 3 2
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 (11) 

where f ij is the (i, j) component of S-1. 

5.2 Displacement and strain measurement of L-shaped cantilever  
5.2.1 Laboratory system for microscope 
Figure 19 shows a schematic view of an optical system for digital holographic 

interferometry with a microscope. A parallel collimated laser beam illuminates an object. 

The light source is a He-Ne laser (Output: 8mW, Wavelength: 632.8mm). The laser beam 

from the light source is separated into three object beams ch.1, ch.2 and ch.3 and one 

reference beam by using three beam splitters, one half mirror and several mirrors. The 

reflected object beam arrives in a CCD plane through the microscope. A parallel reference 

beam is incident from a beam splitter between the object and the microscope. The reference 

beam also arrives in the same CCD plane. Each object beam is interfered with the reference 

beam by cutting off the other object beams. The phase of the reference beam is changed by 

using the PZT stage. 

 
 

 

 
 
 

Fig. 19. Optical setup for experiment 
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The pixel size of the used CCD (SONY XCD-900) is 4.65 m×4.65 m. The analyzed image 
size is 960×960 pixels. A stereoscopic microscope (NIKON) using a CCD camera adapter is 
used. In the analysis, windowed PSDHI with 64 windows is used in order to decrease the 
effect of speckle noise. 
Displacement measurement of an L-shaped cantilever is performed by using the 
experimental setup shown in Figure 19.  
An L-shaped cantilever with a fixed end, 2 mm width, 8 mm length, and 1 mm thickness 
shown in Figure 20(a) is measured. Figure 20(b) shows the reconstructed image. Figures 
20(c), (d) and (e) shows the phase-difference distribution respectively obtained by a laser 
beams ch1, ch2 and ch3 in Figure 19. Figures 20 (f) and (g) show the resultant three-
dimensional displacement component distributions along the lines x0x1 and x1x2 shown in 
Figs. 20 (c), (d) and (e). 
 

   
                   (a) Specimen                               (b) reconstructed image 

 
        (c)1                                 (d)  2                                  (e) 3 

    
(f) Displacement components along x0x1                 (g) Displacement components along x1x2 

Fig. 20. Displacement measurement of L-shaped cantilever  
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5.2.2 Collimated wave system 
This system has two sets of two-beam illuminations. One set, that is, an optical setup for 

displacement measurement using two-beam illuminations is shown in Figure 21. A 

collimated light beam from a laser is divided into an object wave and a reference wave by 

beam splitter 1. Additionally, the object wave is divided into object wave 1 and object wave 

2 by beam splitter 2. Each object wave has a shutter on the light path. From the two 

holograms, the x-directional in-plane and the z-directional out-of-plane displacements are 

analyzed. Another set of two-beam illuminations provides the y-directional in-plane 

displacement. 

 

Fig. 21. Optical using two beam illuminations 

 

  
(a) x        (b) z   (c) y   (d) z  

 
 (e) u x   (f) uy                (g) ex           (h) ey 

Fig. 22. Phase-difference displacement and strain distributions measured by collimated 
beam system 
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An L-shaped cantilever with a fixed line is measured by the system shown in Figure 21. 

Figures 22(a) and (b) show the phase-difference distributions along the x- and z-directions, 

respectively, obtained by the x-directional set. Figures 22(c) and (d) show the phase-

difference distributions along the y- and z-directions, respectively, obtained by the y-

directional set. Figures 22(e) and (f) show the x- and y-directional displacement 

distributions, respectively. Figures 22(g) and (h) show the x- and y- directional strain 

distributions, respectively. 

5.2.3 Spherical wave system 
In this experiment, three holograms using light sources 1, 2 and 3 are recorded on a CCD 

simultaneously as shown in Figure 23. Although the phases of the three reference waves are 

shifted simultaneously seven times, the phase-shift amounts during the seven times are 

different for each light source. The total phase-shifts are 2, 4 and 6for the light sources 1, 

2 and 3, respectively. The each fringe pattern by the light sources 1, 2 and 3 is extracted from 

the continuous seven holograms using the Fourier transformation of the brightness change 

at each pixel of the holograms. 

Let us explain the procedures. Figure 24 illustrates the captured brightness changes at a 

pixel and the brightness change corresponding to each of the three light sources. The 

discrete Fourier transformation of the captured brightness along the time axis provides the 

Fourier spectrum shown in Figure 25. It has seven frequency components from -3 to 3. Here, 

the components of the frequencies 1, 2 and 3 arise from the light sources 1, 2 and 3, 

respectively. By extracting these components and calculating the amplitudes and the phases 

of the components, the complex amplitudes of the three holographic fringe patterns are 

obtained separately. 

 

 
 

Fig. 23. Optical setup using three spherical waves 
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Fig. 24. Brightness change of composite wave 

 
 
 
 

 
 
 

Fig. 25. Fourier spectrum of composite wave 
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A strain distribution measurement of a T-shaped cantilever with a fixed line is performed by 

the system shown in Figure 23. The size of the cantilever is 5 mm width, 15 mm length, and 

5 mm thickness. A load is applied on the cantilever at the point 12.5 mm from the base of the 

cantilever.  

Seven phase-shifted holograms are captured before and after deformation. The Fourier 

components corresponding to each light source are separated by the phase-shifting method 

using Fourier transformation and each phase value is obtained. The phase-difference 

distributions of the light sources 1, 2 and 3 are shown in Figs. 28 (a), (b) and (c), respectively. 

The strain distribution in the x-direction is shown in Figure 27. 

 
 

 
 

Fig. 26. Phase-difference distributions by each light sources 

 
 

 
 

Fig. 27. Strain distribution in x-direction 

6. Conclusions 

In order to reduce the effect of speckle noise, the windowed digital holographic 
interferometry was proposed. In the method, the effect of number of windows, or window 
size on accuracy, spatial resolution and calculation time were examined. The results are that 
the number of windows increases, the accuracy becomes better at first because of speckle 
noise reduction and after that it becomes worse because of larger speckle size. The best 
accuracy is sub-nanometer when the number of windows is 1024 in our experiment. 
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However, the accuracy is better than the conventional averaging method with 11 by 11 
pixels. The spatial resolution becomes worse when the number of windows becomes larger, 
that is, the window size becomes smaller. If the number of windows is constant, the 
accuracy and spatial resolution is better when the window size becomes larger. The 
calculation time increases according to the number of windows. In practice, it is useful when 
the number of windows is 16, 64 or 256 in our experiment. Three holographic systems were 
developed and applied to measure 3D displacement and strain distributions.  
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