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1. Introduction 

Hypoglycemia is a common but serious problem among type1 and type 2 diabetic patients 
receiving intensive treatment with glucose-lowering drugs such as insulin or sulfonylurea. 
Moderate hypoglycemia is occurring 0.1-0.3 episode/patient per day and is usually 
corrected by patients themselves or just ignored. However, severe hypoglycemia causes 
unconsciousness and it may lead to neuronal injury in the cerebral cortex and hippocampus. 
Hypoglycemic neuronal death is resulted from a cascade of several events after prolonged 
period of lack of glucose since brain exclusively use glucose (Auer et al., 1984a; Auer and 
Siesjo, 1993; Auer et al., 1984b). Sustained release of glutamate from presynaptic terminals 
into the extracellular space and activation of glutamate receptors has been suggested as a 
necessary upstream event in this neuron death cascade (Auer and Siesjo, 1993; Wieloch, 
1985). Also mitochondrial membrane permeability (Friberg et al., 1998), calpain activation 
(Ferrand-Drake et al., 2003), PARP-1 activation (Suh et al., 2003) and NADPH oxidase 
activation-induced ROS production (Suh et al., 2007; Suh et al., 2008) have been shown to be 
possible downstream events. Our lab has undertaken studies to establish whether vesicular 
zinc release and subsequent zinc translocation into postsynaptic neurons is an important 
upstream step in this hypoglycemia-induced neuron death process. Using an animal model 
of insulin-induced hypoglycemia we have shown that: (I) vesicular zinc is released from 
hippocampal mossy fiber terminals; (II) intracellular zinc accumulation is induced in the 
hippocampal neurons; (III) neuronal death is reduced by zinc chelation or zinc transporter 
gene deletion; (IV) PARP-1 activation is reduced by zinc chelation; (V) ROS production is 
reduced by zinc chelation after hypoglycemia and glucose reperfusion (HG/GR); and (VI) 
hypothermia prevented hypoglycemia-induced zinc release and neuron death. Together, 
these results suggest that zinc translocation is an upstream step linking HG/GR to PARP-1 
activation, to NADPH oxidase activation and neuronal death in brain regions containing 
high concentrations of vesicular zinc. Zinc translocation into postsynaptic neurons was also 
demonstrated in the hippocampal slice model with combined oxygen and glucose 
deprivation (OGD) where neuronal zinc accumulation into the hippocampal CA1 neurons is 
blocked by extracellular zinc chelator, CaEDTA (Yin et al., 2002). In addition, hippocampal 
slices prepared from zinc transporter 3 (ZnT3) knockout mouse, which have little or no 
vesicular zinc in neuronal terminals, showed no zinc accumulation in post-synaptic neurons 
following OGD and hypoglycemia (Suh et al., 2008). These hippocampal slice experiments 
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with zinc chelator or with ZnT3 KO mice suggest that the zinc signal observed in post-
synaptic hippocampal neurons as shown in our previous study (Suh et al., 2003) was a result 
of zinc translocation from the presynaptic terminals. 
 

 

Fig. 1. Vesicular zinc release and translocation after hypoglycemia.  
A) TSQ fluorescent images show vesicular zinc release from presynaptic terminals of 
hippocampal mossy fibers after hypoglycemia/ glucose reperfusion (HG/GR). Intense TSQ 
fluorescent signal (white color in the figure) in the mossy fiber of sham operated rats 
indicates high vesicular zinc contents in the vesicle. However, the diminished TSQ 
fluorescent intensity in the HG/GR rats indicates that bulk of vesicular zinc has been 
released and therefore presynaptic vesicular zinc contents are reduced at the time when the 
brain section was evaluated. TSQ fluorescent intensity in mossy fiber is decreased after 60 
minutes of hypoglycemia (HG alone). TSQ fluorescent intensity is further decreased after 30 
minutes hypoglycemia  and  30 minutes glucose reperfusion (HG/GR), which represents 
mossy fiber vesicular zinc release from presynaptic terminals. A schematic drawing 
represents vesicular zinc release from presynaptic terminals after HG/GR. B) TSQ 
fluorescent images show zinc translocation into postsynaptic neurons of hippocampal CA1 
pyramidal neurons 3 hours after hypoglycemia. Zinc accumulation in the intracellular space 
can be detected in this early time point. A schematic drawing represents intracellular zinc 
accumulation 3 hours after HG/GR. C) TSQ fluorescent images show zinc accumulation into 
postsynaptic neurons 24 hours after HG/GR. Intense zinc accumulation in the intracellular 
space is detected in this time point. A schematic drawing represents intracellular zinc 
accumulation 24 hours after HG/GR. Scale bar in (A) is 200 μm and in (B) and (C) are 20 μm. 
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2. Role of zinc in hypoglycemic neuronal death 

Chelatable zinc (free or weakly bound to proteins) is present in a subset of glutamatergic 

axon terminals throughout the mammalian forebrain, especially in the hippocampus and in 

the cerebral cortex (Danscher et al., 1985) (Frederickson, 1989). The chelatable zinc is mainly 

localized in synaptic vesicles of excitatory presynaptic neuron terminals (Perez-Clausell and 

Danscher, 1985) and is released into the extracellular space during paroxysmal neuronal 

activity or membrane depolarization (Assaf and Chung, 1984; Howell et al., 1984). This zinc 

release has been suggested to contribute to neuronal death in several disease conditions, 

such as seizure (Frederickson et al., 1988; Suh et al., 2001), ischemia (Koh et al., 1996; Tonder 

et al., 1990) and traumatic brain injury (Suh et al., 2000). Zinc can induce the production of 

reactive oxygen species (ROS) and PARP-1 activation in cell cultures (Kim et al., 1999; Sensi 

et al., 1999a; Sheline et al., 2000), suggesting a possible role of zinc in hypoglycemia-induced 

neuronal death. Our previous study showed that hypoglycemia induces vesicular zinc 

release from the synaptic terminals. We also found that hypoglycemia increases neuronal 

zinc accumulation in postsynaptic neurons, which is prevented by intracerebroventricular 

injection of the Zn2+ chelator CaEDTA (Suh et al., 2004; Suh et al., 2008) or intraperitoneal 

injection of clioquinol (CQ) (Shin et al., 2010).   

2.1 Vesicular zinc release and translocation after hypoglycemia 
Oxidative stress and zinc release are both known to contribute to neuronal death after 

hypoglycemia; however, the temporal relationships between these events are not well 

established. Our study demonstrated that the vesicular zinc release from hippocampal 

mossy fiber and subsequent translocation into postsynaptic neurons occurs immediately 

after HG/GR. We used the fluorescent dye TSQ, which binds free zinc (Frederickson et al., 

1987). The vesicular zinc signal detected by TSQ showed a partial decrease (release  from 

mossy fiber terminal) after 60 minutes of hypoglycemia alone (HG alone), but was almost 

completely absent after 30 minutes of hypoglycemia followed by 30 minutes of glucose 

reperfusion (HG/GR) (Figure 1A) (Suh et al., 2004; Suh et al., 2007). This result suggests that 

vesicular zinc release from hippocampal mossy fiber is not caused by hypoglycemia itself 

but caused by a combination of hypoglycemia and subsequent glucose reperfusion. 

Conversely, TSQ staining in the postsynaptic pyramidal neuron bodies was absent under 

sham operated conditions or hypoglycemia alone, but TSQ intensity in the cytoplasm of 

CA1 neurons was increased 3 hours after 30 minutes of hypoglycemia and 30 minutes 

glucose reperfusion (HG/GR) (Figure 1B). This represents translocation of presynaptic zinc 

to postsynaptic neuron of CA1 pyramidal neurons. This initial cytoplasmic zinc increase 

was prevented by intracerebroventricular (i.c.v) injection of the zinc chelator, CaEDTA. 

Without zinc chelation, this intraneuronal zinc accumulation continued to increase until 24 

hours after hypoglycemia and glucose reperfusion (Suh et al., 2008). However, CaEDTA 

treatment also prevented this continuous intracellular zinc accumulation when evaluated at 

24 hours later, suggesting that released zinc from the synaptic vesicles translocated into the 

post-synaptic neurons during several hours after hypoglycemia and glucose reperfusion 

conditions (Figure 1C). From these findings, we speculate that zinc release/translocation is a 

key upstream step in the sequence of events leading to neuronal death after HG/GR (Suh et 

al., 2004; Suh et al., 2007). However, the identity of the factor(s) involved in the 

intermediating step(s) for HG/GR-induced vesicular zinc release and translocation process 
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is unknown. In our prior study, nitrotyrosine formation was detected shortly after glucose 

reperfusion, but not during hypoglycemia per se (Suh et al., 2003). Subsequently we found 

that a neuron specific NOS inhibitor, 7-NI, significantly inhibited hypoglycemia-induced 

vesicular zinc release from hippocampal mossy fiber (Fig 2A). 7-NI also prevented 

intracellular zinc accumulation and neuronal death at 24 hour post-HG/GR time point (Fig. 

2B) (Suh et al., 2003). These findings suggest that nitric oxide production is an event 

upstream of vesicular zinc release and postsynaptic zinc accumulation. This observation is 

consistent with previous studies in which intra-hippocampal injection of nitric oxide donor 

(Spermino-NONOate) induced vesicular zinc release and intracellular zinc accumulation 

(Cuajungco and Lees, 1998; Frederickson et al., 2002).  

 

 

Fig. 2. A) Vesicular zinc release after hypoglycemia/glucose reperfusion is prevented by 

NOS inhibitor. Vesicular zinc release was evaluated at hippocampal hilus by TSQ 

fluorescence. The TSQ signal loss is apparent after 30 minutes of HG and 30 minutes of GR. 

SOD-1 over-expressing rats (SOD-1 Tg) show similar zinc release after HG/GR 

(HG+GR+SOD), whereas the NOS inhibitor 7-NI almost completely prevented vesicular 

zinc release from the hilus mossy fiber area. Graph shows TSQ fluorescence intensity. Data 

are mean + s.e.m; n = 10; * P < 0.05. # P < 0.05. B) Intracellular zinc accumulation and 

neuronal death after hypoglycemia/ glucose reperfusion (HG/GR). Images show neuronal 

zinc accumulation at 3 or 24 hours after HG/GR and neuronal death at 24 hours after 

HG/GR. TSQ intensity in CA1 pyramidal neurons is increased compared to sham operated 

rats by 3 hours after HG, and further increased at 24 hours. CA1 pyramidal neurons show 

Fluoro-Jade B staining (green) at 24 hours after HG/GR. Scale bar = 50 μm. n = 3-4. This 

figure is modified from our previous published paper (Suh et al., JCBFM, 2008). 
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Fig. 3. Key aspects of hypoglycemia-induced neuronal death by zinc. 
1) Nitric oxide (NO) production after hypoglycemia/ glucose reperfusion leads to release of 
zinc together with glutamate from presynaptic terminals. 2) Zinc translocates into 
intracellular space. 3) Translocated zinc activates NADPH oxidase. 4) NADPH oxidase 
activation induces ROS production. 5) Production of superoxide from NADPH oxidase 
induces DNA damage and activation of poly(ADP-ribose) polymerase-1 (PARP-1) in the 
nucleus. 6) Neuron death. 

Since peroxynitrite (highly neurotoxic) is formed by reaction of nitric oxide (NO) with 

superoxide (Beckman and Koppenol, 1996), our previous study also sought to clarify the 

role of superoxide formation on presynaptic zinc release from hippocampal mossy fiber and 

postsynaptic zinc accumulation in the hippocampal CA1 neurons after hypoglycemic insult. 

This study showed that over-expression of SOD-1 significantly reduced hypoglycemia-

induced neuronal death (Suh et al., 2007). To determine whether the neuroprotective role of 

SOD-1 over-expression was due to reduced release of vesicular zinc, SOD-1 transgenic rats 

were subjected to hypoglycemia. From this study, we concluded that SOD-1 overexpression 

had no effect on hypoglycemia-induced vesicular zinc release or on the initial zinc 

translocation into hippocampal postsynaptic neurons when evaluated at 3 hours after 

hypoglycemia, but that SOD-1 overexpression did reduce neuronal death and neuronal zinc 

accumulation when evaluated at 24 hours after hypoglycemia. These results suggest that 

vesicular zinc release occurs upstream of ROS production, but that ROS production 

continues to promote to zinc accumulation in post-synaptic neurons at later time points 
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(Figure 2, 3). This suggests that protein-bound zinc can be liberated by reactive oxygen 

species (ROS) such as superoxide.  Thus, if neuronal SOD concentrations are adequate for 

clearance of superoxide, further intracellular free zinc release can be prevented even though 

initial zinc translocation event has occurred. Conversely, if superoxide production is not 

cleared or stabilized, intracellular free zinc will continue to increase to the point of neuronal 

demise. This result suggests that in addition to presynaptically-released Zn2+ , hippocampal 

neurons also have a pool of intracellularly releasable Zn2+. Intracellularly derived zinc may 

arise from metallothionein (MTs) or other zinc binding proteins. MTs play a major role in 

modulating neuron death after seizure or ischemia as these proteins release a substantial 

amount of Zn2+ under conditions of oxidative stress. This notion is supported by prior 

studies suggesting that non-vesicular zinc may be also important in promoting brain injury 

(Lee et al., 2000).  

2.2 The role of zinc on hypoglycemia-induced ROS production 
The mechanism by which ROS production is aggravated by intracellular zinc influx has not 

been firmly established. Several lines of evidence suggest that zinc induces increased 

mitochondrial ROS production (Sensi et al., 1999b). However, in cell culture models, zinc 

has been identified as an activator of NADPH oxidase, an enzyme that produces superoxide. 

NADPH oxidase is present in many cell types including neurons (Kim and Koh, 2002; Noh 

and Koh, 2000). NADPH oxidase is a multi-component enzyme comprising a plasma 

membrane-bound subunit, gp91; a membrane-associated flavocytochrome, cytochrome 

b558; and at least three cytosolic subunits, p47phox, p67phox and the small G protein Rac2 

(Groemping and Rittinger, 2005). During activation, the p47phox component is 

phosphorylated and translocates to the plasma membrane, where it associates with the other 

subunits to form the active enzyme complex. The methoxy-substituted catechol, apocynin, 

blocks this assembly but does not inhibit mitochondrial dehydrogenases (Dodd and Pearse, 

2000; Stolk et al., 1994). Interestingly, our previous studies examining the production of ROS 

in the brain during hypoglycemic insult suggest that superoxide is formed primarily during 

the glucose reperfusion period. The mechanism by which NADPH oxidase is activated in 

non-phagocytic cells is not well understood, but zinc has been identified as both an inducer 

of neuronal NADPH oxidase activity (Kim and Koh, 2002; Noh and Koh, 2000) and a 

contributor to hypoglycemic neuronal death (Suh et al., 2008). High concentrations of 

presynaptic zinc are present in the brain regions most vulnerable to hypoglycemic injury 

(Frederickson et al., 2005; Suh et al., 2004). Recently, we published that vesicular zinc release 

is required for NADPH oxidase activation in HG/GR (Suh et al., 2007). Rats pre-treated 

with an intracerebroventricular injection of the zinc chelator CaEDTA showed reduced 

neuronal ROS formation, suggesting that vesicular zinc release is an upstream event of 

NADPH oxidase activation. ZnEDTA, used as a control, showed no effect on ROS 

production.  The translocation of NADPH oxidase subunits, p47phox or p61phox, to the plasma 

membrane in cortical neuronal cultures subjected to glucose deprivation followed by 

glucose reperfusion was blocked by CaEDTA, but not by ZnEDTA (Figure 4). Moreover we 

demonstrated that zinc-induced ROS production in neuron cultures was almost completely 

absent in cultures from mice deficient in the p47phox subunit of NADPH oxidase and in wt 

neurons treated with the NADPH oxidase assembly inhibitor apocynin (Stolk et al., 1994; 

Suh et al., 2008). These results suggest that NADPH oxidase subunit assembly is triggered 
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by glucose reperfusion through a process requiring extracellular zinc signaling.  To further 

confirm that vesicular zinc release is involved in HG/GR-induced ROS production and 

neuron death, we used the ZnT3-/- mouse, which has no vesicular zinc in the presynaptic 

terminals (Suh et al., 2007). The ZnT3-/- mice showed diminished ROS production at 3 hours 

after HG/GR and reduced neuronal death 7 days after HG/GR (Figure 5). This result 

confirms prior reports that zinc chelation prevents ROS production and neuron death after 

HG/GR (Suh et al., 2004; Suh et al., 2007) and strongly suggests that it is the vesicular zinc 

pool that contributes to neuronal demise in this setting.   

 
 
 

 
 

Fig. 4. Hypoglycemia/ glucose reperfusion-induced ROS production is mediated by zinc-
induced NADPH oxidase activation. ROS production in neurons detected by ethidium (Et) 
fluorescence. 
A) The zinc chelator, CaEDTA, reduces HG/GR-induced Et production in the CA1 neurons. 
ZnEDTA is the control.  Rats were treated with saline, 100 mM CaEDTA, or 100 mM 
ZnEDTA. Scale bar is 50 μm. B) Schematic drawing of p47phox and p67phox translocation to 
plasma membrane by zinc translocation into neuron.  
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Fig. 5. Hypoglycemia/ glucose reperfusion-induced ROS production and neuronal injury is 
prevented by ZnT3 gene deletion in mice. 
A) Vesicular zinc in the mouse hippocampus imaged with TSQ fluorescence (white) from 
wild-type mice and from ZnT3-/- mice. Scale bar is 500 μm. B) To characterize the source of 
ROS production in hypoglycemic neuronal injury, we used a rat model of insulin-induced 
hypoglycemia and evaluated the production of reactive oxygen species with 
dihydroethidium. Dihydroethidium is oxidized by superoxide and superoxide reaction 
products to form fluorescent ethidium (Et) species, which are then trapped within cells by 
DNA binding.  In the ZnT3-/- mice, hypoglycemia-induced ROS production is almost 
completely prevented. Scale bar is 50 μm. C) Neuronal death (FJB (+) neurons) in ZnT3-/- 
mice was significantly less than wild type mice. Scale bar is 100 μm. Part of this figure is 
modified from our previous published paper (Suh et al., JCBFM, 2008). 

2.3 The role of zinc on hypoglycemia-induced PARP-1 activation 
PARP-1 activation has been shown to mediate neuronal death in a variety of disorders 
including ischemia, trauma, and inflammation (Virag and Szabo, 2002). PARP-1 uses the 
ADP-ribose group of NAD+ to form branched ADP-ribose polymers on specific acceptor 
proteins in the vicinity of DNA strand breaks or kinks (Burzio et al., 1979; D'Amours et al., 
1999). Formation of these polymers facilitates DNA repair and prevents chromatid 
exchange, but extensive PARP-1 activation can promote cell death through a processes 
involving mitochondrial permeability transition and release of apoptosis inducing factor 
(Alano et al., 2004; Ha and Snyder, 1999; Yu et al., 2002). Our previous study showed that 
PARP-1 activation was substantially increased in hippocampal neurons after HG/GR. Rats 
treated with PARP-1 inhibitors after HG/GR showed a striking reduction in neuronal death, 
coupled with improved performance on the Morris water maze, a test of spatial learning 
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and memory (Suh et al., 2003). Administration of PARP-1 inhibitors at time points up to 3 
hours after HG/GR was effective in reducing neuronal death, suggesting both that PARP-1 
is a downstream event in the HG/GR cell death pathway and that PARP-1 inhibitors might 
be useful in the clinical treatment of hypoglycemic brain injury (Figure 6).  
A link between zinc release and PARP-1 activation has been suggested by studies showing 
PARP-1 activation and PARP-1 mediated neuronal death after neuronal exposure to zinc in 
cell culture, and the ability of PARP-1 inhibitors to abrogate zinc-induced cell death (Kim and 
Koh, 2002; Sheline et al., 2000; Sheline et al., 2003; Virag and Szabo, 2002). How zinc leads to 
PARP-1 activation has not been firmly established, but zinc has been shown to induce 
formation of reactive oxygen species through actions on mitochondria (Ichord et al., 1999) and 
through up-regulation of NADPH oxidase and neuronal nitric oxide synthase (Kim et al., 
2002). Our previous study showed that the zinc chelator CaEDTA attenuated poly(ADP-
ribose) formation in the post-synaptic pyramidal cells after HG/GR, suggesting that zinc 
translocation may be an upstream event in hypoglycemia-induced PARP-1 activation. This 
result, coupled with the marked reduction in neuronal death observed with CaEDTA, and the 
prior observation that PARP-1 inhibitors reduce hypoglycemic neuronal death (Frederickson 
et al., 2002), suggests a sequential process of zinc entry, PARP-1 activation, and cell death 
triggered by HG/GR. These results do not, however, exclude other mechanisms by which 
vesicular zinc release could contribute to hypoglycemic neuronal death. 
 

 

Fig. 6. Hypoglycemia/ glucose reperfusion-induced poly(ADP-ribose) formation in CA1 
hippocampus in rats.  
A) Poly(ADP-ribose) immunoreactivity was only modestly increased at termination of 
immediately after HG/GR (0 hr), but was markedly increased at 3 hr after insult, and then 
slowly declined after that point in the hippocampal CA1 and DG area. Scale bar is 50 μm.  
B) Poly(ADP-ribose) formation was reduced by administration of zinc chelator, CaEDTA, at 
the time of glucose correction. Scale bar is 50 μm. 
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2.4 The role of zinc on hypoglycemia-induced microglia activation 
Microglia is thought to be the resident immune cells of the central nervous system (CNS). 
Under physical conditions, resting microglia adopts the characteristic ramified 
morphological appearance and scatter throughout mature CNS to play role in the immune 
surveillance and host defense. The resting microglia transform into an activated states 
including amoeboid morphology, up-regulation of proliferation and release of 
proinflammatory mediators, when the cells bind to pathogen-derived molecules or other 
microglial activating agents. The pro-inflammatory cytokines such as interleukin-1 and 
tumor necrosis factor alpha, released from activated microglia following ischemia, brain 
trauma and the other brain damages (Clausen et al., 2005; Sairanen et al., 1997; Saito et al., 
1996; Taupin et al., 1993), are thought to be associated with neuronal death (Loddick and 
Rothwell, 1996; Lu et al., 2005; Yamasaki et al., 1995). On the other hand, these cytokines 
have been reported to induce nerve growth factor expression or cell survival signaling 
(DeKosky et al., 1994), (Fontaine et al., 2002) (Herx et al., 2000). Moreover activated 
microglia have been reported to release neurotrophic factors such as brain-derived 
neurotrophic factor (Lee et al., 2002b). These reports are implying that microglia activation is 
not only neurotoxic but neurotrophic. However, the factors that trigger microglial activation 
have not been completely understood. Recently, poly (ADP-ribose) polymerase (PARP)-1 
has been known to act as a coactivator of nuclear factor kappa B (NF-kB), which leads to 
microglial migration on excitotoxically damaged organotypic hippocampal slice culture, and 
neuronal cell death (Chiarugi and Moskowitz, 2003) and (Ullrich et al., 2001). Furthermore, 
in zinc-induced cell death of neuron cultures, PARP-1 has been reported to be activated by 
zinc through NADPH oxidase pathway (Sheline et al., 2003), (Kim and Koh, 2002). In our 
previous study, we sought to examine whether zinc induces microglial activation and how 
microglia is activated by zinc. We found that zinc can induce microglial activation which 
mediated by PARP-1 activation though NADPH oxidase pathway and that microglial 
activation in mice ischemic brain are blocked by zinc chelator (Kauppinen et al., 2008). 
During severe hypoglycemia, glucose reperfusion and its neurotoxic cascade may not only 
damage neurons directly, but may also promote neuronal injury indirectly via microglia 
activation. Microglia activation is a gradual process including change of morphology from 
highly ramified into an amoeboid shape, proliferation, migration to injury site, increased 
expression of surface molecules, increased secretion of cytokines, chemokines, free radicals 
and proteases, and assumption of phagocytotic activity (Kreutzberg, 1996). We tested 
whether zinc chelation prevents microglia activation after hypoglycemia. Both CaEDTA and 
CQ substantially decreased hypoglycemia-induced microglia activation in the hippocampal 
CA1 pyramidal area (Figure 7).  

2.5 Prevention of hypoglycemia-induced neuronal death by hypothermia 
Our previous study presented that mild hypothermia reduces hypoglycemia-induced 
neuronal death in the hippocampus, whereas hyperthermia aggravates those brain injuries. 
We suggested that hypothermia (lowering brain temperature) prevents hypoglycemia-
induced neuronal death by reduction of vesicular zinc release, superoxide production and 
microglia activation, where temperature dependent vesicular zinc release was a key event 
upstream of hypoglycemia-induced superoxide production and microglia activation.  
Mild hypothermia has been known as the most effective approach to prevent neuronal 
death after cerebral ischemia (Busto et al., 1987; Maier et al., 2002), traumatic brain injury 
(Clifton et al., 1991; Suh et al., 2006) and prolonged seizure (Liu et al., 1993). We found that 
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Fig. 7. Hypoglycemia-induced microglia activation is prevented by zinc chelation. 
(A) Morphological change and intensity of immunostaining of microglia after hypoglycemia 
is affected by zinc chelation. Hypoglycemia (HG+saline) substantially increased microglia 
activation in the hippocampal CA1 region. However, zinc chelation by CaEDTA 
(HG+CaEDTA) or clioquinol (HG+CQ) significantly reduced microglia activation in the 
above areas. Scale bar=100 μm. (B) Quantification of microglia activation was performed in 
the hippocampal CA1 area. As shown in the images, microglia activation is strongly 
prevented by zinc chelation. Data are mean±s.e.m. (n=3 to 6); *P<0.05 compared with the 
saline treated group. 

mild hypothermia also can prevent hypoglycemia-induced neuronal death. Neuronal death 
evaluated in hippocampal area shows that hypothermia significantly reduced neuronal 
death while hyperthermia applied after hypoglycemic events aggravated the neuronal death 
(Shin et al., 2010). The neuroprotective effects of hypothermia after hypoglycemia in our 
previous study, however, differ from those reported in previous studies (Agardh et al., 
1992). Agardh et al. reported that mild hypothermia applied before and during of 
hypoglycemia (before and entire period of iso-EEG period) produced a similar degree of 
neuronal death compared to normothermic animals. No neuroprotective effect of 
hypothermia was seen in the hypoglycemic animals. The differences between our study and 
Agardh et al.’s may be explained by the onset of hypothermia application. Agardh et al. 
applied hypothermia before and during the iso-EEG period. However, in our study, 
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hypothermia applied after the iso-EEG period was terminated, i.e. brain temperature was 
decreased during the glucose reperfusion period after hypoglycemia. Since we have 
previously shown that hypoglycemia-induced neuronal death is not initiated during the 
period of glucose deprivation but instead during glucose reperfusion period, it may be that 
the hypothermic application before and during the isoelectric period was not sufficient to 
prevent neuronal death after hypoglycemic events. In our experimental setting we also 
found that hypothermia application before and during the iso-EEG period had no 
statistically significant neuroprotective effects as seen in the previous study (Agardh et al., 
1992), strengthening our hypothesis that brain temperature is a critical factor during glucose 
reperfusion period after hypoglycemia.  
Suggested neuroprotective mechanisms of mild hypothermia on several brain injuries are 
based on decreases in cerebral metabolic requirement (Erecinska et al., 2003), intracranial 
pressure (Soukup et al., 2002), glutamate release from presynaptic vesicles (Arai et al., 1993; 
Ichord et al., 1999), free radical generation (Globus et al., 1995; Horiguchi et al., 2003) and 
inflammatory reaction (Kumar and Evans, 1997; Wang et al., 2002). Previously, we have 
shown that hypothermia reduced vesicular zinc release and subsequent neuronal death after 
traumatic brain injury (Suh et al., 2006). We also have shown that hypoglycemia-induced 
neuronal death is mediated by vesicular zinc release and translocation (Suh et al., 2004; Suh 
et al., 2008). Therefore, we hypothesized that mild hypothermia has neuroprotective effects 
by reduction of the vesicular zinc release after hypoglycemia. Although zinc is released from 
presynaptic terminals as a component of normal physiologic signaling at zinc-modulated 
synapses (Li et al., 2001), a large amount of vesicular zinc released together with glutamate 
may enter postsynaptic neurons through glutamate receptors (Weiss and Sensi, 2000; Weiss 
et al., 2000) or voltage-sensitive calcium channels (Sensi et al., 1999b). Zinc translocation into 
post-synaptic neurons after hypoglycemia has been demonstrated by our lab (Suh et al., 
2004; Suh et al., 2007; Suh et al., 2008). Many brain areas with high vesicular zinc level 
exhibit high vulnerability to hypoglycemia, but this correlation is not always true. Some 
brain areas with high vesicular zinc concentration are not correspondingly sensitive to 
hypoglycemia, and conversely some brain areas that are highly sensitive to hypoglycemia 
are not rich in vesicular zinc (Frederickson et al., 2000). Thus vesicular zinc is not the sole 
determinant of neuronal vulnerability to hypoglycemia, but may be a contributory factor in 
areas where vesicular concentrations are high. The zinc chelator CaEDTA was used to 
evaluate a causal role for extracellular zinc elevations in subsequent post-synaptic neuronal 
zinc accumulation and death after hypoglycemia. The utility of CaEDTA as a zinc chelator 
has been established in ischemia, brain trauma and epilepsy studies (Frederickson et al., 
2002; Koh et al., 1996; Lee et al., 2002a). Interestingly, Aizenmann et al. suggested that the 
large fraction of zinc existing in the form of thiol-zinc-metalloproteins can be released from 
oxidation of intracellular zinc binding proteins (e.g. metallothionein) by oxidative stress. 
Zinc liberated in such a manner may then become cytotoxic (Aizenman et al., 2000). Our 
study showed that application of mild hypothermia significantly reduced hypoglycemia-
induce neuronal death by reducing presynaptic zinc release and translocation into 
postsynaptic neurons (Figure 8) (Shin et al., 2010). Hyperthermia applied after 
hypoglycemia aggravates this zinc release and translocation compared to normothermia 
applied animals. From these results, we conclude that neuroprotective effects of mild 
hypothermia after hypoglycemia can be achieved by reduction of synaptic zinc release and 
subsequent zinc translocation. However, our study also found that zinc dependent DG 
neuron degeneration was prevented by the cell permeable zinc chelator, CQ. We therefore 
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Fig. 8. Temperature dependent hypoglycemic neuronal death is mediated by zinc release 
and translocation.  
(A-D) Vesicular zinc release and translocation is aggravated by hyperthermia but is prevented 
by hypothermia. (A) represents TSQ fluorescence images of hippocampus from sham operated 
(Sham) and hypoglycemia (HG) experienced rats. Hypothermia group (Hypo) almost 
completely prevented synaptic zinc release. Scale bar = 500 μm. (B) Bar graph shows 
quantitated TSQ fluorescence intensity from hilus area. Data are mean + s.e.m. (n=7-12). * P < 
0.05 compared with normothermic reperfusion group. (C) Photomicrographs of TSQ 
fluorescence staining shows zinc accumulation in the hippocampal CA1 neurons after 
hypoglycemia. Scale bar = 100 μm. (D) Bar graph shows quantitated TSQ (+) neurons in the 
CA1 area. Data are mean ± s.e.m. (n = 5-7). *p < 0.05 compared with normothermic glucose 
reperfusion group. (E-H) Zinc chelators, CaEDTA or clioquinol (CQ), prevents hypoglycemia-
induced neuronal death. (E and G). FJB (+) neurons were reduced by CaEDTA or CQ injection 
even after hyperthermic reperfusion. Scale bar = 100 μm. (F and G) graphs represent 
quantitated neuronal death in the hippocampal CA1 and subiculum area after hypoglycemia. 
Data are the mean ± s.e.m (n=5-7) *p < 0.05 compared with saline treated rats. Part of this 
figure is modified from our previous published paper (Suh et al., JCBFM, 2010). 

cannot exclude the possibility that intracellularly originated free zinc also contributes to 
hippocampal neuron cell death after hypoglycemia as previously suggested (Aizenman et 
al., 2000). Anatomical and physiological studies have shown that DG neurons contain a high 
concentration of vesicular zinc in their synaptic terminals which is released with neuronal 
activity. Intraneuronal accumulation of zinc may arise from cytoplasmic organelles or 
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proteins rather than from presynaptic terminals of stratum moleculare. However, the source 
of intraneuronal accumulation of zinc in DG neurons still requires further study. An 
additional unsolved question arises regarding how the extracellular zinc chelator, CaEDTA 
also prevented DG neuron death if intraneuronal zinc accumulation originates from 
cytoplasmic sources.  
Taken together, the present study shows that post-hypoglycemic (glucose reperfusion 
period) brain temperature can modulate the outcome of brain injury, i.e. hypothermia 
significantly reduces, while hyperthermia aggravates, neuronal death after hypoglycemia 
through inhibition of vesicular zinc release, reduction of ROS production and prevention of 
microglia activation. Therefore, cautious brain temperature monitoring and maintaining 
lower brain temperature during glucose reperfusion period may predict a better clinical 
outcome after a severe hypoglycemic episode.  

3. Proposed intervention strategies for hypoglycemia-induced neuron death 

Taken together the present book chapter suggests a sequence of events that lead to neuronal 
death after HG/GR. Glucose reperfusion initiates nitric oxide production, which leads to 
vesicular zinc release, which in turn activates neuronal NADPH oxidase. ROS produced by 
NADPH oxidase leads to increased zinc accumulation, PARP-1 activation, and resultant cell 
death. Therefore, based on these studies, the present review suggests that following 
intervention strategies for preventing hypoglycemia-induced neuron death. As we 
described in schematic drawing (Figure 9), there are at least 6 different possible approaches.  
 

 

Fig. 9. Proposed intervention strategies for preventing hypoglycemia/ glucose reperfusion-
induced neuron death. This schematic drawing indicates that hypoglycemia/ glucose 
reperfusion-induced neuron death can be prevented by several intervention methods. 1) 
Vesicular zinc content modulation by gene or chemical manipulation. 2) Vesicular zinc 
release inhibition by NO inhibitor. 3) Vesicular zinc release inhibition by hypothermia. 4) 
Zinc chelation in the extracellular space. 5) Inhibition of NADPH oxidase activation. 6) 
Scavenging or dismutating of reactive oxygen species. 7) Inhibition of PARP-1 activation. 
Round red colored dot represents ionic zinc. Symbol X represents intervention. 
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1) Modulation of vesicular zinc release by gene manipulation; 2) Prevention of vesicular zinc 
release by NOS inhibition; 3) hypothermia; 4) Chelation of extracellular zinc by zinc 
chelators; 5) Inhibition of NADPH oxidase activation; 6) Increase of SOD function; 7) PARP-
1 inhibition.  Among them, we speculate that prevention of vesicular zinc release and 
translocation would be the most promising intervention strategies. However, this 
intervention strategy requires a highly zinc specific chelator, which also can permeate blood 
brain barrier and has no side effects. No such agent is currently available and further 
investigation will be necessary to identify and develop candidate drugs for this purpose.  

4. Conclusion 

Vesicular zinc release and subsequent translocation of this ion into postsynaptic neurons has 
been known as a key upstream event of hypoglycemia-induced neuron death. Thus, zinc 
chelation is a promising target for the treatment of severe hypoglycemia-induced neuron 
death. However, still further studies will be needed to apply this concept to human. 
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