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Russia 

1. Introduction 

Many of the computational methods for equation solving can be considered as methods of 
weighted residuals (MWR), based on the assumption of analytical idea for basic equation 
solving. Test function type determines MWR specific variety including collocation methods, 
least squares (RMS) and Galerkin’s method. MWR algorithm realization is basically reduced 
to nonlinear programming which is solved by minimizing the total equations residual by 
selecting the parameters of test solution. In this case, accuracy of solving using the MWR is 
defined by approximating test function properties, along with degree of its conformity with 
its initial partial differential equations, representing a continuum solution of mathematical 
physics equations. 
On fig. 1, computing artificial neural network (ANN) is presented in graphic form, 
illustrating process of intra-network computations. The input signals or the values of input  

 

 

Fig. 1. Neural network computing structure 
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variables are distributed and "move" along the connections of the corresponding input 
together with all the neurons of hidden layer. The signals may be amplified or weakened by 
being multiplied by corresponding coefficient (weight or connection). Signals coming to a 
certain neuron within the hidden layer are summed up and subjected to nonlinear 
transformation using so-called activation function. The signals further proceed to network 
outputs that can be multiple. In this case the signal is also multiplied by a certain weight 
value, i.e. sum of neuron output weight values within the hidden layer as a result of neural 
network operation. Artificial neural networks of similar structure are capable for universal 
approximation, making possible to approximate arbitrary continuous function with any 
required accuracy. 
To analyze ANN approximation capabilities, perceptron with single hidden layer (SLP) was 
chosen as a basic model performing a nonlinear transformation from input space to output 
space by using the formula (Bishop, 1995): 

 0
1 1

( , )
q n

i i ij j
i j

y v f b w x b
 

 
   
 
 

 w x , (1) 

where nx R is network input vector, comprised of jx  values; q – the neuron number of the 

single hidden layer; sw R – all weights and network thresholds vector; ijw – weight 

entering the model nonlinearly between j-m input and i-m neuron of the hidden layer; iv – 

output layer neuron weight corresponding to the i-neuron of the hidden layer; 0,ib b – 

thresholds of neurons of the hidden layer and output neuron; fσ – activation function (in our 

case the logistic sigmoid is used). ANN of this structure already has the universal 

approximation capability, in other words it gives the opportunity to approximate the 

arbitrary analog function with any given accuracy. The main stage of using ANN for 

resolving of practical issues is the neural network model training, which is the process of the 

network weight iterative adjustment on the basis of the learning set (sample) 

 , , , 1,...,n
i i iy i k x x R  in order to minimize the network error – quality functional 

  
1

( ) ( , )
k

i

J Q f i


w w , (2) 

where w – ANN weight vector;    2
( , ) ,Q f i f i w w – ANN quality criterion as per the i-

training example;    , , i if i y y  w w x – i-example error. For training purposes the 

statistically distributed approximation algorithms may be used based on the back error 

propagation or the numerical methods of the differentiable function optimization. 

2. Neuronet’s method of weighted residuals for computer simulation of 
hydrodynamics problems 

Let us consider that a certain equation with exact solution ( )y x  

 ( ) 0L y   (3) 

for non-numeric value ys equation (3) presents an arbitrary xs within the learning sample. 
We have L(y)=R with substitution of approximate solution (1) into equation (3), with R as 
equation residual. R is continuous function R=f(w,x), being a function of SLP inner 
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parameters. Thus, ANN training under outlet functional is composed of inner parameters 
definition using trial solution (1) for meeting the equation (3) goal and its solution is realized 
through the corresponding modification of functional quality equation (2) training. 
Usually total squared error at net outlets is presented as an objective function at neural net 
training and an argument is the difference between the resulted ‘s’ net outlet and the real 
value that is known a priori. This approach to neural net utilization is generally applied to 

the problems of statistical set transformation along with definition of those function values 
unknown a priori (net outlet) from argument (net inlet). As for simulation issues, they refer 
to mathematical representation of the laws of physics, along with its modification to be 

applied practically. It is usually related to necessity for developing a digital description of 
the process to be modeled. Under such conditions we will have to exclude the a priori 
known computation result from the objective function and its functional task. Objective 
function during the known law simulation, therefore, shall only be defined by inlet data and 

law simulated: 

   21

2
s s

S

E y f  x .  (4) 

Use of neuronet’s method of weighted residuals (NMWR) requires having preliminary 

systematic study for each specific case, aimed at: 1) defining the number of calculation 

nodes (i.e. the calculation grid size); 2) defining number of neurons within the network, 

required for obtaining proper approximation power; 3) choosing initial approximations for 

training neural network test solution ; 4) selecting additional criteria in the goal function for 

training procedure regularization in order to avoid possible solution non-uniformity; 5) 

analyzing the possibilities for applying multi-criteria optimization algorithms to search 

neural network solution parameters (provided that several optimization criteria are 

available). 

Artificial neural network used for hydrodynamic processes studying is presented by two 

fundamentally different approaches. The first is the NMWR used for direct differential 

hydrodynamics equations solution. The NMWR description and its example realization for 

Navier-Stokes equations solution is presented in papers (Kretinin, 2006; Kretinin et al., 

2008). These equations describe the 2D laminar isothermal flow of viscous incompressible 

liquid. In the paper (Stogney & Kretinin, 2005), the NMWR is used for simulating flows 

within a channel with permeable wall. Neural network solution results of hydrodynamic 

equations for the computational zone consisting of two sub-domains are presented below. 

One is rotating, while another is immobile. In this case, for NMWR algorithm realization 

specifying the conjugate conditions at the two sub-domains border is not required. 

In the second approach, neural network structures are applied to computational experiment 

results approximation obtained by using traditional methods of computational 

hydrodynamics and for obtaining of hydrodynamic processes multifactor approximation 

models. This approach is illustrated by hydrodynamics processes neural network modeling 

in pipeline in the event of medium leakage through the wall hole. 

2.1 NMWR application: Preliminary studying  

There are specific ANN training programs such as STATISTICA NEURAL NETWORKS or 

NEURAL TOOLBOX in the medium of MATLAB, adjusting the parameters of the network 
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to the known values of the objective function within the given points of its definitional 

domain. Using these packages in our case, therefore, does not seem possible. At the same 

time, many of optimization standard methods work well for ANN training, e.g. the 

conjugate gradients methods, or Newton, etc. To solve the issue of ANN training, we shall 

use the Russian program IOSO NS 1.0 (designed by prof. I.N. Egorov (Egorov et al., 1998), 

see www.IOSOTech.com) realizing the algorithm of indirect optimization method based on 

self-organizing. This program allows minimizing the mathematical model given 

algorithmically and presented as “black box”, i.e. as external file module which scans its 

values from running variable file generated by optimization program, then calculates 

objective function value and records it in the output file, addressed in turn by optimization 

program. It is therefore sufficient for computer program forming, realizing calculations 

using the required neural network, where the input data will be network internal 

parameters (i.e. weights, thresholds); on the output, however, there’ll be value of required 

equation sum residual based on accounting area free points. Let us suppose that the 

objective function 2y x  is determined within the interval  0;1 . It is necessary to define 

parameters of ANN perceptron type with one hidden layer, consisting of 3 neurons to draw 

the near-objective function with given accuracy, computed in 100 accounting points ix  

evenly portioned in determination field. Computer program for computing network sum 

residual depending on its parameters can be as follows (Fortran): 
 dimension x(100),y(100) 
 dimension vs(10) 
 common vs 
c vs- values of ANN internal parameters 
 open(1,file='inp') 
 read(1,*)vs 
 close(1) 
c 'inp'- file of input data,  
c generated by optimization program 
 do i=1,100 
 x(i)=(i-1)/99. 
 end do 
c calculation by subprogram ANN ynet  
c and finding of sum residual del 
 del=0. 
 do i=1,100 
 y(i)=ynet(x(i)) 
 del=del+(y(i)-x(i)**2)**2 
 end do 
c 'out'-file of value of the minimization function ,  
c sent to optimization program 
 open(2,file='out') 
 write(2,*)del 
 close(2) 
 end 
 function ynet(t) 
 dimension vs(10),w(3),b(3),v(3),t1(3),q(3) 
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 common vs 
c w-weights between neuron and input  
c b-thresholds of neurons 
c v-weights between neuron and output neuron  
c bv-threshold of output neuron 
 do i=1,3 
 w(i)=vs(i) 
 b(i)=vs(i+3) 
 v(i)=vs(i+6) 
 end do 
 bv=vs(10) 
 vyh=0. 
 do i=1,3 
 t1(i)=w(i)*t-b(i) 
 q(i)=1./(1.+exp(-t1(i))) 
 vyh=vyh+v(i)*q(i) 
 end do 
 ynet=vyh-bv 
 end 
With IOSO NS 1.0, ANN internal parameter values were obtained with sum residual there 
were received the values of the internal parameters of the ANN, giving the sum 

0.000023E   (fig. 2). 
 

 

Fig. 2. Results of using IOSO NS 1.0 for the ANN training 
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Hence we have neural network approximation for given equation, which can be presented 
by the formula 

1.954913 0.983267 5.098 0.108345 2.532 0.75393

1 1 1
13.786 3.95569 28.3978 3.7751

1 1 1x x x
y

e e e        
  

 (5) 

Using nonlinear optimization universal program products for ANN training is limited to 

neural networks of the simplest structure, for dimension of optimization tasks solved by 

data packages does not normally exceed 100; however, it frequently forms 10-20 

independent variables due to the fact that efficiency of neural network optimization 

methods generally falls under the greater dimensions of the nonlinear programming free 

task. On the other hand, the same neural network training optimization methods prove 

efficient under much greater dimensions of vector independent variables. Within the 

framework of given functioning, the standard program codes of neural network models are 

applied, using the well-known optimization procedures, e.g. Levenberg-Markardt or 

conjugate gradients - and the computing block of trained neural network with those 

obtained by the analytical expressions for objective function of the training anti-gradient 

components, which in composition of the equation under investigation acts as a "teacher" is 

designed. 

2.2 Computing algorithm of minimization of neural network decision 
Let us consider perceptron operation with one hidden layer from N neuron and one output 

(1). As training objective function, total RMS error (4) will be considered. The objective 

function shall be presented as a complex function from neural network parameters; 

components of its gradient shall be calculated using complex function formula. Network 

output, therefore, is calculated by the following formula: 

    s s
j j

j

y w x x , (6) 

where x - vector of inputs, s - number of point in training sample, (x) - activation function, 
wj - weights of output neuron, j - number of neuron in hidden layer. For activation 
functions, logistic sigmoid will be considered 

    ,

1

1 j j
j t b

e







x
x . (7) 

Here bj - threshold of j-number neuron of hidden layer; the function tj(x,bj) , however, has 

form of  ,j j ij i j
i

t b v x b  x , where vi  - neuron weight of hidden layer. 

While training on each iterations (the epoch) we shall correct the parameters of ANN 

toward the anti-gradient of objective function - E(v,w,b), which components are presented 

in the following form: 

     ,
s

s s s
j j

ij

E
b y f

w


  


x x ; (8) 
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         , 1 ,
s

s s s s s
j j j j j i

ij

E
y f w b b x

v
 

      


x x x ; (9) 

        , 1 ,
s

s s s s
j j j j j

j

E
y f w b b

b
 

      


x x x . (10) 

Thereby, we have got all the components of the gradient of the objective function of 

minimization, comparatively which iterations will be consecutively realized in accordance 

with the general formula 

  E   w w .  (11) 

Here w is vector of current values of network weights and thresholds. 

3. Using NMWR for hydrodynamics equations solving 

Parameter optimization of neural network trial solutions is achieved by applying several 

optimization strategies and by subsequently choosing the maximum effective one (see 

Cloete & Zurada, 2000). First strategy is to apply totality of effective gradient methods 

"starting" from various initial points. The other strategy is to apply structural-parametrical 

optimization to ANN training; this method is based on indirect statistic optimization 

method on self-organizing basis or parameter space research (see: Egorov et al., 1998; 

Statnikov & Matusov, 1995). 

Any versions for multi-criterion search of several equations system solution are based on 

different methods of generating multiple solutions, satisfying Pareto conditions. Choosing 

candidate solution out of Pareto-optimal population must be based on analysis of 

hydrodynamic process and is similar to identification procedure of mathematical model. In 

any case, procedure of multi-criterion optimization comes to solving single-criterion 

problems, forming multiple possible solutions. At the same time particularities of some 

computational approaches of fluid dynamics allows using iteration algorithms, where on 

each step solution at only one physical magnitude is generated. 

3.1 Modeling flows – the first step 
The computational procedure described below is analogous to MAC method (Fletcher, 
1991), investigating possibility of NMWR application based on neural net trial functions. 

Laplace equation solution 

Computational capabilities of the developed algorithm can be illustrated by the example of 
the solution of Navier-Stokes momentum equations, describing two-dimensional isothermal 
flows of viscous incompressible fluid. On the first stage we will be using this algorithm for 
Laplace equation solution 

 
2 2

2 2
0

x y

  
 

 
. (12) 

Let us consider the flow of incompressible fluid in the channel (fig. 3). 
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Fig. 3. Computational area  

Here’s how the boundary conditions are defined: on solid walls u=v=0, on inflow boundary 

u=0, v=1, on outflow boundary 0
u v

x x

 
 

 
. There are no boundary conditions for pressure 

except for one reference point, where p=0 is specified (in the absolute values p=p0), 

considering which indication of incoming into the momentum equation 
p

x




 and 
p

y




 is 

realized. 
For solving flow equations by predictor method it is necessary to specify initial velocity 
distribution within the computational area, satisfying the equation of continuity.  For this 

purpose, velocity potential  ,x y  is introduced and u
x





 and v
y





. As a result of 

Laplace equation solution, velocity distribution is generated, which can be indicated as free-
vortex component of the sought quantity. 
If the result of learning sample neuronet calculations is defined by the following formula 

   s s
j j

j

v f x x , where  ,
T

x yx -input variables vector, s - point number in the 

learning sample,  f х - activation function, jv - output neuron weights, j - neuron number 

in the hidden layer as activation function the logistical sigmoid is used    ,

1

1 j j
j t b

f

e





x
x , 

where jb  - threshold of the j-number neuron hidden layer, and the function  ,j jt bx  looks 

like  ,j j ij i j
i

t b w x b  x where ijw  - hidden layer neurons weights, then analytical 

expressions for the second speed potential derivatives can be calculated using the following 
formula 

 

 
       

2
2 2 3

2
, 3 , 2 ,s s s

j ij j j j j j j
s j
i

v w f b f b f b
x


  


 x x x . (13) 
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Equation summary residual with substituted trial solutions (1) on arbitrary calculation area 
points with coordinates хs with expressions application (13) can also be calculated 
analytically 

 

     

2 2

2 2 2

2 2 2

1 1

2 2s s ss i s
i

E
x x y

  
   

          
        

  . (14) 

Therefore, trial solution (1) training problem of neural network equation consists in SLP 
hidden layer parameter selection (weights and thresholds) at which the summary residual 
(14) has the minimal value limited to zero. The computer program described above, with 
training procedure target function being set functionally by applying analytical expressions 

for second derivatives 
2

2x




 and 
2

2y




 , is used for parameter adjustment of learning model. 

Efficiency of searching of neuronet learning solution parameters depends on problem 

dimension, i.e. weights and perceptron thresholds variable adjusted quantity. The more 

significant is neurons quantity in trial solution, the higher is ANN approximate capacity; 

however, achieving high approximation accuracy is more complicated. At the same time, 

neuron quantity depends not only on simulated function complexity, but also on calculation 

nodes quantity in which the residual equation is calculated. It is known that generally 

points’ quantity increase in statistical set used for neural network construction is followed 

by increase in necessary neurons network (Galushkin, 2002; Galushkin, 2007) quantity. 

Consequently, the dense calculation grids application results in nonlinear programming 

problems; while applying rare calculation grids, it is necessary to check the solution 

realization between calculation nodes, i.e. there is a problem of learning solution procedure 

standardization. In the neuronet solution reception context on known equation, it is 

convenient using traditional additive parameter of training neural model quality - a control 

error which is calculated on the set of additional calculation nodes between calculation grid 

nodes. Number of these additional calculation grid nodes can be much more significant, and 

they should cover the whole calculation area, because the nodes number increase with 

control error on known network parameters does not result in essential computing expenses 

growth. Hence, referring to learning solution neuronet parameters reception, there exists an 

issue of solving twice-criterion problem of nonlinear optimization along with minimizing 

simultaneously both summary residual in control points, or the control error can appear as a 

restriction parameter, in the limited set of calculation nodes and in this case the neural 

network solution parameters reception is reduced to the conditional nonlinear optimization 

problem. 

At the first stage, residual distribution of the current equation (5) on various calculation 

nodes and the corresponding speed vector distribution  ,
T

u vv , where speed nodes 

u
x





 and v
y





. As a whole, the received neural network solution satisfies the equation 

(5) except for calculation nodes group, for example, in the input border right point vicinity, 

due to a sudden change of the boundary conditions in this point.  In areas with the solution 

insufficient exactness we will place the calculation nodes additional quantity using the 
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following algorithm. Let us formulate the Cohonen neural network with three inlet variables 

presented by the coordinates of available computation nodes x and y, and also the equations 

(5) residual value in these nodes, along with the required cluster centers quantity equal to 

the additional nodes quantity. The cluster center coordinates which will generally be placed 

in areas with the learning solution low precision (Prokhorov et al., 2001) we will consider 

additional computation nodes coordinates. The number of these additional nodes in each 

case is different and defined by iterations, until the decision error does not accept 

comprehensible value. As a result of the additional formation of received neural network 

learning solution using additional computation nodes, it turned out to be possible to 

increase the solution local accuracy in the point B vicinity while maintaining the accuracy 

high in all other points. 

 

 

Fig. 4. Formation of additional computation nodes for Laplace equation solution 

Therefore, not only has the computing experiment proven reception opportunity of the 
general neural network solution in the calculation area, but also defined coordinate 
calculation logic of computational nodes for increasing the accuracy of neural network 
initial equation solution. Let us study a reception opportunity of the Poisson equation 

solution using an irregular computational grid, i.e. equation total residual with solutions (1) 
will be calculated in nodes located in the casual image or certain algorithm, which use has 
not been connected with the necessity of computational grid coordination and 

computational area borders. 

Poisson equation 

Let us study a neural network solution precision on irregular calculation scales for Poisson 
equation 

 
2 2

2 2
0

p p

x y

 
   

 
. (15) 

This equation is particularly used for calculating the pressure distribution as well as for time 
iterations organization at the Navier-Stokes equations solution by pseudo-non-stationary 

algorithms (Fletcher, 1991). For the solution we shall use an irregular calculation grid, 
because, in contrast to fluid dynamics classical numerical methods, it does not result in the 
neutral network learning functions algorithm complication. Meanwhile, advantages using 

calculation nodes located in calculation area for the complex geometry study current are 
obvious. The decision is defined by the equations (15) with the right side as follows 

 
2 2

2 2
2

p p u v v u

x y x yx y

      
     

      
, (16) 
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where speed nodes u
x





 also v
y





 are received as a result of the Laplace equation 

solution (12). Calculation grid points are formed as centers of Cohonen network clusters 
constructed on units coordinates of the uniform rectangular scale and on the right part of 
the equation (16) corresponding to these units values Δ. Fig. 6 (а) presents formation re sults 
of the calculation grid and the speed distribution on the pseudo-non-stationary algorithm 
first iterative step of the Navier-Stokes equation solution. Here it was possible to receive an 
exact neural network solution for the whole calculation area without using additional set of 
calculation nodes. 
Let us now study am incompressible fluid internal flow within a channel with a stream 
turning (fig. 3). Navier-Stokes equation system describing two-dimensional isothermal flows 
of the viscous incompressible fluid (Fletcher, 1991): 

 0
u v

x y

 
 

 
; (17) 

 
2 2

2 2

1
0

Re

p u u u u
u v

x x y x y

           
      

; (18) 

 
2 2

2 2

1
0

Re

p v v v v
u v

y x y x y

           
      

. (19) 

Here u, v – nodes speed, Re - Reynolds number. Hydrodynamics equations system is written 

in the non-dimensional view; i.e. it includes non-dimensional values * u
u

u
 , * v

v
u

 , 

* r
r

D
 , *

2

p
p

u 




, Re
u D

 

 . Quality of u  and any speed and linear size values 

can be chosen in the current field, for example an input fluid speed value in the channel and 

the channel width h . 

Boundary conditions are stated as follows: on solid walls u=v=0, on the input border u=0, 

v=1, on the output border 0
u v

x x

 
 

 
. Let us consider that there is rectangular region 

[a,b][c,d] within the plane XY, and there is a rectangular analytical grid, specified by 
Cartesian product of two one-dimensional grids {xk}, k=l,…,n and {yl}, l=l,…,m. 

We will understand neural net functions , , ( , , )NETu v p f x y w  as the (17)-(19) system solution 

giving minimum of the total squared residual in the knot set of computational grid. The trial 
solution (fig. 5) of the system (17)-(19) u, v, p can be presented in the form equation (1): 

 1 2
1

( , , ) ( )
q

i i i i u
i

u x y v f b w x w y b


   w ; (20) 

 
2

1 2
1

( , , ) ( )
q

i i i i v
i q

v x y v f b w x w y b
 

   w ; (21) 
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3

1 2
2 1

( , , ) ( )
q

i i i i p
i q

p x y v f b w x w y b
 

   w . (22) 

Here again, w is the vector of all the weights and thresholds of the net. In this case the 
amount of q neurons in the trial solutions remains the same for each decision variable set. 
This is the parameter on which depend approximated capabilities of neural net trial 
solution. Result of computational algorithm functioning should be achievement of necessary 
accuracy level of solution at q minimum value. 
 

 

Fig. 5. Neural net trial solution 

Let us name the residuals of equations (17)-(19) R1, R2 and R3 correspondingly, then for the 
vase of NMWR realization for parameters setup of the trial solution it is necessary to 

minimize three objective functions 2 2 2
1 2 3; ; minR R R  . In the simplest case, the only solution 

of the multi-criterion problem of minimization can be generated substituting of three 

criterions by one, presented in compression form; for example, 2 2 2 2
1 2 3 minR R R R    . 

Presenting the trial solution in the form of continuous functions (20)-(22) allows to define 
analytically the first and the second differential coefficient in the equations (17)-(19), 
knowing which one can generate analytic expressions of the function of residuals Rs(w,x,y) 
and further for antigradient component of the total residual in the s-reference point at ANN 

inner parameters 
j

R

v




, 
ij

R

w




 and 
j

R

b




, being later used in the minimization algorithm in 

accordance with anti-gradient direction. 
For the momentum equations solution by MAC method, it is necessary to specify an initial 
speeds distribution in the calculation area satisfying to the continuity equation. For this 

purpose, the speed potential  ,x y is introduced, u
x





 and v
y





. As a Laplace 

equation solution result, we obtain speed distribution which can be called non-vortex 
required value.Final speeds and pressure distribution are results of the momentum 
equations solution according to the following algorithm. 
The speed distribution on the following time layer is calculated according to the formula 

 1 1n n nt p    u F , (23) 

where pressure distribution to each iterative step is defined upon the Poisson equation 
solution 
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2 1 1
( , )n n

NETp f x y
t

   


F
. (24) 

Vector ( , )TF GF introduced to this algorithm can be calculated by the momentum 

equations (18-19); or Poisson equation (16) can be used for pressure calculation. Thus, the 
solution for pressure received from the equation (16) results in the continuity equation 

realization at the moment of time 1n  . Once 1np   is calculated, substitution of these 

values in the formula 1 1n n nt p    u F  allows to determine 1nv  . The iterative process 

goes on until speed distribution stops varying. 
Let us briefly generalize the above mentioned results of calculation experiment in methodic 
form to set dynamic calculation scale at the Navier-Stokes equations (17)-(19) solution by the 
establishment method. First, Laplace equation (12) solution is calculated with the received 
scale  or with rectangular scale, or by means of random numbers generator, or by using the 
Sobol - Statnikov generator of LP  (Statnikov & Matusov, 2002); then, distribution solving 

equation residual in the grid nodes; third, the additional multitude of calculation nodes is 
generated with using the Cohonen network; then, if the precision is not achieved, points 2 
and 3 are realized and the additional calculation components quantity grows until exact 
neural network solution for the whole calculation area is found; further, pseudo-non-
stationary algorithm iterations are organized by using the equations (23)-(24) where 
equation (16) solution is found on each time step on the multitude of calculation 
components, the coordinates of which vary depending on the Poisson equation right part 
distribution for each iterative step; finally, at steps 3 and 5 realization of structural 
optimization algorithms and learning neural network solutions standardization formation  
 
 

 
a) 

 
b) 

 
c) 

Fig. 6. Net velocity distribution 
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stated in (Kretinin et al., 2010). On fig. 6 (а-c), changing dynamics of calculation components 

during realizing various moments of time of equations (23)-(24) algorithm is shown, the 

speed vector distribution reorganization during the transition from the equation (12) 

solution to the equations (17)-(19) solution is also illustrated. 

Finally, analytical solution (as neural network function) for Navier-Stokes equations (17)-

(19) systems within the channel with stream turning at Re 100 which is expressed by the 

formula (23) on last iterative layer and neural network dependence of the pressure 

distribution on this layer 

 

3

1 2
2 1

( , , ) ( )
q

i i i i p
i q

p x y v f b w x w y b
 

   w   

with weights calculated array and the boundary network w  , ,w v b . 

3.2 Modeling flows in rotating ring zone - the equations that are applicable to rotating 
reference frame 
For this flow, NMWR solves conservation equations for mass and momentum describing 

incompressible flows of viscous Newtonian fluid.  

Continuity equation 

 0
j

j

u

x





. (25) 

Momentum equations 

     ji
i j i j i

j j i j j i

up u
u u u u f

x x x x x x

              

         
. (26) 

For flows in rotating domain (fig. 7), the equations for conservation of mass and momentum 

are written for the relative velocity formulation, where fi in right hand side is given by 

   2if u r        
     

. (27) 

The absolute velocity formulation is used in the non-rotating domain, and fi=0. Thus, the 

standard k   turbulence model is used. 

Let us consider the neural network functions , , , ( , , )i NNu p k f x y  w  as equations solution, 
where w– all weights and network thresholds vector that assure summary quadratic 
residuals minimums for each equation in optional totality of computation nodes 
coordinating each neural network solution learning iteration, are generated using the 
random number generator. 
Neuronet learning solution parameter search process efficiency depends on problem 

dimension, i.e. weights and perceptron thresholds varying adjusted quantity. The more 

significant is neurons quantity in trial solution, the higher is ANN approximate capacity; 

however, achieving high approximation accuracy is more complicated. 
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Fig. 7. Rotating Domain 

At the same time, neuron quantity depends not only on simulated function complexity, but 

also on calculation nodes quantity in which the residual equation is calculated. It is known 

that generally points’ quantity increase in statistical set used for neural network 

construction is followed by increase in necessary neurons network (Galushkin, 2002; 

Galushkin, 2007) quantity. Consequently, the dense calculation grids application results in 

nonlinear programming problems; while applying rare calculation grids, it is necessary to 

check the solution realization between calculation nodes, i.e. there is a problem of learning 

solution procedure standardization. In the neuronet solution reception context on known 

equation, it is convenient using traditional additive parameter of training neural model 

quality - a control error which is calculated on the set of additional calculation nodes 

between calculation grid nodes. The number of these additional calculation grid nodes can 

be much more important and they should cover all calculation area because the nodes 

number increase in which the control error on known network parameters does not result in 

essential computing expenses growth. Hence, at the learning solution neuronet parameters 

reception there is a problem of solving the multi-criterion problem of the nonlinear 

optimization and to minimize simultaneously both the summary residual in control points, 

or the control error can appear as a restriction parameter, in the limited set of calculation 

nodes and in this case the neural network solution parameters reception is reduced to the 

conditional nonlinear optimization problem. 

On figure 8, velocity distribution vector within the current random computation nodes of 

revolving ring on one of neural network training iteration of equation (25)-(26) decisions is 

presented. Contours of stream function within the computational zone obtained by using  

NMWR  are presented on fig. 9. 
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Fig. 8. Velocity distribution on one of neural network training iteration 

 
 
 

 
 
 

Fig. 9. The contours of stream function 
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4. Modeling leakage in a fuel transfer pipeline 

Method of leakage zonal location (Zverev & Lurie, 2009), which generalizes the known 
method of leakage detection by hydraulic gradient line salient point, can be used to define of 
pipeline leakage position. When using the “base” zone location method variant, it is supposed 
that in case of stationary process, hydraulic gradients 1i  and 2i before and after the leakage are 
constant and can be designed by the known values of liquid charge at the ends of controllable 
site. I.e., the distribution indignation of hydrodynamic parameters is not taken into account in 
comparison with the established flow which arises because of the environment outflow 
influence through the leakage aperture. It results in speed profile deformation within the cross 
sections of the pipeline near the leakage and the nonlinear dependence of hydraulic gradient 
in the function of distance from position of leakage downwards the stream. In order for pipe 
cross section speed distribution of the pipe to become  appropriate for  the established flow, 
the distance up to 40-60 calibres from leakage coordinate уx  can be required. Defining 
nonlinear dependence of hydraulic gradient function near the leakage is possible either based 
on special experimental researches, or based on  the numerical decision of hydrodynamics 
equations in three-dimensional statement. The given function can be added to the algorithm of 
zone location methode to reduce the leakage position coordinate definition error. 

One pipeline section of 300 m length and diameter 1 mD   is used for the nonlinear 

dependence of the total pressure drop determination along the pipeline length in the 

leakage neighborhood through the wall hole. The leakage position coordinate is 

fixed 155.5 mуx  . On the segment  140,200 mx  computational faces are formed with an 

interval 1h m . In segments  100,140 mx  and  200,250 mx  computational faces are 

disposed with an interval 10 mh  . Such a leakage location (approximately in the middle of 

the pipeline sector into a question) and computational faces disposition have been chosen 

for the influence elimination of the boundary conditions setting in the computational zone 

inlet and outlet on the flow distribution near leakage position. The leakage hole lD D  

relative diameter during the computational planed experiment is constant. The 

mathematical model includes conservation equations for mass and momentum enclosed by 

the standard k   turbulence model. The local hydraulic friction coefficient in any section 

of the pipeline is defined by the ratio 

 
 2

8
r R

u

r

u







 
    , (27) 

where 
2

0

1
2

R

u urdr
R

  - design section average speed,  -  dynamic factor of liquid viscosity. 

Turbulent flow speed distribution within the pipe cross section is described by the universal 
logarithmic dependence 

 log
u yu

A B
u 




  , (28) 

where 
8

u u


 - the dynamic speed, y - the distance from the wall,  - the kinematic 

viscosity. 
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At the statement of boundary conditions on the input, mass charge 1m  or the speed 

1u appropriate to this charge is set. In the grid units belonging to the leakage aperture, 

liquid outflow speed уu is appointed. The given parameter at numerical researches varies 

for the modeling leakages of various intensity. For any point of the calculating area, any 

operational value of pressure x   of all the hydrodynamical parameters are equaled to 

zero, for the concerning of which differences of pressure will be calculated, is set. On the 
output from the calculating area the conditions of the established current are set, i.e. the 
derivatives modeling of the boundary layer the standard wall functions for parameters of 
turbulence k and ε (Fletcher, 1991) are used. 
The equations discretization is effectuated on the base of finite volumes method in the 
combination with hexagonal grid. On fig. 10 the formation of the grid in the calculating 
sections of the pipeline is represented. 
 
 
 
 
 

 
 
 
 
 

Fig. 10. Calculation grid in the pipeline sections 

4.1 The plan of computing experiment 

If 1 2,x x  are the coordinates of the beginning and the end of the controllable pipeline sector, 

then 1 2,i i  are hydraulic gradients before and after the leakage respectively, 0p  is  total 

pressure drop of the sector, so in case of 1i const  from the beginning of the sector to the 

leakage and 2i const  from the leakage up to the end of the sector, in the stationary 

hydrodynamic mode, leakage coordinate shall be defined by the formula 
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  
 

0 1 1 2 2

1 2
у

p g i x i x
x

g i i




  



. (29) 

Let us present the total pressure drop nonlinear dependence for its calculation in  leakage 

neighbourhood in nonlinear function form  1 2, ,i
NN NNi f i i x x   on the pipeline sector 

 ,NN NN NNx x x l  , where for our computational model the left area limit coordinate of the 

nonlinear leakage function determination 150 mNNx   and the determination length 

fragment area 60 mNNl   (leakage is situated in the point with coordinate 155,5 mуx  ). 

In this case, total pressure drop in the controlled sector  1 2,x x  is calculated by the 

following formula 

       0
1 1 2 2 1 2

0

, ,
NNl

i
NN NN NN NN NN

p
i x x i x x l f i i x x dx

g


       . (30) 

In the known function  1 2, ,i
NN NNf i i x x , the present equation is nonlinear with one 

unknown value NNx . After solving this equation, we can define the pipeline leakage 
coordinate lx . 

Starting from above-mentioned, computational experiment is effectuated with the 

purpose of function determination  1 2, ,i
NN NNf i i x x , i.e. the total pressure drop 

dependence in the leakage neighbourhood i (criterion) of three variables 1 1
NNi gi , 

2 2 1/NNi i i  and NN NNx x x    (factors). Earlier, the interval forfactor variation 

 0,60NNx   was determined. Let us determine the intervals  1 10,20NNi  , 

 2 0,5,0,95NNi  . The plan of computing experiment is made with the points received with 

the help of Sobol-Statnikov generator of quasiuniform number sequences (Statnikov & 

Matusov, 2002). The working hypercube of space R3 is filled with the points 

 1 2, ,NN NN
NNi i x  according to LP  algorithm (Statnikov & Matusov, 2002). Choice of this 

algorithm for the experiment plan formation is made by high efficiency of the research 

method of  parameter space based on the sounding of computational area by points of the 

uniform distributed sequence.For each variable, parameter combinations 1 2,NN NNi i  from 

the experiment plan limitation boundary conditions in the computational model are 

selected by  determining values corresponding tothe inlet mass flow inm and leakage 

intensity lm , where the hydraulic friction coefficient is calculated by the implicit formula 

of Altschul for "smooth" pipes 

 1 2,82
2,04log

Re 
    
 

.  

As a result of computational hydrodynamics equations decision, we obtain the value 
distribution of total pressure drop on the length of the controlled pipeline sector, from 
which we are exterminating the criteria value i for the corresponding value NNx  from the 
experiment plan. Let us now register the obtained vector  1 2, , ,NN NN

NNi i x i  in database for 
the posterior generation of neural network dependence  1 2, ,i NN NN

NN NNi f i i x  . 
For the illustration of numerical calculations, the distribution of speed in the leakage 
neighbourhood is presented on Fig. 11, and on fig. 12 the distribution of the hydraulic 

gradient on the pipeline sector  100,250 mx  for factor values 
1

Pa
14

m
NNi  , 

2 2 1/ 0,5; 0,57; 0,64; 0,71; 0,8; 0,9NNi i i  is presented. 
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Fig. 11. Speed distribution in the leakage neighbourhood 

 

 

Fig. 12. Total pressure drop distribution for 1 meter of pipeline length 

x, m 

gi  
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4.2 The neural network regressive model 

For the regressive dependence construction,  1 2, ,i NN NN
NN NNi f i i x   artificial neural 

networks device is used. For the formation of display  1 2, ,i NN NN
NN NNi f i i x  , the standard 

structure of the multilayer perceptron (MLP) with 3 inputs, one output and two latent layers 
with 7 and 5 neurons accordingly was used. At training, MLP algorithm of Levenberg-
Markardt was used. The total RMS  error on 512 points of statistical sample was E=0.001. 
The comparative analysis of dependences calculation results obtained for inlet parameters 

values 1

Pa
16

m
gi  , 2

1
0.9

i
i
  is presented on Fig. 13 and 1

Pa
10

m
gi  , 2

1
0.8

i
i
  for 

 0,60 mNNx   from the differential equation computational solution– continuous lines 

and determined with neural network dependence – markers. It is also necessary to note the 
high approximation precision. 
 
 

 

Fig. 13. Comparative analysis of neural network data and numerical solution results 

5. Conclusion 

Results presented in this chapter concern one of many applications of neural network 
learning functions to the mathematical physics problems solution, which is solution of 
hydrodynamics equations. Using learning functions of neural network allows to exclude the 
errors in solving differential equations caused by derivatives discretization and the borders 
low precision representation. Numerical algorithm of Navier-Stokes equations system 
solution differing from known fluid dynamics methods by the possibility of computational 
grid arbitrary formationis developed. The formation technique of the additional nodes file 
depending on learning solution local accuracy is offered. 

NNx  

1

i
i
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The formation of the finite-elemental models for all extended pipelines and the numerical 
decision of equations of liquid movement for modeling the hydrodynamics processes now is 
limited to computer resources as by the quantity of the final elements of model calculated 
grid, so as by the time of finding of the decision. Even with such model, its use for system 
functioning operative analysis is quite doubtful. However, the numerical models of 
hydrodynamics processes can be used for the formation of information databases based on 
the neural network computing architecture which, after "training", have high speed of 
calculation. Neural networks are the universal approximation tool of multivariate nonlinear 
dependences, capable "to be arranged" under appearing of the new information of the 
researched process, i.e. they can serve as an intellectual tool for monitoring, which is 
constantly filled up and clarified. Thus, the introduction of neural algorithms in the 
approved and well-recommending methods of pipeline leakage detection is expedient for 
increased accuracy and the efficiency of accepted decisions. 
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