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1. Introduction  

Most eukaryots have specialized protein-DNA complexs, called telomeres at the ends of 

natural linear chromosomes. Telomeric DNA consists of a tandemly repeated G-rich 

sequence. The lengths of telomeric DNAs in S. pombe, S. cerevisiae, and human are ~300 

nucleotids, ~350 nucleotides, and ~10 kb, respectively. The ends of the telomeric DNA have 

3’ single-stranded overhangs. The protein components of telomeres consists of double-

stranded telomere-binding proteins, such as human TRF1 and TRF2, S. pombe Taz1, and 

single-stranded telomere-binding proteins, such as S. cerevisiae Cdc13, S. pombe Pot1, and 

human POT1. DNA double-strand breaks (DSBs) must be repaired to maintain genomic 

integrity. In contrast, natural chromosome ends should not be recognized as DSBs. The 

telomere is capped to protect from DNA repair activity. If this capping function is lost, this 

uncapped telomere is recognized as DNA damage and becomes substrate for DNA repair 

proteins. The first step in homologous recombination (HR) repair is processing of DNA ends 

by 5’ to 3’ degradation to create 3’ single-stranded overhangs. The proteins involved in this 

steps include S. cerevisiae Mre11-Rad50-Xrs2 complex (MRX), Sae2, Sgs1, and Dna2. Recent 

works revealed that proteins involved in the processing of DNA DSB ends are also involved 

in the processing of capped or uncapped telomere. These facts raised new question of how 

these proteins are regulated at telomere ends. This chapter will focus on the roles of proteins 

involved in the processing of DBS ends at capped (functional) and uncapped (dysfunctional) 

telomere in S. pombe, S. cerevisiae and human. This chapter will also focus on the functional 

interactions between telomere-binding proteins and proteins involved in the processing of 

DBS ends. Resent works revealed that double-stranded and single-stranded telomere-

binding proteins play critical roles to control proteins involved in DNA repair at 

chromosome ends.  

2. Roles of proteins involved in DNA end-processing in telomere maintenance 

DNA DSBs are repaired by HR or non-homologous end-joining (NHEJ) [1]. S. cerevisiae MRX 

is involved in both HR and NHEJ [2]. MRX is suggested to be involved in the processng of 

DSB ends in HR repair. Recently, several other  proteins involved the processing have been 

discovered. Some of the these proteins are also involved in the processing of telomere ends. 

In this section, the roles of these proteins in telomere maintenance will be discussed.  
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2.1 Roles of proteins involved in DNA end-processing at DSB ends  

Role of S. cerevisiae MRX in HR is well studied both in vivo and in vitro (Mimitou and 
Symington 2009) (Mimitou and Symington 2008) (Zhu et al. 2008) (Gravel et al. 2008) (Cejka 
et al. 2010) (Niu et al. 2010). MRX cooperates with Sae2 to initiate 5’ resection at DNA DSB 
end. Although both MRX and Sae2 have nuclease activities, it remains unclear the 
contribution of these nucleases to DSB resection. The resultant 3’ single-stranded ovehangs 
are further resected by two redundant pathways. One is dependent on Sgs1 helicase, a 
conserved RecQ family member, and the Dna2. Dna2 has both helicase and nuclease 
domains, but nuclease activity is enough for DSB resection (Zhu et al. 2008). The other is 
dependent on Exo1 5’-3’ exonuclease. S. cerevisiae Yku70-Yku80 heterodimer (Ku) binds to 
DSB ends and recruits downstream NHEJ factors (Critchlow and Jackson 1998). Ku inhibits 
5’ resection by MRX (Mimitou and Symington 2010) (Shim et al. 2010). Similar model is 
proposed in S. pombe(Tomita et al. 2003). S. pombe Mre11-Rad50-Nbs1 (S. cerevisiae Xrs2 
homologue) complex (MRN) is also suggested to be involved in 5’ resection at DNA DSB 
end. S. pombe Ku also inhibits 5’ resection by MRN. In the absence of MRN, Exo1 can resect 
DSB ends. Contribution of S. pombe RecQ helicase Rqh1 and Dna2 in the resection of DSB 
ends remains unclear. It has been shown that human BLM, a RecQ helicase family, and 
DNA2 interact to resect DNA end and helicase activity of BLM and nuclease activity of 
DNA2 are required for this reaction (Nimonkar et al. 2011). The functional conservation of 
these proteins from yeast to human suggests that the functions of these proteins in S. pombe 
are also conserved.    

2.2 Roles of proteins involved in DNA end-processing in telomere maintenance in  
S. pombe and in S. cerevisiae 

Telomere ends should not be recognized as DSB ends, because telomere ends should no be 
repaired by HR or NHEJ. However, proteins involved in HR or NHEJ are also involved in 
telomere maintenance (Longhese et al. 2010). The chromosome end replicated by lagging-
strand synthesis has 3’ single-stranded overhangs. In contrast, the chromosome end 
replicated by leading-strand synthesis is blunt-end. However, most eukaryotes have 3’ 
single-stranded overhangs at both ends, suggesting that the chromosome end replicated by 
leading-strand synthesis is resected (Wellinger et al. 1996; Makarov, Hirose, and Langmore 
1997). S. cerevisiae MRX is suggested to be involved in this resection (Diede and Gottschling 
2001). However, MRX independent resection has been suggested, which may be produced 
at lagging-strand telomere after DNA replication without any nuclease activity (Larrivee, 
LeBel, and Wellinger 2004). MRX mainly binds to the leading-strand telomere, further 
suggesting that MRX is involved in this resection at leading-strand telomere (Faure et al. 
2010). An inducible short telomere assay revealed that artificial telomere ends is resected by 
the same DNA repair factors (Bonetti et al. 2009) (Longhese et al. 2010) (Iglesias and Lingner 
2009) (Fig. 1). MRX and Sae2 act in the same resection pathway. Concomitant inactivation of 
Sae2 and Sgs1 abolishes end resection, suggesting that they have redundant function for the 
resection. Dna2 acts redundantly with Exo1, but not with Sgs1, suggesting that Dna2 
supports Sgs1 activity. The lack of Sgs1, Dna2 or Exo1 by itself does not affect the resection, 
suggesting that Exo1 and Sgs1-Dna2 may less important for the resection than MRX and 
Sae2. These results were obtained by using artificial telomere, which initially produces 
blunt-end telomere by nuclease. However, leading-strand synthesis in wild-type cells also 
produces blunt-end telomere. Consistently, Sae2 and Sgs1 also play redundant functions in 
natural telomere end-processing (Bonetti et al. 2009), suggesting that an inducible short 
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telomere assay mimic wild-type telomere end. In wild-type S. cerevisiae cells, 3’ single-
stranded overhangs increase in S phase at telomeres (Wellinger, Wolf, and Zakian 1993) 
(Dionne and Wellinger 1996). In contrast, 3’ single-stranded overhangs can be detected at 
telomeres throughout the cell cycle in the absence of S. cerevisiae Ku, suggesting that Ku 
inhibits resection at telomere (Gravel et al. 1998) (Polotnianka, Li, and Lustig 1998). This 
function of Ku is conserved in S. pombe Ku (Kibe et al. 2003). However, proteins involved in 
the resection of telomere ends are not well studied in S. pombe. In S. pombe, Dna2 is involved 
in the resection of telomere ends (Tomita et al. 2004).   
 

 

Fig. 1. Model for DNA end-processing at S. cerevisiae telomere. DNA replication will create 
blunt-end at leading-strand telomere and 3’ single-stranded overhangs at lagging-strand 
telomere after removal of the last RNA primer. Similar to the case at DSB ends, MRX and 
Sae2 play a major role to produce 3’ single-stranded overhangs at telomeres. Sgs1-Dna2 and 
Exo1 can provide compensatory activities to produce 3’ single-stranded overhangs.         

2.3 Proteins involved in DNA end-processing in S. pombe taz1∆ cells  

S. pombe Taz1 binds telomeric double-stranded DNA (Cooper, Watanabe, and Nurse 1998). 
Deletion of taz1 causes massive telomere elongation. Asynchronous wild-type S. pombe cells 
have small amount of 3’ single-stranded overhangs (Kibe et al. 2003). In contrast, taz1 
disruptant has very long 3’ single-stranded overhangs (Tomita et al. 2003). In this mutant 
background, roles of MRN, Ku, Dna2, and Exo1 are studied (Fig. 2). MRN and Dna2 are 
responsible for the production of 3’ single-stranded overhangs (Tomita et al. 2004). But, 3’ 
single-stranded overhangs are produced by concomitant deletion of Ku and MRN, 
suggesting that unknown nuclease can produce the overhangs in the absence of both MRN 
and Ku in taz1 disruptant. Exo1 is not involved in this activity. Telomere ends in taz1 
disruptant is partially unprotected. Indeed, RPA foci and Rad22Rad52 foci are produced at 
telomere in taz1 disruptant (Carneiro et al. 2010). Therefore, proteins involved in the 
resection in taz1 disruptant may not be same as that in wild-type cells. However, Dna2 is 

involved in the resection in both wild-type and taz1∆ background, suggesting that some of 
the proteins involved in the resection in taz1 disruptant are also involved in the resection in 
wild-type cells.  
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Fig. 2. Model for DNA end-processing at dysfunctional telomere. 3’ single-stranded 

overhangs are produced by MRN and Dna2 in S. pombe taz1∆ cells (Left). Ku inhibits 
unknown nuclease, but not nuclease activity depending on MRN-Dna2. 3’ single-stranded 
overhangs are produced by Pif1 or Exo1 in S. cerevisiae cdc13-1 cells (Right). Unknown 
nuclease is suggested to function together with Pif1 helicase.   

2.4 Proteins involved in DNA end-processing in S. cerevisiae cdc13-1 cells 

S. cerevisiae Cdc13 binds telomeric single-stranded DNA (Garvik, Carson, and Hartwell 
1995). cdc13-1 temperature sensitive mutant is used to study proteins that are involved in the 
resection at uncapped telomeres (Lydall 2009). These studies revealed that the single-
stranded DNA at telomeres in cdc13-1 mutants resembles a DSB end. However, there are 
some differences between these ends (Fig. 2). In cdc13-1 mutants at high temperature, Pif1 
helicase and Exo1 are redundantly involved in the resection of uncapped telomere (Dewar 
and Lydall 2010). It remains unclear how Pif1 contribute to the resection. As Pif1 has no 
nuclease activity, involvement of the unknown nuclease is suggested to cleave single-
stranded DNA unwound by Pif1 helicase. Sgs1 also contributes to resection of telomeres 
in cdc13-1 mutants (Ngo and Lydall 2010). However, unlike pif1 exo1 double mutant, 
resection of telomeres in cdc13-1 mutant background occurs in sgs1 exo1 double mutant, 
demonstrating that Pif1 and Exo1 play major roles in the resection of uncapped telomere 
at high temperature.   

3. Roles of RecQ helicase in telomere maintenance 

RecQ helicase is conserved from E. coli. to human and play a critical role in genome stability 
(Bernstein, Gangloff, and Rothstein 2010). Werner Syndrome (WS) is a premature aging 
syndrome resulting from loss of function of one of the human RecQ helicase WRN. The roles 
of S. cerevisiae RecQ helicase Sgs1 in homologous recombination are well studied. RecQ 
helicase is also involved in telomere maintenance especially at dysfunctional telomere. In 
this section, roles of RecQ helicase in telomere maintenance will be discussed. Functional 
interaction between RecQ helicase and POT1 in S. pombe and in human will be also 
discussed.  

3.1 Roles of RecQ helicase in DNA repair 

S. cerevisiae RecQ helicase Sgs1 is involved in several steps in HR (Ashton and Hickson 
2010). As discussed above, Sgs1 is involved in the resection of DSB ends. Genetic and in 
vitro studies also suggest that Sgs1 inhibits unscheduled recombinogenic events, but 
promotes the resolution of recombination intermediates. Strains deleted for SGS1 display 
hyperrecombination phenotype, but are defective in DNA damage-induced heteroallilic 
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recombination (Watt et al. 1996) (Onoda et al. 2001). S. cerevisiae Sgs1 and Top3 migrate and 
disentangle a double Holliday junction (dHJ) to produce non-crossover recombination 
products in vitro (Cejka et al. 2010). This activity is also detected in human RecQ helicase 
BLM and human topoisomerase IIIa (Wu and Hickson 2003). Mutant of S. pombe RecQ 
helicase rqh1 is sensitive to DNA damage and has high frequency of recombination under 
normal growth conditions and following DNA damage, suggesting that Rqh1 is also 
involved in HR repair both positively and negatively (Murray et al. 1997) (Stewart et al. 
1997) (Doe et al. 2000) (Caspari, Murray, and Carr 2002).   

3.2 Roles of RecQ helicase in telomere maintenance in S. cerevisiae 

As mutation of S. cerevisiae SGS1 does not affect telomere length, Sgs1 has no apparent role in 
telomere maintenance in the presence of telomerase activity (Watt et al. 1996). However, the 
double mutant between telomerase RNA component TLC1 and SGS1 shorten telomeres at an 
increased rate per population doubling and Sgs1 affects telomere-telomere recombination in 
the absence of telomerase, demonstrating that Sgs1 plays roles at telomere in the absence of 
telomerase activity (Johnson et al. 2001) (Cohen and Sinclair 2001) (Huang et al. 2001). X-
shaped structures are accumulated at telomeres in senescing tlc1 sgs1 double mutants and 
these structures are suggested to be the recombination intermediates related to hemicatenanes. 
This result suggests that Sgs1 is required for the efficient resolution of telomere recombination 
intermediates in the absence of telomerase (Lee et al. 2007; Chavez, Tsou, and Johnson 2009).  

3.3 Roles of RecQ helicase in telomere maintenance in mammals 

Human RecQ helicase WRN binds to telomere in S phase in primary human IMR90 
fibroblasts and is required for efficient replication of the G-rich telomeric DNA strand, 
suggesting that WRN is required for replication of telomeric DNA in telomerase-negative 
primary human fibroblasts (Crabbe et al. 2004). In Werner syndrome (WS) cells, replication-
associated telomere loss results in the chromosome fusions, causing genomic instability 
(Crabbe et al. 2007). The life span of normal human skin fibroblasts derived from WS 
patients can be extended by expression of the catalytic subunit human telomerase reverse 
transcriptase (hTERT) (Wyllie et al. 2000; Ouellette et al. 2000). These facts demonstrate that 
dysfunctional telomere is a major determinant of the premature aging syndrome and WRN 
plays important role at dysfunctional telomere and telomerase activity can suppress the 
defect in WRN deficient cells. Consistently, Wrn-deficient mouse, which has telomerase 
activity, has no disease phenotype, but telomerase-Wrn double null mouse elicits a Werner-
like premature aging syndrome (Chang et al. 2004). Telomere sister chromatid exchange (T-
SEC) increases in cells from telomerase-Wrn double null mouse, suggesting that WRN are 
required to repress inappropriate telomere recombination (Laud et al. 2005) (Multani and 
Chang 2007). Human WRN and other RecQ helicase BLM co-localizes with telomere in 
human cancer cells that lack telomerase, ALT cells (Johnson et al. 2001; Opresko et al. 2004; 
Lillard-Wetherell et al. 2004). As telomeres in ALT cells are maintained by HR, human WRN 
and BLM are suggested to be involved in the recombination at telomere in ALT cells. 
Possible roles of WRN in telomere maintenance will be discussed in the next section.  

3.4 Functional interaction between RecQ helicase and POT1 in S. pombe  
and in human 
Pot1 is conserved from S. pombe to human and binds to single-stranded telomeric DNA 
sequence specifically (Baumann and Cech 2001). Deletion of S. pombe pot1 causes rapid 
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telomere loss and chromosome circularization and this circularization is mediated by single 
strand annealing (SSA) (Wang and Baumann 2008). In S. cerevisiae, Rad52, Rad1/Rad10 
nuclease, RPA, Srs2 helicase, and Sgs1 are involved in SSA (Fishman-Lobell and Haber 1992) 
(Ivanov and Haber 1995) (Ivanov et al. 1996) (Paques and Haber 1997), (Sugawara, Ira, and 
Haber 2000; Umezu et al. 1998) (Zhu et al. 2008). Consistently, the double mutants between 
S. pombe homologue of these proteins and pot1 are synthetically lethal (Wang and Baumann 
2008). S. pombe telomerase disruptant can survive either by maintaining telomere by HR or 
chromosome circularization(Nakamura, Cooper, and Cech 1998). In contrast, pot1 disruptant 
survives only by chromosome circularization (Baumann and Cech 2001). One possible 
explanation is that Pot1 is required for prevention of rapid telomere loss, which would lead 
chromosome circularization dominantly. Recently our group has reported that the double 
mutant between rqh1-hd (helicase dead point mutant) and pot1 is not synthetically lethal 
(Takahashi et al. 2011). The chromosome ends of the pot1 rqh1-hd double mutant are 
maintained by HR. There are several possible explanations for this. First, helicase dead Rqh1 
may bind to the chromosome ends in pot1 disruptant to inhibit rapid telomere loss, allowing 
cells to maintain chromosome ends by HR. Second, helicase activity of the Rqh1 may be 
involved in the rapid telomere loss in the pot1 disruptant, because S. cerevisiae RecQ helicase 
is involved in the processing of telomere ends. This will also allow cells to maintain 
chromosome ends by HR. Third, helicase activity of the Rqh1 may be required for the 
suppression of recombination at telomere. This will also allow cells to maintain chromosome 
ends by HR. The exact role of the helicase dead Rqh1 in pot1 disruptant remains unclear. 
Interestingly, pot1 rqh1-hd double mutant is sensitive to anti-microtubule drug thiabendazole 
(TBZ) (Takahashi et al. 2011). The pot1 rqh1-hd double mutant has recombination 
intermediates even in the M phase at the chromosome ends. This physical link between the 
sister chromatids in M phase will inhibit chromosome segregation, especially in the 
presence of TBZ, which would lender cells sensitive to TBZ. Interestingly, concomitant  
 

 
Fig. 3. WRN activities on a telomeric D-loop structure (A) and on a lagging strand telomere 
(B) during S phase. A. The model shows that WRN helicase releases the invading strand 
during S phase. B. WRN resolves G-quartet (G) formed on the lagging telomeric DNA.  
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inhibition of WRN and POT1 also lender human cells sensitive to anti-microtubule drug 
vinblastine, implying the functional conservation between human POT1 and WRN and S. 
pombe Pot1 and Rqh1(Takahashi et al. 2011). The other double knockdown experiments of 
WRN and POT1 in human cells show that human POT1 is required for efficient telomere C-
rich strand replication in the absence of WRN (Arnoult et al. 2009). The functional 
interaction between human POT1 and RecQ helicase WRN is also suggested by in vitro 
experiment. Purified human POT1 binds to WRN and POT1 binding on telomeric DNA 
regulates the unwinding activity of WRN (Opresko et al. 2005; Sowd, Lei, and Opresko 2008; 
Opresko, Sowd, and Wang 2009). Based on these and other data, several possible roles of 
WRN at telomere are suggested (Rossi, Ghosh, and Bohr 2010) (Fig. 3). Telomere is capped 
by telomere binding proteins called shelterin and the chromosome end is protected through 
strand invasion of the duplex telomeric repeat by the 3’ single-stranded overhangs, which is 
called t-loop (Palm and de Lange 2008). As WRN acts to release the 3’ invading tail from a 
telomeric D loop in vitro, WRN may be involved in the regulation of the t-loop (Opresko et 
al. 2004). Single-stranded overhangs can fold into G-quadruplex DNA, which may inhibit 
DNA polymerase and telomerase at telomere (Zaug, Podell, and Cech 2005). Therefore, 
WRN may disrupt telomeric G-quadruplex with POT1 to facilitate DNA replication and/or 
telomere elongation at telomeres.   

4. Roles of RPA in telomere maintenance 

Replication protein A (RPA) is a heterotrimeric single-stranded non-specific DNA-binding 
protein consisting of a large (70 kDa), middle (32 kDa) and small (14 kDa) subunit. RPA is 
conserved from yeast to human and is essential for DNA replication, repair, and 
recombination (Binz, Sheehan, and Wold 2004). The large subunits of RPA in human, S, 
cerevisiae and S. pombe are named as RPA70, Rfa1 and Rad11, respectively. RPA is involved 
in HR repair by binding the single-stranded DNA generated by DNA end-processing at DSB 
ends. Single-stranded DNA is also produced at telomere. But RPA is suggested to be 
excluded from single-stranded telomere overhangs because it will lead to DNA damage 
checkpoint activation and cell cycle arrest. However, genetic evidences suggest the role of 
RPA in telomere maintenance. In this section, possible roles of RPA in telomere maintenance 
will be discussed. The functional relationship between RPA, RecQ helicase, and Taz1 will be 
also discussed.    

4.1 Roles of RPA in DNA repair 

Mutations in S, cerevisiare rfa1 lender cells to sensitive to DNA damage and affect 
recombination efficiency, suggesting the involvement of RPA in recombination and repair 
processes (Smith and Rothstein 1995; Firmenich, Elias-Arnanz, and Berg 1995; Umezu et 
al. 1998). S. pombe rad11 mutants are also sensitive to DNA damage and rad11-D223Y 
mutant is epitatic to rad50 mutant, suggesting that RPA is involved in the HR repair 
(Parker et al. 1997; Ono et al. 2003). The roles of RPA in HR repair is well studied by in 
vitro system using S. pombe proteins (Kurokawa et al. 2008; Murayama et al. 2008). These 
in vitro and other genetic studies suggest that RPA binds to the single-stranded DNA 
generated by processing at DSB end. Then Rad22 (the S. pombe Rad52 homolog) helps 
Rad51 to displace RPA from single-stranded DNA. RPA bound to the single-stranded 
DNA recruits DNA damage checkpoint proteins to the DSB site to activate DNA damage 
checkpoint (Zou and Elledge 2003).   
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4.2 Roles of RPA in telomere maintenance 

Telomere ends have single-strand overhangs, which may serve substrates for RPA. 
However, it is belieaved that RPA is excluded from telomere to suppress DNA damage 
checkpoint activation at telomere. Indeed, binding of human and mouse POT1 to telomeric 
ssDNA inhibits the localization of RPA to telomeres (Barrientos et al. 2008) (Gong and de 
Lange 2010). However, there are several genetic evidences suggesting that RPA is involved 
in telomere maintenance. Mutation of S. cerevisiae RFA1 gene, rfa1-D228Y in Yku70 mutant 
background causes telomere shortening, demonstration that RPA is required for telomere 
length regulation at dysfunctional telomere (Smith, Zou, and Rothstein 2000). Moreover, 
certain mutant alleles of RFA2 gene, encoding the middle subunit of RPA, in wild-type 
background causes telomere shortening, demonstration that RPA is required for telomere 
length regulation (Mallory et al. 2003). In addition, S. cerevisiae RPA binds to telomere 
especially in S phase and cells expressing truncated Rfa2 show impaired binding of the Est1, 
a component of telomerase (Schramke et al. 2004). Based on these data, they proposed that 
RPA activates telomerase by loading Est1 onto telomeres during S phase. S. pombe rad11-
D223Y mutant, which corresponds to the S.cerevisiae rfa1-D228Y mutant, has short telomere 
in wild-type background. Moreover, S. pombe RPA binds to telomere especially in S phase 
(Ono et al. 2003; Moser et al. 2009). A genome-wide screen for S. pombe deletion mutants 
shows that deletion of ssb3, the small subunit of RPA, affects telomere length(Liu et al. 2010). 
These facts suggest that RPA plays important role in telomere maintenance in both S. 
cerevisiae and S. pombe. Human RPA is also enriched at telomere during S phase, possibly 
due to exposure of single-stranded DNA during telomere replication (Verdun and Karlseder 
2006). The aspartic acid at position 223 in S. pombe Rad11 is important for telomere length 
regulation, which corresponds to the position 227 in human RPA70 (Ono et al. 2003). 
Similarly, expression of RPA70-D227Y mutant protein in human fibrosarcoma HT1080 cells 
causes telomere shortening, suggesting that human RPA also plays role in telomere length 
regulation (Kobayashi et al. 2010). Possible role of RPA at telomere is the regulation of the 
processing of telomere ends by controlling accessibility of DNA repair proteins and/or Pot1 
to single-stranded overhang (Fig. 4).  
 

 

Fig. 4. The model shows that S. pombe RPA regulates the localizations and/or activities of 
proteins involved in the telomere maintenance. RPA may regulate Dna2 and/or Rqh1 
during S phase.  
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4.3 Functional interaction between S. pombe Taz1, RPA and RecQ helicase 

S. pombe taz1 rad11-D223Y double mutant lose telomere very rapidly, demonstrating that 
Taz1 and RPA collaborate to maintain telomere (Kibe et al. 2007). This rapid telomere loss 
can be suppressed by overexpression of Pot1. One possible explanation for this data is that 
Taz1 and RPA are required for the function of Pot1 at telomere and overexpression of Pot1 
can rescue this defect. The rapid telomere loss of taz1 rad11-D223Y double mutant can be 
also suppressed by deletion of rqh1. Sgs1 is involved in the processing of telomere ends in S. 
cerevisiae. Similarly, S. pombe Rqh1 may be involved in the rapid telomere loss, possible by 
degradation of C-rich strand in taz1 rad11-D223Y double mutant (Fig. 5). The other 
functional relationship between Taz1 and Rqh1 is reported by Cooper group. taz1 disruptant 
is sensitive to low temperature (Miller and Cooper 2003). Telomere entanglement is 
suggested to be a reason for this cold sensitivity. They found that unsumoylated Rqh1 
mutant can suppress this cold sensitivity (Rog et al. 2009). Trt1 is a catalitic subunit of 
telomerase in S. pombe. trt1 single mutant loses telomeric DNA gradually (Nakamura, 
Cooper, and Cech 1998). In contrast, taz1 trt1 double mutant lose telomere very rapidly 
(Miller, Rog, and Cooper 2006). The replication fork stalling at the telomeres and resultant 
DSB is suggested to be a season for the rapid telomere loss in taz1 trt1 double mutant. 
Unsumoylated Rqh1 mutant can also suppress this rapid telomere loss. Based on these data, 
they propose that sumoylated Rqh1 promotes telomere breakage and entanglement in taz1 
disruptant. This data demonstrate that the activity of Rqh1 at telomere is regulated to 
protect telomere. However, it remains unclear how Rqh1 and other DNA repair proteins are 
regulated at telomere. The functional interactions between human TRF1/TRF2 (S. pombe  
 

 

Fig. 5. The model shows that S. pombe Taz1 and RPA are required for prevent rapid telomere 
loss. In taz1 rad11-D223Y double mutant, Pot1 can not function properly and Rqh1 and 
possibly Dna2 resects telomere ends, which causes rapid telomere loss. 
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Taz1 ortholog) and human RecQ homolog WRN and BLM in telomere maintenance are also 
suggested (Opresko 2008). TRF2 interacts with WRN and stimulates helicase activity of 
WRN in vitro (Opresko et al. 2002; Machwe, Xiao, and Orren 2004). Expression of a TRF2 
lacking the amino terminal basic domain induces the telomeric circle formations and rapid 
telomere deletions (Wang, Smogorzewska, and de Lange 2004). These events are dependent 
on WRN (Li et al. 2008). TRF2 also protects the displacement of Holliday junctions with 
telomeric arm by WRN in vitro (Nora, Buncher, and Opresko 2010). These facts suggest that 
the regulation of WRN activity by TRF2 is required to protect telomere.   

5. Conclusion 

This chapter focused on the roles of proteins involved in the processing of DBS ends at 
functional and dysfunctional telomere in S. pombe, S. cerevisiae and human. We found that 
MRN, Dna2, and possibly RecQ helicase Rqh1 are involved in the processing at telomere 
ends in S. pombe. Lydall group and other group found that Exo1, RecQ helicase Sgs1, Dna2, 
and Pif1 are involved in the processing at telomere ends in S. cerevisiae. Interestingly, most 
of these proteins were also involved in the processing of DNA double-strand break ends. 
These facts raise a new question of how these proteins are regulated at telomere ends. This 
chapter also focused on the functional interactions between telomere capping proteins and 
proteins involved in the processing of DBS ends mainly in S. pombe. We found that Taz1 and 
RPA collaborate to inhibit DNA end-processing, possibly by RecQ helicase, to prevent 
telomere loss. We also found that single-stranded telomere-binding protein Pot1 and RecQ 
helicase Rqh1 collaborate to inhibit homologous recombination at telomere. Cooper group 
found that RecQ helicase Rqh1 makes taz1 disruptant sensitive to cold temperature by 
creating telomere entanglement. From these analyses, we learned that both double-stranded 
and single-stranded telomere binding proteins play critical roles to control proteins 
involved in DNA repair at chromosome ends. 
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