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1. Abstract

Most recent humanoid research has focused on balance and locomotion. This concentration is 
certainly important, but one of the great promises of humanoid robots is their potential for 
effective interaction with human environments through manipulation. Such interaction has 
received comparatively little attention, in part because of the difficulty of this task. One of the 
greatest obstacles to autonomous manipulation by humanoids is the lack of efficient collision-
free methods for reaching. Though the problem of reaching and its relative, pick-and-place, 
have been discussed frequently in the manipulator robotics literature- e.g., (Lozano-Pérez et 
al., 1989); (Alami et al., 1989); (Burridge et al., 1995)- researchers in humanoid robotics have 
made few forays into these domains. Numerous subproblems must be successfully addressed 
to yield significant progress in humanoid reaching. In particular, there exist several open 
problems in the areas of algorithms, perception for modeling, and control and execution. This 
chapter discusses these problems, presents recent progress, and examines future prospects. 

2. Introduction 

Reaching is the one of the most important tasks for humanoid robots, endowing them with 

the ability to manipulate objects in their environment. Unfortunately, getting humanoids to 

reach efficiently and safely, without collision, is a complex problem that requires solving 

open subproblems in the areas of algorithms, perception for modeling, and control and 

execution. The algorithmic problem requires the synthesis of collision-free joint-space 

trajectories in the presence of moving obstacles. The perceptual problem, with respect to 

modeling, is comprised of acquiring sufficiently accurate information for constructing a 

geometric model of the environment. Problems of control and execution are concerned with 

correcting deviation from reference trajectories and dynamically modifying these 

trajectories during execution to avoid unexpected obstacles. This chapter delves into the 

relevant subproblems above in detail, describes the progress that has been made in solving 

them, and outlines the work remaining to be done in order to enable humanoids to perform 

safe reaching in dynamic environments. 

3. Problem statement 

The problem of reaching is formally cast as follows. Given: 

Source: Humanoid Robots, New Developments, Book edited by: Armando Carlos de Pina Filho
ISBN 978-3-902613-02-8, pp.582, I-Tech, Vienna, Austria, June 2007
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1. a world      = 

2. the current time to; T is then defined as the interval [to, ]
3. a robot 
4. a smooth manifold  called the state space of; let  be a function that 

maps state-space to the robot’s configuration space 
5. the state transition equation is , where  and  generates a 

vector of control inputs ( ) as a function of time 

6. a nonstationary obstacle region  is then the 

projection of obstacles in the robot’s configuration space into state-space (i.e., 
 and ).

7.  is the reachable workspace1 of 

8. a direct kinematics function, F :  that transforms robot states to operational-space 
configurations of one of the robot’s end effectors 

9. a set of feasible operational-space goal functions of time, G such that Vg G, g : T 

10. a feasible state-space Boolean function : T x g x       0,1   where g  G
11. x0 free, the state of the robot at t0

generate the control vector function u(.) from time t > t0 such that xt free(t) where xt = 
, dt, for t > t0 and there exists a time tj for which 

 for all ti > tj, or correctly report that such a function u(.) does not 

exist.
Informally, the above states that to solve the reaching problem, the commands sent to the 
robot must cause it to remain collision-free and, at some point in the future, cause both the 
operational space distance from the end-effector to one of the goals to remain below a given 

threshold  and the state-space of the robot to remain in an admissable region. 
The implications of the above formal definition are: 

• The state transition function f(.) should accurately reflect the dynamics of the robot. 
Unfortunately, due to limitations in mechanical modeling and the inherent 
uncertainty of how the environment might affect the robot, f(.) will only 
approximate the true dynamics. Section 4.3 discusses the ramifications of this 
approximation. 

• The robot must have an accurate model of its environment.  This assumption will 
only be true if the environment is instrumented or stationary. The environments in 
which humanoids are expected to operate are dynamic (see #6 above), and this 
chapter will assume that the environment is not instrumented. Constructing an 
accurate model of the environment will be discussed in Section 4.2. 

• The goals toward which the robot is reaching may change over time; for example, 
the robot may refine its target as the robot moves nearer to it. Thus, even if the 
target itself is stationary, the goals may change given additional information. It is 
also possible that the target is moving (e.g., a part moving on an assembly line). 
The issue of changing targets will be addressed in Section 4.1. 

• Manipulation is not explicitly considered. It is assumed that a separate process can 
grasp or release an object, given the operational-space target for the hand and the 

desired configuration for the fingers (the Boolean function (.) is used to ensure 

                                                     

1 The reachable workspace is defined by Sciavicco & Siciliano (2000) to be the region of operational-space 
that the robot can reach with at least one orientation. 
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that this latter condition is satisfied). This assumption is discussed further in the 
next section. 

3 Related work 

A considerable body of work relates to the problem defined in the previous section yet does 
not solve this problem. In some cases, researchers have investigated similar problems, such 
as developing models of human reaching. In other cases, researchers have attempted to 
address both reaching and manipulation. This section provides an overview of these 
alternate lines of research, though exhaustive surveys of these areas are outside of the scope 
of this chapter. Humanoids have yet to autonomously reach via locomotion to arbitrary 
objects in known, static environments, much less reach to objects without collision in 
dynamic environments. However, significant progress has been made toward solving this 
problems recently. This section concludes with a brief survey of methods that are directly 
applicable toward solving the reaching problem. 

3.1 Models of reaching in neuroscience 

A line of research in neuroscience has been devoted to developing models of human 
reaching; efficient, human-like reaching for humanoids has been one of the motivations for 
this research. Flash & Hogan (1985), Bullock et al. (1993), Flanagan et al. (1993), Crowe et al. 
(1998) and Thor-oughman & Shadmehr (2000) represent a small sample of work in this 
domain. The majority of neuroscience research into reaching has ignored obstacle 
avoidance, so the applicability of this work toward safe humanoid reaching has not been 
established. Additionally, neuroscience often considers the problem of pregrasping, defined 
by Arbib et al. (1985) as a configuration of the fingers of a hand before grasping such that 
the position and orientation of the fingers with respect to the palm’s coordinate system 
satisfies a priori knowledge of the object and task requirements. In contrast to the 
neuroscience approach, this chapter attempts to analyze the problem of humanoid reaching 
from existing subfields in robotics and computer science. Recent results in the domains of 
motion planning, robot mapping, and robot control architectures are used to identify 
remaining work in getting humanoids to reach safely and efficiently. This chapter is 
unconcerned with generating motion that is natural in appearance by using pregrasping 
and human models of reaching, for example. 

3.2 Manipulation planning 

Alami et al. (1997), Gupta et al. (1998), Mason (2001), and Okada et al. (2004) have 
considered the problem of manipulation planning, which entails planning the movement of a 
workpiece to a specified location in the world without stipulating how the manipulator is to 
accomplish the task. Manipulation planning requires reaching to be solved as a subproblem, 
even if the dependence is not explicitly stated. As noted in LaValle (2006), existing research 
in manipulation planning has focused on the geometric aspects of the task while greatly 
simplifying the issues of grasping, stability, friction, mechanics, and uncertainty. The 
reaching problem is unconcerned with grasping (and thereby friction) by presuming that 
reaching and grasping can be performed independently. The definition provided in Section 
2 allows for treatment of mechanics (via f(.), the state transition function) and stability and 
uncertainty (by stating the solution to the problem in terms of the observed effects rather 
than the desired commands). Additionally, the problem of reaching encompasses more 
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tasks than those used in pick-and-place; for example, both pointing and touching can be 
considered as instances of reaching. 
A late development by Stilman & Kuffner, Jr. (2007) addresses manipulation planning 
amongst movable obstacles. The reaching problem as defined in Section 2 permits the 
obstacles to be movable by the humanoid. Many of the issues described in this chapter (e.g., 
constructing a model of the environment, monitoring execution, etc.) need to be resolved to 
fully explore this avenue, but the ability to move obstacles as necessary will certainly admit 
new solutions to some instances of the reaching problem. 

3.3 Recent work directly applicable to humanoid reaching 

Recent work in humanoid robotics and virtual humans is directly applicable toward 
efficient, safe humanoid reaching. For example, work by Brock (2000) permits reaching in 
dynamic environments by combining a planned path with an obstacle avoidance behavior. 
More recent work by Kagami et al. (2003) uses stereo vision to construct a geometric model 
of a static environment and motion planning and inverse kinematics to reach to and grasp a 
bottle with a stationary humanoid robot. Liu & Badler (2003); Kallmann et al. (2003); 
Bertram et al. (2006) and Drumwright & Ng-Thow-Hing (2006) focused on developing 
algorithms for humanoid reaching; the algorithms in the latter two works are probabilistically 
complete, while the algorithms in (Liu & Badler, 2003) and (Kallmann et al., 2003) are not 
complete in any sense. All four works assumed static environments, perfect control and 
holonomic constraints. 

4. Outstanding issues 

This section discusses the issues that remain to solve the reaching problem, as follows: 
1. Constructing an accurate model of the environment 
2. Planning collision-free motions in dynamic environments 
3. Correcting deviation from the desired trajectory due to imperfect control 
4. Avoiding both fixed and moving obstacles during trajectory execution 

The first item has received the least research attention to date and therefore includes the 
majority of open problems in collision-free humanoid reaching. Section 4.2 discusses 
progress and prospects in this area. Planning collision-free motions, at least in static 
environments, has received considerable attention; Section 4.1 discusses why this problem is 
challenging from an algorithmic standpoint and addresses extensions to dynamic 
environments. Finally, correcting deviation from the planned trajectory and avoiding 
obstacles during trajectory execution are key to reach the target in a safe manner. Section 4.3 
discusses these two issues. 

4.1 Algorithmic issues 

The best studied aspect of the reaching problem is the algorithmic component, which is an 
extension to the general motion planning introduced below. Section 4.1.1 formally relates 
the problem of reaching to the general motion planning problem, and analyzes the 
complexity of the latter. Section 4.1.2 introduces sample-based motion planning, a paradigm 
for circumventing the intractability of motion planning; the following section discusses the 
extension of a popular sample-based motion planner to respect differential constraints. 
Finally, Sections 4.1.4–4.1.8 discuss motion planning issues highly relevant to humanoid 
reaching, namely planning under uncertainty, potential incompleteness resulting from 
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multiple inverse kinematics solutions, planning to nonstationary goals, and planning in 
dynamic environments. 
Researchers have investigated ways for planning collision-free motions from one 
configuration to another since the introduction of the Piano Mover’s Problem, also known as 
the Static Mover’s Problem Reif (1979). The Piano Mover’s problem can be stated as follows 
(excerpted from LaValle (2006)). 
Given: 

1. a world   , where       = 2 or       = 3

2. a semi-algebraic obstacle region     
3. a collection of m semi-algebraic links of a robot,    1,     2, …   m
4. the configuration space    of the robot; free can then be defined as the subset of 

configuration space which does not cause the robot’s geometry to intersect with 
any obstacles 

5. the initial configuration of the robot, qI

6. the goal configuration of the robot, qG

generate a continuous path  : [0,1] free such that (0) = qI and (1) = qG or correctly report 
that such a path does not exist. The term semi-algebraic refers to a geometric representation 
that is composed by Boolean operations on implicit functions. 

4.1.1 Complexity of motion planning 

The definition of the Piano Mover’s Problem is quite similar to the problem formulation for 
reaching at the beginning of this chapter. Indeed, an instance of the reaching problem can be 
transformed into an instance Piano Mover’s Problem given the following constraints: 

the obstacle region,     is stationary (i.e., 

=      from which follows  and x0 = qI

=

G consists of a single element, g, which is nonstationary, and there exists only one 
robot configuration qG that results in g (i.e., F–1 (g) = qG)

(implies that the command is the new robot 

state)
Reif (1979) showed that the Piano Mover’s Problem is PSPACE-complete, implying NP-
hardness. Additionally, the best known algorithm for solving the Piano Mover’s problem 
(complexity-wise) is Canny’s Roadmap Algorithm (Canny, 1993), which exhibits running-
time exponential in the configuration space; aside from being intractable, the algorithm is 
reportedly quite difficult to implement (LaValle, 2006). Later work by Reif & Sharir (1994) 
proved that planning motions for a robot with fixed degrees-of-freedom and velocity 
constraints in the presence of moving obstacles with known trajectories is PSPACE-hard; 
thus, the constraints that were imposed transforming the reaching problem into the Piano 
Mover’s Problem are unlikely to make the former problem easier. 

4.1.2 Sample-based motion planning

The paradigm of sample-based motion planning was introduced with the advent of the 
randomized potential field (Barraquand & Latombe, 1991). Sample-based algorithms trade 
algorithmic completeness for excellent average-case performance and ease of 
implementation. In fact, completeness was not cast aside; rather, it was relaxed to lesser 
constraints, probabilistic completeness and resolution completeness. It is said that an algorithm is 
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probabilistically complete if the probability of finding a solution, if it exists, tends to unity as 
the number of samples increase. Similarly, a motion planning algorithm is resolution 
complete if a solution, if it exists, will be found in finite time given sufficiently dense 
sampling resolution over the domain of configuration space. Note that neither weaker form 
of completeness permits this class of algorithm to definitively state that a path does not 
exist. Finally, the underlying approach of sample-based planning is quite different from 
adapting classical search algorithms (i.e., A*, best-first, etc.) to a discretized grid; such an 
approach is generally intractable due to the combinatorial explosion of configuration space. 
The most popular sample-based algorithm is currently the rapidly-exploring random tree 
(RRT) LaValle (1998). RRTs are popular due to their inherent bias toward the largest 
Voronoi region of configuration space (i.e., the largest unexplored region) during 
exploration. Efficient exploration is critical for sample-based algorithms because their 
running times generally increase linearly with the number of samples. 

4.1.3 Motion planning under differential constraints

In addition to the advantage of efficient exploration, RRTs allow for planning under 
differential (e.g., nonholonomic) constraints, through kinodynamic planning. Kinodynamic
planning plans in the control space, rather than in configuration space, and is therefore able 
to respect dynamic constraints. Kinodynamic planning theoretically permits motion to be 
planned for hu-manoids, which generally use bipedal locomotion and are nonholonomically 
constrained. As might be expected, kinodynamic planning is harder computationally than 
in the unconstrained case; additionally, kinodynamic planning requires a model of the 
system’s dynamics and a control method for solving a two-point boundary value problem2.
Planning directly in the state-actuator space of the humanoid is infeasible: the motion planner 
would not only have to avoid obstacles but also balance the humanoid and provide locomotion. 
An accurate model of the robot’s dynamics would be required as well. Alternatively, planning 
could occur over the robot’s configuration space augmented with planar position and 
orientation of the base. Constraints would be enforced kinematically rather than dynamically, 
and a trajectory rescaling mechanism could be used to enforce the dynamic constraints after 
planning. For example, kinematic constraints could be used to allow the base to translate or 
rotate, but not translate and rotate simultaneously. Planning in this augmented configuration 
space would require a locomotion controller that translates desired differential position and 
orientation of the base into motor commands. Once a plan were constructed in the augmented 
configuration space, the locomotion controller and joint-space controllers would generate the 
proper motor commands for a given configuration space trajectory. 
Finally, it should be noted that if humanoids moved on holonomic bases, simpler methods 
could potentially be employed for humanoid reaching. For example, Maciejewski & Klein 
(1985) combines inverse kinematics with obstacle avoidance for redundant manipulators 
under holonomic constraints; some mobile manipulators fit into this category. Though the 
method of Maciejewski and Klein can cause the robot to become trapped in local minima, it 
presents minimal computational requirements. 

                                                     

2 In the context of this work, the two-point boundary problem can be considered to be the problem of 
getting from a given state to a desired state under nonholonomic constraints. For example, the problem 
of parallel parking a car can be considered a two-point boundary problem: a series of actions is required 
to move the car into a parking space, even if only a simple translation is required (e.g., the car initially is 
aligned laterally with the parking space). 
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4.1.4 Motion planning for humanoid reaching

The RRT has been applied successfully to reaching for humanoids in virtual environments in 
(Kuffner, Jr., 1998); (Liu & Badler, 2003); (Kallmann et al, 2003); (Bertram et al, 2006) and 
(Drumwright & Ng-Thow-Hing, 2006), among others. Additionally, the RRT has been applied 
to reaching for an embodied humanoid by Kagami et al. (2003), although, as stated in Section 
2, the environment was considered to be stationary and locomotion was not utilized. 
Unfortunately, several assumptions of current, effective motion planning algorithms are 
unsuitable for humanoid reaching, as follows: 

1. An accurate model of the environment and a precise mechanism for control are 
required.

2. A single goal configuration is assumed. 
3. Targets for reaching do not change over time. 
4. The environment is static. 

These issues are explored further in the remainder of this section. 

4.1.5 Planning under uncertainty 

This chapter generally assumes that a sufficiently accurate model of the environment can be 

constructed and that the robot can be controlled with some degree of accuracy. However, 

these assumptions are often unrealistic in real-world robotics. It would be advantageous to 

construct plans that would maximize the distance from the robot to obstacles, for example, 

to minimize deleterious effects of uncertainty. LaValle & Hutchinson (1998) have explored 

the issue of planning under sensing and control uncertainty; however, their use of dynamic 

programming (Bellman, 1957) has restricted applications to planar robots. As an alternative, 

Lazanas & Latombe (1995) proposed an approach based on landmarks, regions of the state 

space where sensing and control are accurate. The assumption that such regions exist is 

significant. The limited application of these two methods illustrates the difficulty of 

planning while maximizing objectives, which is known as optimal planning (LaValle, 2006). 

Finally, Baumann (2001) proposes a planning method that iteratively modifies a trajectory; a 

fitness function judges the quality of the modified trajectory versus the original, in part 

based on distance to obstacles. However, this work has yet to be subjected to peer-review. 

4.1.6 Incompleteness resulting from multiple IK solutions

A single operational-space goal generally corresponds to an infinite number of robot 
configurations, given the hyper-redundant degrees-of-freedom of most humanoids3. It is possible 
that collision-free paths exist only for a subset of the space of collision-free inverse kinematics 
solutions. Drumwright & Ng-Thow-Hing (2006) addressed that problem by maintaining a list of 
goal configurations that is continually grown using inverse kinematics; the motion planner 
frequently attempts to reach arbitrary goals in the list. Thus, the motion planner can avoid 
becoming stuck in planning to unreachable goals by not committing to any particular goal. 

4.1.7 Motion planning to nonstationary goals

Planning trajectories to nonstationary goals has received little attention in the motion 
planning community; however, two concerns are evident. The goals may change with 

                                                     

3 We assume that all available degrees-of-freedom are used for reaching, rather than for achieving 
secondary tasks like singularity avoidance, e.g., (Tanner & Kyriakopoulos, 2000). 
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increasing sensory data, leading to new estimates of the target’s position and orientation. 
Additionally, the target itself may be moving, perhaps with a predictable trajectory. 
The first issue is readily solvable using existing methods. If already in the process of 
planning, the goal can be replaced without ill effects: the results from sample-based 
planning methods will not be invalidated. If a plan has been determined, replanning can be 
performed using the results already determined (i.e., the roadmap, tree, etc.) to speed 
computation. Alternatively, inverse kinematics can be utilized to modify the generated plan 
slightly, somewhat in the manner used for motion retargeting by Choi & Ko (2000). 
Moving targets are far more difficult to manage. Current sample-based planning methods 
have not focused on this problem, and the complexity of adapting existing methods to this 
purpose is unknown. Again, it is imaginable that existing plans could be modified using 
inverse kinematics, though replanning may be required if the target is moving quickly. 
Alternatively, Brock’s method (discussed in Section 4.3) could potentially be utilized with 
some modifications toward this purpose. 

4.1.8 Motion planning in dynamic environments

A simple means to address motion planning in dynamic environments adds time as an extra 
dimension of configuration-space. As LaValle (2006) notes, the planning process must 
constrain this extra dimension to move forward only. This approach of augmenting the 
configuration space with time can fail because the dynamics of the robot are not considered: 
it may not be possible or advisable for a robot to generate sufficient forces to follow the 
determined trajectory. An alternative to this approach is to use kinodynamic planning, as 
described in Section 4.1.3 to plan in the control space of the robot. However, kinodynamic 
planning does not appear to be applicable to configuration spaces above twelve dimensions, 
in addition to the difficulties with this approach described in Section 4.1.3. 

Dynamic replanning, which refers to fast replanning as needed, is an alternative to methods 

which plan around dynamic obstacles. Dynamic replanning does not require the trajectories 

of dynamic obstacles to be known (dynamic obstacles are treated as stationary), and thus 

avoids the additional complexity of planning around these obstacles. Dynamic replanning 

may be the best option for the high-dimensional configuration spaces of humanoids. 

Kallmann & Mataric (2004) has explored online modification of existing sample-based 

roadmaps for virtual humanoids; unfortunately, that work indicated that the modification is 

likely no faster than generating a new plan. However, newer algorithms by Ferguson & 

Stentz (2006) and Zucker et al. (2007), also based on RRTs, have proven adept at replanning 

in nonstationary environments with large configuration spaces by modifying existing trees 

dynamically. Additionally, Drumwright & Ng-Thow-Hing (2006) have indicated that even 

planning anew in real-time for humanoids using a slightly modified RRT algorithm is 

nearly performable using current computers. 

Recent work by Jaillet & Siméon (2004) and van den Berg & Overmars (2005) has taken a 

two-phase approach to motion planning in dynamic environments. The first phase entails 

constructing a probabilistic roadmap (Kavraki et al., 1996) over the persistent parts of the 

environment offline. In the online phase, a graph search algorithm finds a feasible path 

around dynamic obstacles. These methods are compelling because the bulk of computation, 

constructing the roadmap, is performed offline. Nevertheless, further research is required to 

determine efficient ways to update the roadmap as the environment changes (e.g., doors are 

opened, furniture is moved, etc.) before these methods can be used for humanoid reaching, 
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Regardless of the method employed, a significant concern is that the process of planning can 
itself cause possible solutions to disappear, because planning occurs in real-time. An 
additional significant concern is the requirement of many methods that the trajectories of 
the obstacles to be known a priori; filtering techniques– e.g., Kalman filters Kalman & Bucy 
(1961)- might permit short-term predictions, but long-term predictions will be problematic 
unless the obstacles follow balistic trajectories (which will prove difficult for the robot to 
avoid anyhow). 

4.1.9 Summary

Substantial progress has been made in motion planning in the past decade, leading to 
tractable solutions of high-dimensional planning problems. Indeed, in the areas of planning 
to nonstationary goals and planning in dynamic environments, researchers are on the cusp 
of solutions that are viable for humanoid reaching. However, considerable work still 
remains in the area of planning under uncertainty. 

4.2 Perception for modeling issues 

We ignore the problems of object recognition and object pose determination, which are 

beyond the scope of this paperm, and focus on the perceptual issues related to modeling the 

environment for purposes of collision detection4, assuming that the humanoid is equipped 

with a directional range finder. The problem of simultaneous localization and mapping 

(SLAM) is well studied in the mobile robotics community, where significant success has 

been achieved at developing methods to construct maps of 2 D environments; some success 

has been achieved building three-dimensional maps as well. The natural inclination is to see 

whether SLAM techniques for mobile robots can be adapted to the problem of environment 

modeling toward humanoid reaching. Human environments are dynamic, humanoids 

manipulate objects (thus changing the world), and environment modeling is conducted with 

respect to planning; these challenges make current SLAM methods for mobile robotics 

difficult to utilize for humanoid reaching. Indeed, significant obstacles remain before 

humanoids can construct environment models suitable for motion planning. The remainder 

of this section discusses the relevant issues toward this purpose, namely representation, 

localization, exploration, and nonstationary environments. 

4.2.1 Representation of environment model 

There exist several possible representations for modeling the environment, including 
volumetric point sets (Thrun et alv 2003); occupancy grids (Moravec & Elfes, 1985), (Elfes, 
1989); 3D models (Teller, 1998), (Kagami et al., 2003) and feature-based maps (Kuipers et al, 
1993). However, the application of reaching presents several requirements. First, the 
representation must allow for fast intersection testing. Second, the representation must be 
able to efficiently manage the prodigious amounts of data that 3D range scans generate. 
These first two requirements exclude volumetric point sets. Fast updates of the 
representation from sensory data are also required. This stipulation excludes the use of 3D 
models, which require considerable post-processing including iso-surface extraction via the 

                                                     

4 Alfhough the goal functions for the reaching problem are given in the global coordinate frame, it is 
quite natural to use ego-centric frames instead. As a result, localization is likely not required to perform 
reaching, except for effectively constructing the environment model. 
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Marching Cubes algorithm (Lorensen & Cline, 1987) or stitching (Turk & Levoy, 1994) and 
aligning and registering (Mayer & Bajcsy 1993); (Pito, 1996). In addition to the requirements 
listed above, the ability to readily extract high-level features from the representation for use 
with localization, described in Section 4.2.2, would be advantageous. 
Drumwright et al. (2006) used an octree, which may be considered as an extension of 
occupancy grids, for modeling environments for reaching. The octree representation results 
in efficient storage, permits fast updates to the representation from range data, and is 
capable of performing fast intersection testing with the robot model. Drumwright et al. 
(2006) assumed perfect localization, and we are unaware of work that extracts features from 
octrees (or their two-dimensional equivalent, quadtrees) for the purpose of localization. 
However, there is precedent for feature extraction from octrees, e.g., (Sung et al., 2002). 
An alternative to the octree representation would use high-level features (e.g., landmarks, 
objects, or shapes) as the base representation. Such features would serve well for input to 
one of the popular methods for simultaneous localization and mapping (SLAM) such as 
(Smith & Cheeseman, 1985); (Smith et al., 1990) or (Fox et al., 1999). Recognition of objects in 
the context of mapping and localization has been limited generally to those objects which 
are of interest to mobile robots, including doors (Avots et al., 2002), furniture (Hähnel et al., 
2003), and walls (Martin & Thrun, 2002). Additionally, representations used typically 
involve geometric primitives, which fail to realize the potential benefit of using identified 
objects to infer occluded features. The difficulty of performing object recognition in 
unstructured environments makes the near-term realization of this benefit unlikely. 

4.2.2 Localization

The humanoid must be able to localize itself (i.e., know its planar position and orientation) 

with respect to the environment, if not globally. Recent work by Fox et al. (1999) indicates 

that localization can be performed successfully with range data even in highly dynamic 

environments. This work, as well as other probabilistic approaches, typically can provide 

measures of certainty of their localization estimates. The estimated variance can be used to 

filter updates of the environment model; the environment model will be updated only if the 

certainty of the prediction is above a given threshold. Alternatively, localization accuracy 

can be quite high, e.g., on the order of centimeters Yamamoto et al. (2005), if the 

environment is modestly instrumented. 

4.2.3 Nonstationary environments

Modeling nonstationary environments requires the management of three types of obstacles, 
which we call dynamic, movable, and static. Dynamic obstacles are capable of moving on their 
own (e.g., humans, cars, etc.), while movable obstacles (e.g., cups, furniture, books, etc.) 
must be moved by a dynamic obstacle. Static obstacles, such as walls, are incapable of 
movement. The three cases would ideally be managed separately, but a possible solution 
could treat movable and static obstacles identically yet allow for gradual changes to the 
environment.
Three recent approaches have made strides toward modeling nonstationary environments. 
The first approach, introduced independently by Wang & Thorpe (2002) and Hähnel et al. 
(2002), attempts to identify dynamic objects and filter them from the sensory data. The 
second approach, (Hähnel et al., 2003), uses an expectation-maximization (Dempster et al., 
1977) based algorithm to repeatedly process the sensor readings and predict whether a 
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given feature belongs to a dynamic obstacle; dynamic obstacles are not incorporated into the 
constructed map. Finally, Biswas et al. (2002) attempt to model dynamic obstacles as 
movable rigid bodies using an occupancy grid and an expectation-maximization based 
algorithm. Unfortunately, the first two approaches described above are ill-suited for 
movable obstacles, while the second approach is unable to handle dynamic obstacles. 

4.2.4 Exploration

Exploration of the environment to facilitate reaching requires both directed locomotion and 
directed/active sensing. Both exploration and active sensing have been studied extensively 
in the context of mobile robot mapping, it is unlikely that this research is fully applicable 
toward our problem. Exploration in the mapping context is conducted in a greedy manner: 
movement is directed to build a complete map of the environment with respect to some 
criterion, e.g., minimum time (Yamauchi, 1997), minimum energy expenditure (Mei et al., 
2006), maximum safety (González-Baños & Latombe, 2002), etc. In contrast, the reaching 
problem requires a balance between exploration and exploitation: the environment must be 
sufficiently explored, but not at the expense of finding a valid collision-free path. The 
balance between exploration and exploitation precludes the use of active sensing 
frameworks, such as that described by Mihaylova et al. (2002), to guide exploration. Finally, 
moving obstacles must be avoided during exploration, perhaps by using reactive 
approaches like VFH Borenstein & Koren (1989) or potential fields Khatib (1986). 
Choset & Burdick (2000) refer to environmental exploration in the context of motion 
planning sensor based motion planning, and introduced a new data structure, the hierarchical 
generalized voronoi graph, to solve this problem. Unfortunately, their work was targeted 
toward mobile robots, and it appears highly unlikely to scale to humanoid robots with high-
dimensional configuration spaces. 
Researchers have yet to propose methods to perform directed exploration with respect to 
motion planning for humanoid robots. One possibility is to adapt the concepts employed for 
mobile robot exploration to humanoids. For example,frontier-based exploration Yamauchi (1997), 
which directs the robot to move to the area between open space and uncharted territory (i.e., 
the frontier), could be combined with a heuristic to select frontiers nearest the target. 

4.2.5 Summary 

This section covered the relevant issues necessary to construct a model of the environment 

for reaching. The issues of localization and selecting a proper representation for modeling 

the environment seem manageable through existing research. However, considerable work 

remains in the areas of modeling nonstationary environments and exploration for motion 

planning. 

4.3 Control and Execution issues 

Ideally, kinematic commands could be issued to a humanoid, the robot would execute those 

commands with perfect precision, and obstacles would not move. Those assumptions do not 

hold in the real-world: humanoids are typically holonomically constrained, controllers are 

imperfect, robots exhibit some degree of inaccuracy due to mechanical tolerances, the model 

of the environment may be flawed, and obstacles can appear suddenly. 
The process of getting a manipulator to reach to an operational space target generally 
consists of the following sequence of steps: 
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1. A motion planner generates kinematic commands; the environment is often 
considered to be static for manipulators, so motion planning may consist of using 
cubic or quinticsplines to form a trajectory with via points. 

2. The kinematic commands are input to a mechanism for rescaling the trajectory. The 
trajectory is rescaled to a longer duration, if necessary, to permit the robot to 
execute the trajectory without deviating from the prescribed path and prevent 
possible damage to the robot. 

3. The commands are continually fed to a controller, which translates kinematic 
commands into actuator commands. 

This process runs counter to best practices in mobile robotics because it provides no means 
to monitor the execution of the trajectory and react to exigent events, such as humans 
getting in the way. For humanoids, the process above must provide a means to supervise 
the robot’s execution of the plan to avoid obstacles and correct deviation from the plan. 
This section discusses the causes, effects, and remedies for controller deviation and examines 
execution monitoring, which attempts to avoid obstacles while driving the robot to its target. 

4.3.1 Controller deviation 

Robot controllers that minimize command error generally incorporate a model of the robot’s 
dynamics; in particular, an inverse dynamics model of the robot is utilized to map desired 
accelerations to actuator torques. Controllers that use inverse dynamics models will still 
exhibit some deviation from the desired trajectory due to approximations of the robot’s true 
dynamics (e.g., Coulombic friction, infinitely rigid links, etc.) Of far more concern, however, 
is that an algorithm does not exist for computing the inverse dynamics for robots with 
floating-bases experiencing contact constraints (e.g., for humanoids standing on a floor). As 
a result, humanoids are frequently controlled using feedback controllers (e.g., PD, PID, 
PIDD2, etc.) These controllers necessarily result in deviation from the commanded trajectory 
because their generated motor commands are solely a function of command error. 

For systems with holonomic differential constraints, deviation from the reference trajectory 
is the primary concern. For systems that are nonholonomically constrained, such as bipeds, 
deviation results in an additional difficulty: correcting deviation may require solving a two-
point boundary value problem. As Section 4.1.3 noted, determining a general solution to 
this problem for humanoids is currently not practical. Thus, the question remains: given 
that the robot has deviated from its trajectory and is not in danger of colliding with 
obstacles, how is the deviation corrected? As in Section 4.1.3, we assume that the humanoid 
has a locomotion controller with inputs of desired planar position and orientation 
differentials for the base. We make no assumptions about the types of controllers employed 
for motor control. If the robot deviates from its planned trajectory for either the base or one 
of the joints, feedback is incorporated into the next commands sent to the controller. If the 
locomotion controller is unable to accomodate the desired differentials due to kinematic 
constraints5, it reports this problem, and a new path for the base is planned that respects 
these constraints. The advantage of this approach is that the planning method can remain 
ignorant of the robot’s dynamics model and controller internals. The most significant issue 
remaining is to determine whether the humanoid is capable of becoming stuck in a 
particular location due to kinematic constraints; however, this issue is entirely dependent 
upon the robot’s mechanics and controllers and is thus robot-specific. 

                                                     

5 As in Section 4.1.3, we assume that the trajectory has been rescaled to respect dynamic constraints. 
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4.3.2 Global methods for execution monitoring

The execution of the planned trajectory must be monitored to avoid both dynamic obstacles 

and static obstacles that were circumlocuted during planning but, due to unintentional 

deviation from the trajectory, that the robot is in imminent danger of contacting. Ideally, a 

policy would exist that could issue avoidance commands to the robot with expediency. Such 

a policy, denoted as u ( ), would issue commands (i.e., u) as a function of the current 

state of the robot ( ) and the current obstacle region, . This policy theoretically could be 

constructed offline through reinforcement learning or dynamic programming; practically, 

however, the high-dimensionality of the robot’s state-action spaces and the infinite number 

of configurations of the environment make this approach intractable (Bellman, 1957). 

Alternatively, it is conceivable that a policy could be determined nearly instantaneously 

using reinforcement learning as the environmental model changes (i.e., (.) would be a 

function of the robot’s configuration only). Again, such an approach is currently infeasible 

given the robot’s high-dimensional state-action spaces, and dynamic replanning would 

likely prove to be a better alternative. Yang & LaValle (2000) provide a method for feedback 

motion planning, which entails constructing motion plans that are viable from entire regions 

of state-space. Perhaps because objective criteria, upon which dynamic programming is 

based, do not have to be considered, their method seems to be slightly more tractable than 

dynamic programming. However, this method has only been applied to five-dimensional 

configuration spaces, and it appears unlikely to scale much further. 

The methods described above are known as “global” methods, because good actions (i.e, 

those that lead to the goal and away from obstacles) are always generated, regardless of the 

configurations of the robot and environment. As noted above, the combined state-action 

spaces are immense, thus generally preventing global methods from being used for 

humanoids. “Local methods”, in contrast to global methods, are generally tractable, but 

may result in failure to reach the goal; fortunately, these methods typically work well at 

avoiding obstacles. 

4.3.3 Local methods for execution monitoring

One local method, by Brock & Khatib (2002), currently permits reaching with fast obstacle 
avoidance. This method is based on elastic strips, an extension of Khatib’s operational space 
framework Khatib (1986) that employs virtual rubber bands. These virtual rubber bands 
warp planned trajectories away from obstacles. The most significant drawback to using 
elastic strips lies within its use of the robot’s joint-space inertia matrix; this matrix is 
frequently unknown-it requires precise knowledge of the robot’s inertial properties- and 
changes if the robot carries objects or interacts with the environment. In addition, like all 
local methods, elastic strips can cause the robot to become stuck in local minima. However, 
Brock did implement this method on both a mobile manipulator in an environment 
populated with moving obstacles and a simulated humanoid. 

4.3.4 Summary

Control and locomotion are both significant problems in humanoid robotics, and assessing 
future prospects in these areas is difficult. However, the assumption of a planar controller 
for locomotion seems reasonable; it would prove difficult to have the roboticist juggle 
balance, locomotion, and task performance simultaneously. Indeed, many current 
humanoid designs prohibit direct access to actuators. 
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For execution monitoring, only elastic strips has proven successful for real-time obstacle 
avoidance on a mobile manipulator that followed a given trajectory. Depending on how 
seriously inaccuracies in the joint-space inertia matrix affect elastic strips, this method might 
prove extendible to humanoids. Viable alternatives include dynamic replanning and the 
offline-online probabilistic roadmap based methods of Jaillet & Siméon (2004) and van den 
Berg & Overmars (2005) described in Section 4.1, using dense roadmaps of configuration 
space. Regardless of the method chosen for execution monitoring, dynamic obstacles still 
require representation in the robot’s perceptual model of the environment, as described in 
Section 4.2. 

5 Conclusion 

The past decade has seen remarkable progress in the types of motion planning problems 
that have been solved. However, many of these successes have been in application domains 
far removed from robotics. Additionally, humanoids have yet to perform tasks 
autonomously in human environments. This chapter formally defined one of the most 
important problems for humanoids, efficient, safe reaching in dynamic, unknown 
environments. Progress in the three areas critical areas to solving this problem- algorithms, 
perception for modeling, and execution-was surveyed and future prospects were examined. 
Table 1 summarizes the key issues in these areas as well as progress and prospects. 

Issue Progress and prospects 

Planning under uncertainty Difficult for humanoids, possible solution is dynamic 
replanning

Incompleteness resulting 
from multiple IK solutions 

Solved by (Bertram et al., 2006) and (Drumwright & Ng-
Thow-Hing, 2006) 

Planning to nonstationary 
goals 

Has received little focus, possible solution is modification 
of existing plans using inverse kinematics 

Planning in dynamic 
environments

Dynamic replanning and offline-online probabilistic 
roadmaps seem to be promising directions; effectiveness 
toward humanoid reaching needs to be assessed 

Representation of 
environment model 

Octree approach works well, high-level features might 
work better in the future 

Localization Highly active area of research; (Fox et al., 1999) indicates 
good localization feasible even in nonstationary 
environments

Modeling nonstationary 
environments

Considerable work remaining; current work fails to 
address movable obstacles and dynamic obstacles 
simultaneously 

Exploration Considerable work remaining; exploration for planning 
humanoid motions yet to be addressed 

Controller deviation Better controllers will address this problem; can be 
mitigated by assuming differential locomotion controller 

Execution monitoring (Brock & Khatib, 2002) is one possible solution; dynamic 
replanning is another 

Table 1. The core issues with respect to humanoid reaching discussed in this chapter with 
brief summaries of the findings. 
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With respect to algorithms, control, and execution monitoring, dynamic replanning seems 
to be one of the best solutions for humanoid reaching. As computing power continues to 
grow, dynamic replanning becomes increasingly viable for planning reaching in 
nonstationary environments. For modeling the robot’s environment, computational power 
seems to be less of an issue. Instead, new algorithms are required to balance the tradeoff 
between exploration and exploitation and to perceive and classify fully dynamic and semi 
dynamic obstacles. These three areas critical to humanoid reaching are currently the focus of 
intensive research, and results applicable toward humanoid reaching are on the horizon. 
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