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1. Introduction 

Fluid motion is often numerically reproduced by means of grid-based methods such as 

Finite Difference Methods (FDMs) and Finite Elements Methods (FEMs). However, these 

techniques exhibit difficulties, mainly related to the presence of time-dependent boundaries, 

large domain deformations or mesh generation. This chapter describes a relatively recent 

meshfree and pure Lagrangian technique, the Smoothed Particle Hydrodynamics (SPH) 

method, which overcomes the above mentioned limitations. Its original frame has been 

developed in 1977 by (Gingold and Monaghan, 1977) and independently by (Lucy, 1977) for 

astrophysical applications. Since then, a number of modifications to ensure completeness 

and accuracy have been yielded, in order to solve the main drawbacks of the primitive form 

of the method.  

Because a calculation is based on short-range particle interactions, it is essential to limit the 

computational costs related to the neighbourhood definition. Available searching algorithms 

are then presented and discussed.  

Finally, some practical applications are presented, primarily concerning free surface flows. 

The capability to easily handle large deformations is shown. 

2. Basic formulation of the SPH method 

Governing equations describing the motion of fluids, are usually given as a set of Partial 

Differential Equations (PDEs). These are discretized by replacing the derivative operators 

with equivalent integral operators (the so called integral representation or kernel 

approximation) that are in turn approximated on the particle location (particle 

approximation). 

Next paragraph 2.1 gives further details about these two steps, with reference to a generic 

field f(xሬԦ	) depending on the location point xሬԦ		nd, whereas paragraph 2.2 provides more 

specific details concerning the treatment of Navier-Stokes equations. 

2.1 Approximation of a field f(x) and its spatial gradient 
Following the concept of integral representation, any generic continuous function f(xሬԦ) can be 

obtained using the Dirac delta functional  , centered at the point xሬԦ (Fig. 1) as 
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Fig. 1. Dirac delta function centered at the point x (for one dimensional problems). 

 fሺxሬԦሻ = ׬ fሺyሬԦሻ
 ൫xሬԦ	- yሬሬሬԦ൯dy (1) 

where  represents the domain of definition of f and  x,y . Replacing  with a smoothing 

function W(x - y, h), eq. (1) can be approximated as 

 fIሺxሬԦሻ = ׬ fሺyሬԦሻ
 W൫xሬԦ	- yሬሬሬԦ,	h൯dy (2) 

in which W is the so called smoothing kernel function or simply kernel and h, acting as 
spatial scale, is the smoothing length defining the influence area where W is not zero. While 
eq. (1) yields an exact formulation for the function f(xሬԦ), eq. (2) is only an approximation. The 
definition of W is a key point in the SPH method since it establishes the accuracy of the 
approximating function f(xሬԦ) as well as the efficiency of the calculation. Note that the kernel 
approximation operator is marked by the index I. 
The kernel function W has to satisfy several properties (Monaghan, 1988; Vila, 1999). The 
following condition 

׬  W൫xሬԦ	- yሬሬሬԦ,	h൯dy = 1 (3) 

is known as partition of unity (or the zero-order consistency) as the integration of the 
smoothing function must yield the unity. Since W mimics the delta function, eq. (3) can be 
rewritten as a limit condition in which the smoothing length tends to zero 

 limh→0 W൫xሬԦ	- yሬሬሬԦ, h൯→ δ൫xሬԦ	- yሬሬሬԦ൯ (4) 

Still, W has to be defined even, positive and radial symmetric on the compact support (Fig. 2) 

 W൫xሬԦ	-	yሬሬሬԦ, h൯ = W൫yሬԦ	-	xሬሬԦ, h൯ = W൫หxሬԦ	-	yሬሬሬԦห, h൯ > 0 หxሬԦ	-	yሬሬሬԦห < φ·h (5a) 

 W൫xሬԦ	-	yሬሬሬԦ, h൯ =0 otherwhise	 (5b) 

where  is a positive quantity. A large number of kernel functions are examined in 
literature, e.g. quadratic to quintic polynomials, Gaussian etc. Among the others (Liu & Liu, 
2003), a smoothing function satisfying the above condition is the cubic spline based kernel 
(Monaghan & Lattanzio, 1985) defined as: 
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W = Aሺndሻ ቀ2

3
-q2+

q3

3
ቁ 0 ≤ q < 1

W = Aሺndሻ൫2-q൯3
1 ≤ q < 2

W = 0 otherwise (6) 

where  = 2, A(nd), depending on the number of dimensions nd, denotes a scaling factor that 

ensures the consistency of eq. (3) whereas q denotes the dimensionless distance หxሬԦ	-	yሬሬሬԦห h⁄ . 

 
 

 
 

Fig. 2. Typical shape of the smoothing function W 

Knowing the function f carried by a collection of moving particles, the integral 
representation given by eq. (2) can be converted into a discretized summation over all 
particle N within the compact support (Fig. 2), yielding the particle approximation 

      
N

k
a k k

kk 1

m
f   f W     , h



 
x x x x

   
 (7) 

where the index k refers to particles within the compact support (see bold ones in Fig. 2), 

with mass mk and density k being carried. Note that in this case the particle approximation 

is marked by the index a. The subscript will be avoided from now on. 

The presence of these two variables allows SPH to be easily and conveniently applied to 

hydrodynamics problems. The smooth estimate eq. (7) can be referred to a generic particle 

occupying the position xሬԦi, as follow 

  
N

k
i i k ik

kk 1

m
f   f   f W



 
x


 (8) 
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where Wik is the abbreviation of  i kW     , hx x
 

. Particle approximation of spatial derivatives 
of a field function, such as divergence and gradient, is determined using the gradient of the 
kernel function rather than from the derivatives of the function itself 

 
N

k
i k i ik

kk 1

m
W

ρ

   f f
  

 (9) 

  
N

k
i i k i ik

kk 1

m
f     f   f W

ρ

   x
  

 (10) 

where the nabla operator is referred to the location of particle I. The symbol “·” denotes the 

dot product. Eqs. (9)-(10) offer the great advantage of estimating their left hand side in term 

of the kernel gradient, i.e. allowing no special hypotheses on the particular field function 

(vector in the first case, scalar in the latter). 

A different formulation of the spatial derivative in eq. (9) can be achieved introducing the 

following identity (Liu and Liu, 2003) 

       1     –         
f x f x f x
      

 (11) 

inside the integral in eq. (2), yielding in this case 

  
N

i k k i i ik
i k 1

1
m   W



    
 f f f

   
 (12) 

Likewise the divergence, another particle approximation of the gradient can be derived, 

taking into account the following equation 

      
2

f f
f        

       
   

x x
x

   
 (13) 

yielding 

 
N

k i
i i j i ik2 2

k 1 k i

f f
f   ρ m W

ρ ρ

 
     

 


 
 (14) 

Since the field function on the right hand side of Eqs. (12) and (14) appears in the form of 

paired particles, such equations are conveniently employed in fluid dynamics, allowing the 

conservation of linear and angular momentum. 

2.2 SPH-form of governing equations 
The mostly used governing laws ruling fluid motion are the Navier-Stokes equations, which 

specify that mass and linear momentum (also expressed in Newton’s second law which state 

that the rate of change of the momentum of a particle is proportional to the resultant force 

acting on the particle) are preserved. Conservation laws in Lagrangian form are in the 

following provided 
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d    
dt


 v
 

 (15a) 

 
d p   
dt


   


v

v f

 
 (15b) 

in which  and vሬԦ are respectively the density and velocity field, p is the isotropic pressure,  

the laminar kinematic viscosity and fԦ the external force. 
Different approaches (Monaghan, 1994; Liu and Liu, 2003; Oger et al., 2007) are available in 
order to derive the density particle approximation of the continuity equation (15.a) and 
momentum equation (15.b). For instance, referring to eq. (12), the density rate at particle i 
can be approximated as follows 

  
N

i
k k i i ik

k 1

dρ   m   W
dt 

   v v
 

 (16) 

The SPH formulation of the velocity variation can be deduced from eq. (14) 

 
N

ki i
k i ik2 2

k 1 k i

pd p  m W
dt ρ ρ

 
      

 
v

f

 
 (17) 

An artificial viscosity term (Monaghan & Gingold, 1983) can be added in eq. (14), allowing 
shock waves to be properly simulated (Liu et al., 2003a), damping spurious oscillation near 
the fronts 

 
N

ki i
k ik i ik2 2

k 1 k i

pd p  m W
dt ρ ρ

 
        

 
v

f

 
 (18) 

The dissipative term above introduced is the most general viscosity used in SPH 
computations, since it provides good results when modelling shock fronts and prevents 

interparticle penetration ( term in eq. (19)). It is defined as 

 

2
ik ik ik

ik ik ik
ik

ik

       when       0 
ρ
 0 otherwise

c




   
  



v x


 (19) 

where 

 ik ik
ik 2 2

ik

h        
 

 
v x

x


  (20) 

The notation aത୧୩= ሺai+akሻ 2⁄ , b୧୩=bi-bk is introduced above. Term c refers to the speed of sound 
which magnitude has conveniently to be at least ten times greater than the maximum estimate 
of the scalar velocity field (Monaghan, 1994),  = 0.1h is employed to prevent numerical 

divergences when two particle are approaching.  typically ranges from 0 to 0.01, depending 
on how viscous is the fluid. When other approaches for reproducing shear stresses are taking 
in, e.g. (Cleary, 1998), then it is not necessary to employ the first term inside eq. (19). 
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Problem closure is achieved by combining conservation equations in discrete form (16), (18) 
with an equation of state, when the weakly compressible scheme is adopted (Lee et al., 
2010). A relationship between pressure and density is given by (Dymond & Malhotra, 1988) 

 
2
0 0 i

i
0

c    
p      1

      
    

 (21) 

where c0 is the reference speed of sound, large enough to guarantee Mach numbers lower 

than 0.1 0.01, γ = 7, ρ
0
 = 1000kg/m3, if the liquid is water. 

3. Completeness and accuracy of the SPH method 

In SPH the consistency order of a function (or more properly completeness or reproducing 

conditions) means the order of a polynomial required to evaluate the function exactly, when 

using values carried by particles. Next section 3.1 deals with how restoring consistency to j-

th order, while section 3.2 provides some aspects related to the spatial scale h, which has a 

strong influence on the accuracy. 

3.1 J-th order consistency 
Zero-order consistency for particle approximation is attained when the smoothing kernel 

satisfies eq. (3) in discrete form 

  
N

k
k

kk 1

m
W     , h  1



 
 x x

 
 (22) 

together with 

  
N

k
i k

kk 1

m
W     , h  0



  
 x x
  

 (23) 

Eqs. (22), (23) are satisfied when a corrected smoothing function, e.g. the Shepard function 

(Bonet et al., 2004) is adopted. 

    kW  S x W     , hS  x x
 

 (24) 

where    
N

1 k
k

kk 1

m
S W     , h



 
x x x

  
. Still, Eqs. (22), (23) are not satisfied in the case of the 

evaluation near the boundaries, where kernel truncation yields a lack of interpolation or 

when particles are exceedingly disordered.  

There are several ways to restore higher order consistency conditions. j-th order consistency 

(j ≥ 1) is achieved with updated versions of the original SPH method, e.g. Reproducing 

Kernel Particle Method (Chen et al., 2000; Liu et. al., 1995), Element Free Galerkin Mehod 

(Belytschko et. al., 1994; Krongauz & Belytschko 1997), Moving Least Square Particle 

Hydrodynamics (Dilts, 1999). An interesting method to ensure j-th order consistency has 

been proposed by (Liu et al., 2003b). Using the Taylor series expansion for the kernel  
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       

   

k k
k 0 1 1

2 pj
k k

2 p
p 1

–   – 
W  –  , h G , h G , h G , h

h h

 –   – 
G , h G , h

h h

  

       
   



x x x x
x x x x x

x x x x
x x

       

      (25) 

and introducing the above equation in the following set, representing the reproducing 
condition of a function to the j-th accuracy in integral form (Liu and Liu, 2003) 

 

 

   

   

   

0 y

1 y

2

2 y

j

j y

 M W  – y,  h d    1

M  – y W  – y,  h d  0

M  – y W  – y,  h d  0

M  – y W  – y,  h d  0









  

  

  

  









x

x x

x x

x x



  

 






 

 (26) 

a discretized consistency condition to j-th order is ensured by the resulting set 

 

 

 

 

pj N
k k

p
kp 1 k 1

p 1j N
k k

p
kp 1 k 1

p jj N
k k

p
kp 1 k 1

    m
G , h    1

h

    m
G , h    0

h

    m
G , h    0

h

 



 



 

     

     

     

 

 

 

x x
x

x x
x

x x
x

 

 





 

 (27) 

posing 

  
jN

k k
j

kk 1

    m  U , h
h

     
 x x

x

  
 (28) 

eqs. (27) can be rewritten in a matrix fashion, such as 

 

   

   

 

 

0 k 0

j j j j

U , h U , h G , h 1

U , h U , h G , h 0

    
        

   
   

x x x

x x x

  




    

  
 (29) 

which solution yields the j+1 coefficients G୨ሺxሬԦ, hሻ. While the restoring condition to j-th 

order is ensured by eqs. (27), still some open issues arise. First of all, the corrected kernel 
may not be symmetric, in contrast with the requirements stated in eq. (5.a). Second, it 
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might be negative somewhere, which may produce unphysical field results (e.g. non 
positive density). Finally, it might show secondary peaks aside the central (see Fig. 2), 
hence affecting the internal force between two approaching particles. Consequently, 
special care has to be taken when simulating flows with corrected version of SPH. 
Concerning the stability of SPH, a pioneering work is given by (Swegle et al., 1994), whose 
results have then been confirmed by (Randles et al., 1999) and independently by 
(Belytschko,  & Xiao, 2002). 

3.2 Variable smoothing length 
The introduced smoothing length h is crucial for the accuracy of the particle approximation. 
When h is too large, carried particle properties are excessively smoothed out in space, 
affecting the accuracy. Vice versa, too small values determine a little number of computing 
particles inside the compact support, determining a lack of interpolation. In SPH 
computations, h may be kept fixed or variable in time and space. Since the carried particle’s 
mass is usually constant, the number of neighbouring particles inside the support domain 
should not vary, according to the following 

 
d

1
n

0
0h  h
 

   
 (30) 

where h0 and 0 are respectively the reference smoothing length and density. When h is 
chosen to be variable, special concern must be taken with reference to the third law of 
Newton (action – reaction principle). Indeed, if computing particles a and b have different ha 
and hb, then their compact supports are not the same, causing different exerting forces 
between such pairs. Symmetry of particle interactions must then be preserved. This 
condition can be achieved, taking into account a symmetrised smoothing length, as 
proposed by (Benz, 1989) 

 a b
ab

h h
h  

2


  (31) 

Others approaches exist to ensure symmetry (e.g. the geometric average instead of the 

arithmetic average). 

4. Neighbouring search methods 

A limitation of SPH is that a single computation becomes very demanding in terms of 
running time as the number of particle increases. For each particle, since the integration of 
the governing equations is carried out on a limited number of adjacent particles located 

inside a cut-off distance rc = h, a large part of the computational burden depends on the 
actual searching procedure of the neighbouring particles. It is therefore crucial that efficient 
methods are adopted for such a search. The cut-off radius is indeed  much lower than the 
typical domain’s spatial dimension, hence the number of neighbouring particles N is a little 
fraction of the total number Ntot. Straightforward determination of which particles are inside 
the interaction range would require the calculation of all pair-wise distances, a procedure 
whose computational burden would be  of the order O(Ntot2), and therefore unpractical or 
totally impossible for large problems. 
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Two main approaches have been developed  in the past in order to reduce the unnecessary 
computation of distances: the first based on dynamically storing each particle’s 
neighborhood list, namely the Verlet list (Verlet L, 1967), and the second based on a 
framework of fixed cells (Allen and Tildesley, 2000). The first dataset gathers  the NV,i , i = 
1,…,N, neighbours contained in a range rv slightly greater than the cut off distance rc (Fig. 3). 
 

 

Fig. 3. Verlet list definition for the fluid particle “i”; particles marked with a cross  between 
rc and rv, are included in the list but they do not give any contribution to the hydrodynamics 
properties of the targered particle. 

The condition NV,i << Ntot, will still hold, as long as  rv is small enough, even though – 
obviously – the  number of neighbouring particles stored in the list is greater  than those 
strictly required. The difference rv – rc = Vskin represents a sort of safety  “skin” around the 
cut-off distance rc and contains some elements which are initially unnecessary for the 
definition of the ith particle’s properties, as shown by particles marked with a cross in Fig. 3. 
This takes into account the possibility that some or all of them will cross the interaction 
sphere and thus become part of the neighbourhood in the following time steps. 
With this approach the list is kept unchanged for some time steps, till a “refresh condition” 
is established. A number of criteria have evolved over the years as a condition to activate the 
list refresh operation, mostly based on the maximum possible distance traveled by the 
particle (Chialvo & Debenedetti, 1983; Blink and  Hoover, 1985). The latter approach sets a 
partition of the physical space into fixed cells so that, for each particle, the neighbouring 
search only has to be performed within the surrounding particles, i.e. those inside the cell 
where the current particle is located and in the 8 (for 2D problems) or 26 (3D) adjoining 
ones. In order to define the neighbourhood, a data structure must be created so that each 
moving particle is connected to the grid cell it is located in; such a structure (linked-cell list) 
must be renewed at each time step, a relatively straightforward operation of O(Ntot) 
complexity.  
For this approach, as for the Verlet list method, the overall efficiency depends very much on 
the choice of parameters, balancing the size of the cells against their total number. Large 
cells imply a longer neighborhood search, while a greater number requires a longer data 
structure reconstruction. (Viccione et al., 2008) carried a numerical sensitivity analysis on the 
efficiency of the two procedures as function of the key spatial parameters, that is the Verlet 
list skin and the cell size. The most relevant results are shown in the following figures 

i

rcrv

j
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=rv/rc s s/s,b tot tot/tot,b

 

1 16.36 1.00 18.23 1 

1.1 14.75 0.90 16.65 0.91 

1.2 12.43 0.76 14.36 0.79 

1.3 11.57 0.71 13.48 0.74 

1.4 13.74 0.84 15.63 0.86 

1.5 15.23 0.93 17.17 0.94 

Fig. 4.a 

=rv/rc s s/s,b tot tot/tot,b

 

1 9.45 0.58 11.27 0.62 

1.1 8.23 0.50 10.07 0.55 

1.2 7.65 0.47 9.48 0.52 

1.3 6.84 0.42 8.69 0.48 

1.4 7.85 0.48 9.61 0.53 

1.5 8.98 0.55 10.83 0.59 

Fig. 4.b 

=rv/rc s s/s,b tot tot/tot,b

 

1 4.78 0.29 6.57 0.36 

1.1 4.38 0.27 6.23 0.34 

1.2 3.66 0.22 5.5 0.30 

1.3 3.19 0.19 5.03 0.28 

1.4 3.86 0.24 5.71 0.31 

1.5 4.55 0.28 6.39 0.35 

Fig. 4.c 

=rv/rc s s/s,b tot tot/tot,b

 

1 3.11 0.19 4.94 0.27 

1.1 2.99 0.18 4.81 0.26 

1.2 2.78 0.17 4.62 0.25 

1.3 2.64 0.16 4.47 0.25 

1.4 2.85 0.17 4.68 0.26 

1.5 3.05 0.19 4.89 0.27 

Fig. 4.d 

Fig. 4.a. refers to the case with no fixed cell structure. Here obviously the “Verlet list” 

procedure is highly beneficial, even though it appears that the size of the list must be 

carefully chosen, in order to fully exploit it effects. Figs. 4.b to 4.d show different 

computational times, depending on the cell size. Figure 5, gives a better insight of the 

results, showing the non-dimensional running cost trend s/s,b. As can be seen, minimum 

is achieved for a certain grid size.  
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Fig. 5. Comparison among different cell sizes. 

It appears that while both the linked cell list and the Verlet list do relieve the computational 
time, the comparative advantage of the linked cell increases to the point where it is 
practically of no use whatsoever.  
Later on, (Domínguez et. al., 2010) proposed an innovative searching algorithm based on a 
dynamic updating of the Verlet list yielding more satisfying results in term of computational 
time and memory requirements. 

5. Applications of the SPH method 

Smoothed Particle Hydrodynamics has been applied to a number of cases involving free 
surfaces flows.  

5.1 Slamming loads on a vertical structure 
The case of a sudden fluid impact on a vertical wall (Peregrine, 2003) has been  examinated on 
a geometrically simple set up. (Viccione et al., 2009) shown how such kind of phenomenon is 
strongly affected by fluid compressibility, especially during the first stages. A fluid mass, 
0.50m high and 4.00m long, moving with an initial velocity v0 = 10m/s is discretized into a 
collection of 20.000 particles whith an interparticle distance d0 = 0.01m. The resulting mass is at 
a close distance to the vertical wall, so the impact process takes place after few timesteps (Fig. 
6). Timestep is automatically adjusted to satisfy the Courant limit of stability. 
 

 

Fig. 6. Initial conditions with fluid particles (blue dots) approaching the wall (green dots) 

The following Fig. 7 shows the results in terms of pressure at different times.  
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t = 0.0005sec    t = 0.001sec   

 

 
t =  0.002sec    t = 0.005sec   

 

 
t =  0.009sec    t = 0.020sec   

Fig. 7. Pressure contour as the impact progress takes place. 

The rising and the following evolution of high pressure values is clearly evident. The order 
of magnitude is about 106 Pa, as it would be expected according to the Jokowski formula p 
= ρ C0 Δv, with v = v0 = 10m/s. After about 1/100 seconds most of the Jokowsky like 
pressure peak, generated by the sudden impact with the surface, disappeared, following 
that, the pressure starts building up again at a slower rate. 

5.2 Simulating triggering and evolution of debris-flows with SPH 
The capability into simulating debris-flow initiation and following movement with the 
Smoothed Particle Hydrodynamics is here investigated. The available domain taken from an 
existing slope, has been discretized with a reference distance being d0=2.5m and particles 
forming triangles as equilateral as possible. A single layer of moving particles has been laid 
on the upper part of the slope (blue region in Fig. 8). 
Triggering is here settled randomly, releasing a particle located in the upper part of a slope, 
while all the remaining ones are initially frozen. Motion is then related to the achievement of 
a pressure threshold plim (Fig. 9). The resulting process is like a domino effect or a cascading 
failure. While some particles are moving, they may approach others initially still, to the 
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point for which the relative distance yields a pressure greater than the threshold value. Once 
reached such point, those neighbouring particles, previously fixed, are then set free to move. 
Runout velocity is instead controlled by handling the shear stress bed with the fixed bed.  
 

 

Fig. 8. Spatial discretization. Red circles represent the area where local triggering is imposed. 

 

 

Fig. 9. Neighbour particle destabilization. a) Particle “i” is approaching the neighbour 
particle “j”. b) Despite the relative distance “|rij|” is decreased, particle “j” is still fixed 
because pij< plim. c) Particle “j” is set free to move because the pressure “pij” has reached the 
threshold value “plim”. 

Next Figures show three instants for each SPH based simulation, with the indication of the 
volume mobilized. 
 

      

Fig. 10. PT1 Particle triggered zone, limit pressure plim = 300kgf /cm2(left side), plim = 200kgf 
/cm2 (right side), viscosity coefficient bed=0.1. 

PT1
PT2

PT3

t = 50 secs t = 150 secs t = 100 secs t = 50 secst = 100 secs t = 150 secs 
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Fig. 11. PT2 Particle triggered zone, limit pressure plim = 300kgf /cm2(left side), plim = 200kgf 

/cm2 (right side), viscosity coefficient bed=0.1. 

 

         

Fig. 12. PT3 Particle triggered zone, limit pressure plim = 300kgf /cm2(left side), plim = 200kgf 

/cm2 (right side), viscosity coefficient bed=0.1. 

As can been seen from the above Figures 10 to 12, by varying the location of the triggering 

area and the limit pressure plim, the condition of motion are quite different. More 

specifically, the mobilized area increases when the isotropic pressure plim decreases. 

6. Conclusion 

Recent theoretical developments and practical applications of the Smoothed Particle 

Hydrodynamics (SPH) method have been discussed, with specific concern to liquids. The 

main advantage is the capability of simulating the computational domain with large 

deformations and high discontinuities, bearing no numerical diffusion because advection 

terms are directly evaluated. 

Recent achievements of SPH have been presented, concerning (1) numerical schemes for 

approximating Navier Stokes governing equations, (2) smoothing or kernel function 

properties needed to perform the function approximation to the Nth order, (3) restoring 

consistency of kernel and particle approximation, yielding the SPH approximation accuracy. 

t = 50 secs t = 100 secs t = 150 secs t = 50 secs t = 100 secs t t = 150 secs 

t = 50 secs t = 100 secs t = 150 secs t = 50 secs t = 100 secs t = 150 secs 
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Also, computation aspects related to the neighbourhood definition have been discussed. Field 

variables, such as particle velocity or density, have been evaluated by smoothing interpolation 

of the corresponding values over the nearest neighbour particles located inside a cut-off radius 

“rc” The generation of a neighbour list at each time step takes a considerable portion of CPU 

time. Straightforward determination of which particles are inside the interaction range 

requires the computation of all pair-wise distances, a procedure whose computational time 

would be of the order O(N2), and therefore unpractical for large domains.  

Lastly, applications of SPH in fluid hydrodynamics concerning wave slamming and propagation 

of debris flows have been discussed. These phenomena – involving complex geometries and 

rapidly-varied free surfaces - are of great importance in science and technology. 
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