
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



4 

Fast Charged Particles and Super- 
Strong Magnetic Fields Generated  

by Intense Laser Target Interaction 

Vadim Belyaev and Anatoly Matafonov 
Central Research Institute of Machine Building 

Russian Federation 

1. Introduction  

The development of a new generation of solid-state lasers has resulted in unique conditions 

for irradiating laser targets by light pulses, with radiation intensity ranging from 1017 to 1021 

W/cm2 and a duration of 20 - 1000 fs. 

At such intensities, the laser pulse produces superstrong electric fields which could not be 

obtained earlier and considerably exceed the atomic electric field of strength Ea = 5.14109 

V/cm. In these conditions, there arises a new physical picture of laser pulse interaction with 

plasma produced when the pulse leading edge or a pre-pulse affects solid targets. Laser 

radiation is rather efficiently transformed into fluxes of fast charged particles such as 

electrons and atomic ions. The latter interact with the ambient material of the target, which 

leads to the generation of hard X-rays, when inner atomic shells are ionized, and to various 

nuclear and photonuclear reactions. 

One important area in investigating the interaction of sub-picosecond laser pulses with solid 

targets is related to the important role which arising superstrong quasistatic magnetic fields 

and electronic structures play in laser plasma dynamics. This area of research became most 

attractive after carrying out the direct measurements of quasistatic magnetic fields on the 

Vulcan laser system (Great Britain) (Tatarakis et al., 2002), in particular, after the pinch effect 

has been found experimentally in laser plasma (Beg et al., 2004). 

The relativistic character of laser radiation with intensity I is realized at the magnitude of a 
dimensionless parameter a > 1. This parameter represents the dimensionless momentum of 
the electron oscillating in the electric field of linearly polarized laser radiation and can be 
expressed as 
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where e and m are the charge and mass of the electron, respectively, E is the amplitude of 

electric field strength (in units of V/cm) of laser radiation,  is the radiation wavelength (in 

m),  is the frequency of laser radiation, c is the speed of light, and I is the radiation 

intensity (in W/cm2). 

Terawatt-power laser systems of moderate size can fulfill the condition a > 1, which 

corresponds to the electric field strength above 1010 V/cm. In such intense fields, the 

overbarrier ionization of atoms occurs in atomic time on the order of 10-17 s, and the 

electrons produced are accelerated and reach MeV-range relativistic energies during the 

laser pulse. 

The acceleration of atomic ions in femto- and picoseconds laser plasmas constitutes a 

secondary process. It is caused by the strong quasistatic electric fields arising due to spatial 

charge separation. Such separation is related to the motion of a bunch of fast electrons. For 

laser radiation intensities exceeding I  1018 W/cm2, it is possible to obtain directed beams 

of high-energy ions with the energies i > 1 MeV. 

The generation of high-energy proton and ion beams in laser plasma under the action of 
ultrashort pulses is a quickly developing field of investigations. This is explained, in 
particular, by their important applications in such fields as proton accelerators, the study 
of material structure, proton radiography, the production of short-living radioisotopes for 
medical purposes, and laser controlled fusion (Umstadter, 2003; Mourou et al., 2006). For 

a laser radiation intensity of I  1018 W/cm2, a number of nuclear reactions can be 
initiated that have only been realized in elementary particle accelerators (Andreev et al., 
2001). 
Later on, we will consider the principal mechanisms for generating fast charged particles 
and quasistatic magnetic fields in laser plasmas, as well as experimental results obtained 
both abroad and on the native laser setup NEODIM in the Central Research Institute of 
Machine Building (Russ. abbr. TsNIIMash) (Korolev, Moscow reg.) (Belyaev et al., 2004; 
Belyaev et al., 2005). 

2. Generation of fast electrons in laser plasma 

In irradiating a target by a high-intensity ultrashort laser pulse, the radiation energy is 
rather efficiently converted into the energy of fast electrons which later partially transfer 
their energy to the atomic ions of the target. Presently, several mechanisms are being 
discussed concerning the generation of fast electrons when a laser pulse affects plasma with 
a density well above the critical value. If the laser pulse is not accompanied by a pre-pulse 
(the case of high contrast), then the laser radiation interacts with plasma of a solid-state 
density, possessing a sharp boundary. In this case, the mechanism of `vacuum heating' is 

realized (Brunel, 1987), as is the so-called vB mechanism (Wilks et al., 1992) (here, B is the 
magnetic field induction of the laser field) caused by a longitudinal ponderomotive force 

acting along the propagation direction of the laser pulse). This vB mechanism becomes 
substantial at relativistic intensities where the energy of electron oscillations is comparable 
with or exceeds the electron rest energy mc2 = 511 keV - that is, for the parameter a > 1 [see 
formula (1)]. In addition, fast electrons can be generated on the critical surface of plasma at a 
plasma resonance ( Gus’kov et al., 2001; Demchenko et al., 2001) if the vector of the laser 
radiation electric field has a projection along the density gradient (usually at an inclined 
incidence of laser radiation to target) and the laser frequency coincides with the plasma 
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frequency. In contrast to the ponderomotive vB mechanism, vacuum heating and 
resonance absorption arise at nonrelativistic (substantially lower, with a < 1) intensities as 
well. In the case of the ponderomotive mechanism, the average energy of fast electrons can 
be estimated as the maximum energy of transverse electron oscillations in an 
electromagnetic field, which in the general case takes a relativistic value. In a underdense 
part of the laser plasma, we have 
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In the ultrarelativistic limit Q  Q0, we hence obtain 
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By contrast, in the nonrelativistic limit Q  Q0, we derive from formula (3) that 
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In the overdense part of the plasma, the ponderomotive heating of electrons is noticeably 
weaker due to a difficult penetration of the laser field into this region. 
In the case of vacuum heating, the maximum energy of an electron flying into the depths of 
a dense target is given by the formula similar to equation (3), however, with a different 
numerical factor. 
There is one more mechanism for generating fast electrons in the underdense part of plasma 

in front of a target due to the betatron resonance in the arising magnetic field (Pukhov, 

2003). In this regime, electrons are accelerated by the transverse ultrarelativistic electric field 

of the laser wave in the direction of wave polarization, and the azimuthal magnetic field 

produced by the current of fast electrons is responsible for the magnetic part of the Lorentz 

force. This force turns electrons in such a way that they gradually change to the opposite 

direction of motion. In the case of an exact betatron resonance, the reflection occurs at the 

instant when the transverse electric field changes its direction, so the electrons are 

accelerated at all times. This mechanism yields an energy of fast electrons three times 

greater than formula (3) does: 
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There are also further mechanisms of electron acceleration that require special experimental 

conditions, for example, the wake field acceleration (Esarey, 1996; Amiranoff, 1998). In the 

case of resonance absorption, the electric field near the plasma critical surface is much 

stronger than that of incident laser radiation. The result is that the heating of electrons upon 

their impact with atomic ions is greater than follows from formulae (3) and (4). 
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Electrons are also accelerated by a transverse ponderomotive force (acting in the radial 

direction) due to a focal distribution of laser intensity. This acceleration leads to the 

maximum electron energy also expressed by formula (3) (in the underdense part of plasma) 

if electrons succeed in acquiring this energy moving from the focus to the periphery during 

the laser pulse. Thus, the duration  of a laser pulse should meet the inequality   mR/eE 

(in the nonrelativistic case). Here, R is the radius of the focal spot of a laser beam. This 

inequality holds for picosecond- and longer-duration laser light pulses with an intensity on 

the order of 1016 W/cm2. In fields with an intensity of 1018 W/cm2, the right-hand side of 

this inequality reaches dozens of femtoseconds, whereas in the overdense part of plasma 

this ponderomotive force is noticeably weaker. 

We have discussed the above mentioned mechanisms in more detail in our article (Belyaev 
et al., 2008). 
We suggested and investigated the new mechanism of high-energy electrons formation in 
ultra-high intensity laser pulse interaction with solid targets (Belyaev, 2004). This 
investigation is an attempt to reveal and describe, based on the model suggested, the high-
energy electron formation mechanism in laser plasmas so as to derive theoretical 
dependences which would represent specific relations between the parameters of fast 
electrons, laser radiation and target substance. 
Any theory can be accepted only after reliable experimental verification. The degree of 

reliability is determined not only by the sufficient diversity of independent experimental 

data, but also by the ability to choose out of these data those best representative of the 

overall pattern. Analysis of numerous experiments to measure energy of fast electrons 

formed in laser plasmas shows that with a particular laser facility, given its available 

radiation intensity, fast electron maximum energy can be determined most closely. 

Generally, it is electron maximum energy values that are most widely presented in 

experimental investigations. This is motivated not only by experimenters’ striving to get 

extreme record-breaking output parameters, but also by the possibility to most closely 

determine the electron maximum energy around their spectrum extrapolation at specified 

intensity of laser radiation incident on a target. On this basis we will establish our 

theoretical model of the maximum-energy electron formation process for a given laser 

radiation intensity. 

Without going into details of magnetic field generation mechanisms, it can be noted that a 
vortical electron structure develops eventually in plasma. Given the applied electric field 
(constituent of the incident laser radiation) and the dominance of tunnel ionization, a great 
number of electrons (practically determined by solid density) are accelerated. This current of 
electrons generates a magnetic field which bends their trajectory. Under certain conditions 
these trajectories can close at skin-layer depth within larmor-radius circle. The high electron 
density and, correspondingly, the circular current strength cause super-strong magnetic 
fields generation. 
Condition for such fields generation can be written as a condition for electron movement 
around such a circle in the form of a balance between the centrifugal force and the Lorentz 
force: 
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where r = /2,  - skin-layer thickness, e, m, V – charge, mass, electron velocity, c – velocity 
of light, B – magnetic induction in the electron orbit. 
Taking electromagnetic field penetration depth  to be equal to incident radiation wave 
length , we have /2r  . 

Given the relationship between mass and velocity, the kinetic energy change due to the 
action of the forces applied is always equal to 

  2 2
0 0( ) 1KIN VЕ m m c m c     , (6) 

where Vm  - relativistic mass, m0 – electron rest mass, 2 21 1 V c    - relativistic factor. 

Considering: 
- relativistic expression of electron momentum  
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where V – electron velocity; 
- use of generalized momentum 
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where p – ordinary momentum (8), A – vector-potential; 

- magnetic field B cylindrical symmetry: BX = 0;  BY = 0; X
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So from (6) – (9) we have 
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To find the electron maximum kinetic energy at specified intensity of laser radiation 
incident on the target we need the maximum value of B – magnetic field induced in laser 
plasma. This value can be estimated using the energy conservation law. 
Omitting calculations we can use the following formula easy to keep in mind: 

 1 2[Gs] 10 [W/cm ]MAXB J , (11) 

Substitution this formulae in expression (10) for kinetic electron energy gives: 
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where intensity J expressed in W/cm2,  – in micrometer, kinetic energy – MeV. 
Graph of this dependence show Fig. 1 by curve 1. 
 

 

Fig. 1. Dependence of electron kinetic energy on laser radiation intensity. 

Consider limiting cases. 
1. EKIN = m0c2 = 0,5 MeV. 

Expression (12) gives this value at intensity 
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The intensity JR can be called as relativistic intensity. 

2. EKIN  m0c2; J < JR. 
In this case 
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Graph of this dependence show at Fig. 1 by curve 2. 

3. EKIN  m0c2; J > JR. 
For this case 
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and graph of this dependence show on Fig. 1 by curve 3. 
Equations obtained for small (< m0c2) and large (> m0c2) values of kinetic energy agree with 
those in use for calculations of particle energy in a cyclotron and in a betatron, 
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correspondingly. In both cases electrons are accelerated under the action of an electric field. 
In a cyclotron, this is a periodically changing electric field applied externally. In a betatron, 
this is a vortex electric field occurring with axisymmetric magnetic field rise in time. In laser 
plasmas a magnetic field is generated giving rise to a vortex electric field accelerating 
electrons. Thus the laser-plasma electron acceleration mechanism resembles the betatron 
case. 
Equation (10) for electron kinetic energy was derived on the assumption that the electron 
acceleration is governed only by the laser radiation incident on the target without 
considering the processes going within the target substance, specifically, ionization process. 
Formally, it is reflected in the fact that the skin-layer size is determined by the laser 
radiation frequency 

 
2c c      

, (16) 

meaning that the laser radiation frequency  is an effective frequency. This assumption is 
true only at the first stage of interaction with the substance when a vortical electron 
structure develops on skin-layer scales, its characteristic size being in accordance with (16). 
This structure is unstable and there is a possibility of its transformation to smaller-scale 
structures. This process is known as a dynamic pinch. 
It is demonstrated in (Belyaev & Mikhailov, 2001) that in case of laser plasmas produced by 
the action of high-intensity (J > 1016 W/cm2) laser radiation of ultrashort duration ( < 10-12 

sec) on a solid target this process is of quantum nature and can be described by the diffusion 
equation. Without going into the process nature, note that under tunnel ionization the 
vortical electron structure generated on skin-layer scales (16) transforms to another one, its 
characteristic size now being determined by the ionization frequency as an effective 
frequency at the next stage of laser radiation interaction with the substance, i.e. at the stage 
of tunnel ionization development: 

 2i il c  , (17) 

Assuming that the vortical electron structure transformation process goes with the magnetic 
flow kept unchanged, we have 

 2 2
0 i iB B l  , (18) 

where Bi – magnetic field within the vortical structure, its characteristic size li, being 
determined by (17). Such a vortical structure provides the following kinetic energy to the 
electrons: 
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Equation (19) determines the maximum energy of the small group (tail) of high-energy 
electrons. This dependence can be represented via the energy or ionization potential of the 
target substance atoms: 
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Here J is in W/cm2,  - in μm, I and   - in eV. This dependence is plotted in Fig. 1 (curve 

4). 
The equation obtained demonstrates the proportionality between the electron energy and 
ionization frequency, hich determines physical nature of the electron acceleration process. 
The physics of the electron acceleration processes as a result of high-intensity laser radiation 
action on a substance is closely related to the physics of the ionization processes in 
superatomic intensity fields. 
The ionization frequency is generally one or two orders higher than the laser one. This 
results in the high acceleration rate and electron energy. 
The process of dynamic pinch development give rises formation of high-energy tail (20) and 

has threshold nature. Our estimations give value of threshold 0.311018 – 3.21019 W/cm2. 
Threshold smearing evidences for stochastic character of the process. 
The good agreement between theory and experiment (Matafonov & Belyaev, 2001; Malka & 
Miquel, 1996; Borodin et al., 2000; Nickles et al., 1999; Ledingham & Norreys, 1999; Cowan 
et al., 1999; He et al., 2004; Mangles et al., 2005)  suggests the realizability of the proposed 
high-energy electron formation mechanism in laser plasmas. 
In our article (Belyaev, Kostenko et al., 2003) we also have investigated cyclotron mechanism 
of electron acceleration. 
The magnetic activity of picosecond laser plasma offers new mechanisms for the 

generation of fast electrons due to the presence of such strong quasistatic magnetic fields 

regardless of the mechanisms of their origin. Such a possibility is related to the emergence 

of cyclotron resonances when the laser frequency  coincides with the Larmor gyration 

frequency  = eB0/mrc of an electron in an external constant magnetic field with the 

induction B0 (here, e and mr are the charge and relativistic mass of the electron, 

respectively; c is the speed of 

light). Indeed, the typical laser frequency  (in the Hartree atomic system of units) is on the 

order of 0.05 a.u. and coincides with the cyclotron frequency at an induction of B0 = 7 a.u. ~ 

100 MG. This value may become much greater with allowance made for the relativistic 

increase in electron mass, which is typical at laser radiation intensities on the order of 1019 - 

1020 W/cm2.Hence, the generation of a constant magnetic field results in stronger interaction 

of laser radiation with plasma. The situation is to a certain extent similar to the radiation 

self-focusing effect, in which case the variations in the refraction index of the medium in the 

field of a laser wave influence wave propagation through the medium. 

In the general relativistic case, the interaction of electrons with the field of a laser wave and 
with the constant magnetic field B0 is written out in the form 

  0

d 1

dt
e

c

     
 

p
E v B B  (21) 

for electrons possessing a momentum p and a velocity v. 
For circular polarization, the problem is solved analytically, whereas in the general case of 

linear polarization the problem reduces to a system of nonlinear equations, which can only 

be solved numerically. The solution to these equations is specific in that there are resonances 

between the periodicmotion of electrons in the magnetic field and electron oscillations in the 

field of the laser wave. This fact leads to drastic changes in electron trajectory and energy at 

certain instants of time. 
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Figure 2 depicts the variations in the kinetic energy of an electron (a) and its trajectory (b) 

for motion with the zero initial velocity in a field with a radiation intensity of 1020 W/cm2 

and a frequency that is at resonance with the cyclotron frequency (Belyaev & Kostenko, 

2003). The constant magnetic field is normal to the polarization of laser radiation. One can 

see that an electron acquires an energy of approximately 100MeV in a time on the order of 

hundreds of femtoseconds. 
 

  

Fig. 2. Electron kinetic energy (a) and trajectory (b) in a linearly polarized laser wave with  
an intensity of 1020 W/cm2 and a constant transverse magnetic field in the resonance case  

of  = . 

Electron acceleration in the field of a circularly polarized laser wave propagating along a 

strong magnetic field was theoretically investigated in lectures (Pavlenko, 2002). It was 

shown that the relativistic factor of the electron may increase by an order of magnitude 

under a high intensity of laser radiation. 

3. Generation of fast protons and ions in the interaction of ultrashort high-
intensity laser pulses with solid targets 

On the basis of the results of experimental and theoretical investigations performed in recent 

years, one can determine the following ranges for product plasma parameters: the electron 

temperature is about 1 to 10 keV; the mean energy of “fast” electrons is about 0.1 to 10 MeV 

(the maximum energy is as high as 300 MeV); the mean energy of fast ions ranges from 

several hundred keV units to a few MeV units (the maximum energy is 430 MeV); the 

relativistic longitudinal ponderomotive pressure of laser light is 1 to 50 Gbar; and the 

amplitudes of the electric field and spontaneous-magnetic-field strength range, respectively, 

between about 109 and 1012 V/cm and between about 1 and 500 MG (Belyaev et al., 2008; 

Salamin et al., 2006). Product terawatt-pulse picosecond laser plasmas appear to be some 

kind of a “table” pulsed “microaccelerator” and a nuclear “microreactor,” which is relatively 

compact and cheap and on which one must not impose special radiation-safety 

requirements. Such a source admits a relatively simple possibility for controlling energy and 

other parameters of corpuscular and electromagnetic radiations. 
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At the present time, the production of high-energy proton beams in laser plasmas under the 
effect of ultrashort pulses is a rapidly developing field of investigations (Carrier et al., 2009; 
Fucuda et al., 2009; Yan et al., 2009; Willingale et al., 2009; Gonoskov et al., 2009; Psikal et al., 
2010; Huang et al., 2010). 
Several models that claim for explaining observed results that concern the production of 
directed beams of high-energy protons were proposed in theoretical investigations. One of 
them is based on the mechanism of proton acceleration at the front surface of the target 
owing to the ponderomotive pressure of a laser pulse (Sentoku et al., 2003; Maksimchuk et 
al., 2000). According to a different model (MacKinnon et al., 2001; Wilks et al., 2001), 
relativistic hot electrons produced by a laser field in a solid-state target penetrate through 
the target, and some electrons escape from the rear surface of the target to a distance of 
about the Debye radius. These electrons generate an electrostatic field at the rear surface of 
the target. This field, which may exceed 1012 V/cm, accelerates protons. 
However, the efficiency of the proposed proton acceleration mechanisms has so far been 
debated (Salamin et al., 2006). In view of this, the our experimental studies were aimed at 
exploring various mechanisms of the acceleration of fast protons in laser plasmas under 
identical conditions of the irradiation of a solid-state target at a laser-radiation intensity of 

about 21018 W/cm2. 
The experiments in question were performed at the 10-TW picosecond laser facility 
Neodymium (Belyaev, Vinogradov et al., 2006). This laser facility has the following laser-

pulse parameters: a pulse energy of up to 10 J, the wavelength of 1.055 m, and the pulse 
duration of 1.5 ps. Its focusing system, which is based on an off-axis parabolic mirror whose 
focal length is 20 cm, ensures a concentration of not less than 40% of the laser beam energy 

within a spot D = 15 m in diameter and, accordingly, an average intensity of 1018 W/cm2 at 

the target surface and a peak intensity of 21018 W/cm2. 
Laser radiation generated by the Neodymium facility is characterized by the presence of two 
prepulses—one of picosecond and the other of nanosecond duration. The first prepulse 

appears 14 ns before the main laser pulse; it has a duration of 1.5 ps and an intensity below 

10−8 with respect to the main pulse. The second prepulse results from amplified 

spontaneous emission. Its FWHM duration is 4 ns, while its intensity with respect to the 

main pulse is below 10−8. 

The layout of the experiment is shown in Fig. 1. A beam of linearly polarized laser radiation 

of p-type polarization is focused by an off-axis parabolic mirror onto the surface of a solid-

state target (T) at an angle of 40◦ with respect to the normal to the target surface. For targets, 

we employed slabs from LiF and Cu 1 to 30 mm in thickness and the Al, Cu, and Ti foils 1 to 

100 m in thickness. The targets were arranged in a vacuum chamber 30 cm in diameter and 

50 cm in height. The pressure of the residual gas in the chamber was not more than 10−3 torr. 

Detectors D1 based on CR-39 track detectors of size 24 to 20 mm and equipped with 

aluminum filters of different thickness, from 11 to 100 m, which make it possible to cut off 

the energy interval 0.8–3.5 MeV for protons, were used to detect protons and to measure 

their energy spectrum. The detectors D1 were arranged upstream and downstream of the 

target at a distance of 20 mm from it along the normal. 

The secondary activated targets D2, which were manufactured from LiF, Cu, and Ti and 
which are characterized by different threshold energies for (p, n) reactions (from 1.88 MeV 
for 7Li to 5 MeV for 48Ti), were also used to detect protons and to determine their number 

and maximum energy. The secondary activated targets D2 were slabs 3030 mm2 in cross-
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sectional dimensions and 1 to 6 mm in thickness and were installed at the same positions as 
the track detectors D1. Thus, either the track detectors D1 or the secondary activated targets 
D2 were used in our experiment. 
 

 

Fig. 3. Layout of the experiment: (T) target, (VC) vacuum chamber, (W) vacuum-chamber 
window; (M) off-axis parabolic mirror, (LR) laser radiation, (N) normal to the target, (D1) 
CR-39 track detectors equipped with aluminum filters, (D2) secondary activated targets 
from LiF, Cu, and Ti, (D3, D4) scintillation detectors for gamma radiation, and (D5, D6) 
neutron detectors on the basis of helium counters. Detectors D1–D4 and D6 lie in the xy 
plane. 

Two scintillation detectors D3 and D4 positioned at distances of 4.3 and 3.0 m from the 
target, respectively, were used to record hard x-ray radiation. Lead filters 8 cm thick for D3 
and 13.5 cm thick for D4 were installed in front of the detectors. The detectors D3 and D4 are 

scintillation detectors on the basis of plastic scintillators 510 cm in dimension. The 
detectors D3 and D4 were used to record hard x-ray photons of energy 0.5 to 10 MeV. 
The detectors D5 and D6, which are based on helium counters, were used to determine the 
yield of neutrons generated in (p, n) reactions. The detector D5 was arranged along the 
tangent to the target surface at a distance of 25 cm, while the D6 detector was positioned 
behind the target at a distance of 60 cm. The detectors D5 and D6 consisted of the following 
units: a block of neutron counters on the basis of three CNM-18 helium counters, a voltage 
transducer, a signal-selection device, and a power amplifier. The side surfaces of the 
detectors D5 and D6 were surrounded by polyethylene 2 cm thick. 
The layout of the experimental facility used to study various mechanisms of fast-proton 
production is displayed in Fig. 4. As targets, we employed metallic foils from titanium 30 
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μm thick (see Figs. 4a and 4b) and a LiF plate 6 mm thick (see Fig. 4c). As the secondary, 
activated, target, we took a LiF plate 6 mm thick. In the case presented in Fig. 4c, the 
primary target serves as the activated target as well. 
 

 

Fig. 4. Layout of experiments aimed at studying various mechanisms of the acceleration of 
fast protons: (a) acceleration of protons from the front surface of the target toward the laser 
pulse, (b) acceleration of protons from the rear surface of the target in the outward direction, 
and (c) acceleration of protons from the front surface of the target in the inward direction. 

Taking into account the solid angle covered by the detector D5 and its efficiency, we found 
that the number of neutrons generated on average in the LiF secondary, activated, target 

over 4 sr per laser pulse is 50 in the first case (see Fig. 4a), about 2103 in the second case 

(see Fig. 4b), and about 2102 in the third case (see Fig. 4c). 

The number of fast protons can be estimated by the formula Np  Yn/(nli), where Yn is the 
yield of neutrons from the reaction 7Li(p, n)7Be, n is the concentration of 7Li atoms in the 

target,   60 mb (Youssef et al., 2006) is the cross section for the reaction 7Li(p, n)7Be at 
proton energies around 1.9MeV, and li is the proton braking length in the target. At 
distances longer than li, protons have have energies below the threshold energy of 1.88 MeV, 
so that the reaction 7Li(p, n)7Be, which leads to neutron production, cannot proceed. Under 

the conditions of our experiments, li ≈ 10 m. Taking into account the yield of neutrons for 
the three cases considered here, we ultimately find that the number of accelerated protons 
from the front surface toward the laser pulse that have an energy in excess of 1.88 MeV is 
107; the number of protons accelerated from the rear surface of the target in the outward 

direction is 4108, while the number of protons accelerated from the front surface in the 

inward direction is 4107. Thus, the results of our experiments have revealed that the 
proton-acceleration process occurs most efficiently in the case of proton acceleration from 
the rear surface of the target in the outward direction. 
This conclusion is also confirmed by the results obtained by measuring the spectra of fast 
protons for various mechanisms of their acceleration. 
Figures 5 shows the measured spectra of protons for various proton-acceleration 
mechanisms. These spectra were obtained both by using track detectors CR-39 equipped 
with aluminum filters of various thickness and by using the activation procedure. From 
these spectra, it follows that the energy distribution of fast protons corresponds to the 
Boltzmann distribution at a temperature of 180 keV for protons accelerated from the front 
surface of the target toward the laser pulse, a temperature of 500 keV for protons accelerated 
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from the rare surface in the outward direction, and a temperature of 250 keV for protons 
accelerated from the front surface of the target in the inward direction. 
 

 

Fig. 5. Spectra of protons for various mechanisms of acceleration: (1) acceleration of protons 

from the front surface of the target toward a laser ray (Ti, 30 m; T ≈ 180 keV); (2) 
acceleration of protons from the rear surface of the target in the outward direction (Ti, 30 

m; T ≈ 500 keV), and (3) acceleration of protons from the front surface of the target in the 

inward direction (LiF, 6 m; T ≈ 250 keV). The open circles and triangles represent data from 
track detectors, while the closed circles, triangles, and boxes stand for data obtained on the 
basis of the activation procedure [p(7Li, 7Be)n, Ethr = 1.88 MeV]. 

Figure 6 shows the results of our experiments aimed at determining the maximum energy of 

protons for aluminum targets of various thickness—from 2.5 to 100 m. These results were 
obtained both by using the CR-39 track detectors equipped with aluminum filters of various 
thickness and by using the activation procedure. From Fig. 6, one can see that there is an 

optimum aluminum-target thickness of 10 m, at which protons of maximum energy 5 MeV 
are produced. 
We will now compare the experimentally measured maximum energies of protons 
accelerated from the front surface of the target in the inward direction (E  ≈ 2 MeV) and 
protons accelerated from the rear surface of the target in the outward direction (E  ≈ 5 MeV) 
with the estimates of the maximum energy of protons subjected to the effect of the 
ponderomotive force (Pukhov, 2001), 

 22 2 ,iMAXE aZmc   (22) 

and in the case of plasma expansion into a vacuum (Zepf et al., 2003; Cowan et al., 2004; 
Robson et al., 2007), 

  22 ln .iMAX e piE ZT    (23) 
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At I = 21018 W/cm2, expression (22) yields the energy value of 1.73 MeV, while expression 
(23) leads to 5.1 MeV. These energy values agree reasonably well with experimental data. 
We will now discuss the results obtained experimentally for the target-thickness 
dependence of the maximum energy of protons accelerated from the rare surface of the 
target in the outward direction. From our analysis, it follows that the reduction of the 

maximum proton energy at the foil thickness smaller than 10 m is due to the effect of the 
nanosecond prepulse because of the pulse of enhanced spontaneous emission. The 
nanosecond prepulse generates shock waves in the foil, which deform the rear surface of the 
target, and this leads to a increase in the size of the plasma inhomogeneity at the rear surface 
of the target and to a decrease in the energy of protons produced at the rare surface of the 

target. The decrease in the maximum proton energy for target thicknesses in excess of 10 m 
is due to the decrease in the energy of electrons as they pass through the target and to the 
increase of their angular spread. This in turn leads to a less efficient acceleration of protons 
from the rear surface of the target. 
 

 

Fig. 6. Maximum proton energy EpMAX as a function of the aluminum-foil thickness. 

In our paper (Belyaev et al., 2005), experimental data are presented on the generation of fast 

ions in a laser picosecond plasma at a laser radiation intensity of 21018 W/cm2. The results 
were obtained from Doppler spectra of hydrogen-like fluoride ions. An important 
peculiarity of the energy distribution of fast fluoride ions is the slow fall in ion energy to 1.4 
MeV. In Fig. 7, the energy distribution of fast fluoride ions is plotted based on the results of 
measurements of Lya line profile for F IX ion. The solid curves are calculated by the formula 

 
 20d

~ exp
d 2 fast

M v vN

E T

 
 
  

 (24) 
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where v is the ion velocity in the observation direction, Mv20 /2 = 25 keV, and the 
temperature of the fast fluoride ions is Tfast = 350 keV. 
In addition, using the red shift of the Doppler profile for the Lya line it was found that fast 
ions move inwards from a target surface. In (Belyaev et al., 2005), the parameters of the 
fluoride ion energy distribution were also estimated theoretically. 
 

 

Fig. 7. Energy distribution of fast fluoride ions derived from the profile measurements of 
Lya line emitted by F IX ion. Top curve corresponds to ions moving towards the target, 
while bottom curve refers to ions moving outward from the target. 

In our paper (Belyaev et al., 2009) the results of experiments devoted to studying the 

excitation of the promising nuclear fusion reactions 6Li(d, )4He, 3He(d, p)4He, 11B(p, 3), and 
7Li(p, )4He, along with the standard reaction D(d, n)3He, in picosecond laser plasmas are 
presented. For the first time, it was shown that these reactions may proceed at a moderate 

laser-radiation intensity of 21018 W/cm2, the respective yield being 2103 to 105 per laser 
pulse. A brief survey of the main processes responsible for the generation of fast electrons 
and fast ions (protons) at the front surface of the target and for the excitation of nuclear 
fusion reactions is given. The calculated and experimental results on the yield from nuclear 
fusion reactions in picosecond laser plasmas are compared. The possibilities for optimizing 
the yield from the promising fusion reactions excited in femto- and picosecond laser 
plasmas are discussed. 

4. Relativistic magneto-active laser plasmas 

Principal results of investigations of relativistic laser plasmas are presented here. We found 
parameters of magnetic fields generated in laser plasma – the amplitude of the magnetic 
field, its lifetime, and the increment, the spatial structure. Mechanisms of acceleration of 
charged particles have been investigated which are related with considered magnetic fields. 
Main peculiarities that determine properties of relativistic laser plasmas are: 
1. Electrons interacting with a field of electromagnetic wave can be considered as free 

particles.  
2. Free electrons in relativistic laser plasmas interact only with an electromagnetic wave. 
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3. The conservation laws and motion integrals are valid also in the range of relativistic 
laser intensities. 

Equations describing quasi-stationary magnetic fields which are generated in laser plasmas 
can be derived from the conservation law for generalized momentum: 

 
e

m
c

 P v A  (25) 

Here A  is the vector-potential of an electromagnetic wave. The relativistic equation of 
motion is of the form  

  d e
m e

dt c
   v E V B  (26) 

Deleting the intermediate derivations, we present final equations for vortex electron 
structures producing magnetic field in laser plasmas: 

 rotω v  (27) 

 0div V  (28) 

   0
d

rot
dt

  
ω ω V  (29) 

Here 
e

mc


Bω   is a cyclotron frequency for electron rotation in the magnetic field B,  and 

2 2
1

1 v c
 


 is the relativistic factor. 

These equations mean conservation laws for vortex electron structure: Eq. (27) is the 

conservation law for a generalized momentum (25); Eq. (28) is the conservation law for a 

number of particles, and Eq. (29) is the conservation law for a magnetic flow, or for an 

angular momentum.  

It should be noted that these equations allow undamped solutions. In general case solution 

of these equations taking into account losses is a difficult mathematical problem knowing as 

a problem of magnetic field generation. In particular, explanation of Earth magnetism is a 

part of this problem.  

Equations (27) – (29) coincide with equations for real potential vortexes in mechanics of 
continuum matter which correspond to three Helmholtz theorems (Sedov, 1983). 
The potential vortex presents good description of the observed vortex. Uniform rotation is 

unfit for description of the observed vortex. The velocity inside the observed vortex is high 

and outside of it is small, while the inverse statement is valid for the case of the uniform 

rotation. Coincidence of equations for a magnetic field in laser plasmas and for a potential 

vortex results in identity of their spatial structures (see Fig. 8). 

An electron vortex producing a quasi-stationary magnetic field and their analogous classical 
potential vortex can exist only in motion. In general case the transformation of rotational 
energy into a translational motion is a relativistic effect. This fact follows from requirement 
of relativistic invariance for motion of charged particles; it takes place also at small non-
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relativistic velocities. The expression for the motion integral follows from the equation (26), 
taking into account also the Maxwell equations for an electron in the field of an 
electromagnetic wave which propagates along the direction n: 

 
2 2

1

1

c
Const

V c

 




n v
 (30) 

 

 
 

 

Fig. 8a. Vortex lines of moving potential 
vortex and its cross section  

Fig. 8b. Structure of magnetic field produced in 
laser plasmas 

This expression is useful at the consideration of dynamics of relativistic particles in a field of 

an electromagnetic wave. For example, if a charged particle (for example, an electron) 

rotates with the velocity V in a circularly polarized field of an electromagnetic wave, then 

this particle acquires obligatory some velocity along the direction n of the wave 

propagation. When V/c = 0, the expression (30) is equal to unity. This value does not change 

also for other velocities. Hence, one obtains the next expression for the particle velocity 

along the direction of propagation of electromagnetic wave: 

 
2

2

1 1 1

1

V a

c a



  

 


 (31) 

Here the quantity a is determined by the electromagnetic wave intensity J: 
18

0,85
10

J
a  , J 

[W/cm2]. 
Positively charged atomic ions prevent from motion of the considered electron vortex in a 
target because of the forces of the Coulomb attraction. 
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The requirement of quasi-neutrality results in motion of positively charged atomic ions. 
Omitting details of derivations and taking into account the Vlasov equations for a quasi-
neutral two-component plasma and conservation law of the generalized momentum both 
for ions and for electrons, we present the final result: 
Electrons and ions in relativistic laser plasmas form the one vortex structure – a potential 
vortex. This structure moves together with produced electromagnetic fields having the 
velocity of an electric drift (at E < B): 

 
 

2
c

EB
v

B
 (32) 

Let us remark one peculiarity. The ion velocity and the ion free path are small in the process 
of ion motion. Ions are decelerated in a target; then new ions take their place, and finally the 
whole vortex structure occurs on the rear side of the target.  If li is the depth for ion 
deceleration, the last ions propagate together with electrons producing quasi-neutral 
potential plasma vortex. 
The drift motion does not produce the electric current and charge separation, since particles 

with positive and negative charge drift in the same direction with the same velocity. Thus, 

drift produces motion of neutral plasma.  

Plasma magnetization results in small divergence of these flows. It is explained by a stability 

of vortex quasi-neutral structures as quasi-particles 

Some publications report about experimental confirmation of generation of magnetized 

toroidal plasma structures.  Ring-shaped proton flows with small divergence were observed 

(Nakamura & Mima, 2008; Clark et al., 2000). The magnetic field of about 100 MG has been 

measured by direct spectral method on large distance (several hundreds of microns) from 

the target surface (Belyaev et al., 2004). 

Our experiments at the peak laser intensity of 21018 W/cm2 allows us to observe on the rear 

side of thin (30 m) titanium target clear ring-shaped structures by the proton detector CR-

39 placed on a distance of 20 mm. Photo of ring-shaped proton structure is presented in Fig. 

9a, and proton distributions with the energy of 2.5 MeV are presented in Fig. 9b. The 

divergence of the proton beam is 1/2  14. Protons with the energy higher than 2.5 MeV 

present narrow collimated beam with the divergence angle of 1/2 = 3. Inside this narrow 

collimated beam with the divergence angle 1/2 = 3 we observed  well collimated proton 

beams with the divergence angle of 1/2 = 0.10.3. 
Note, that drift velocity can increase significantly under condition of development of pinch-

effect up to relativistic values. Respectively, not only electron velocity, but also the velocity 

of heavy positively charged atomic ions can increase up to relativistic values (Belyaev, 

Faenov et al., 2006). 

Deleting the intermediate derivations, we present expressions for lifetime considered 
magnetic field: 

 2T t



 


 (33) 

where  - laser pulse energy,  - losses of an energy for electron vortex structure, 
2 ,t D   D – coefficient of Bohm’s diffusion. This lifetime does not depend on duration of 
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laser action and can exceed it on one-two order. For this reason the superstrong magnetic 
fields generated in laser plasma, term quasistationary. 

Increment of the considered magnetic field is equal to the ionization rate i, which is larger 
than the plasma frequency. 
 

 

Fig. 9a. The photo of the track detector 
CR-39 covered by 11 mm Al filter. 
Detector CR-39 shows the tracks of 
protons with energies Ep > 0.8 MeV;  

1/2 » 14° (cone half angle) 

Fig. 9b. The proton distribution inside the spot for 

detector with 11 m Al (Ep > 0.8 MeV). Target Cu 

25 m. Protons with energy E < 2,5 MeV 

Mechanisms of generating magnetic fields are a subject of numerous investigations 

performed in recent years (Tatarakis et al., 2002; Beg et al., 2004; Borghesi et al., 1998). 

Various mechanisms for generating a magnetic field in the interaction of intensive laser 

radiation with solid targets are described in a number of theoretical works (Stamper, 1991; 

Wilks et al., 1992; Bell et al., 1993; Buchenkov et al., 1993; Sudan, 1993; Haines, 1997; Mason 

& Tabak, 1998; Krainov, 2003). In particular, they predicted the origin of magnetic fields 

with induction of up to 1GG in the dense plasma produced during the interaction process. 

These fields are localized near the critical surface, where the laser energy is mainly 

absorbed. The arising magnetic fields noticeably affect the dynamics of laser plasma. The 

principal mechanisms of generating quasistatic magnetic fields were considered: (1) 

different directions of the temperature and plasma density gradients; (2) the flux of fast 

electrons accelerated by ponderomotive forces in the longitudinal and transversal directions 

with respect to the direction of laser pulse propagation, and (3) the collisionless Weibel 

instability (Weibel, 1959). 

Measurements of superstrong quasistatic magnetic fields in laser plasma and their 
theoretical interpretation have been discussed in more detail in our article (Belyaev et al., 
2008). 
Measurements of magnetic fields in plasma by various independent methods are very 
important for both proving the existence of such fields and determining their spatial 
structure (topology). For this purpose, we measured the profiles of X-ray spectral lines of 
hydrogen-like fluoride ions in laser plasma with a radiation intensity of 1017 W/cm2 and 
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pulse duration of 1 ps (Belyaev et al., 2004). The structure observed is characterized by 
distinct dips and peaks on the spectral line profiles (see Fig. 10). These features can be 
explained by invoking a conception of the strong turbulent noise that develops in the 
superstrong magnetic field generated in laser plasma. 
 

 

Fig. 10. Comparison of experimental (thin curves) and theoretical (thick curves) profiles for 

the Lya line of F IX ion: (a) the experiment was performed at Ilas = 21017 W/cm2, and 

calculation was made at Ti = 100 eV, ne = 1020 cm-3,  = 71014 s-1, E0 = 4108 V/cm; (b) the 

experimental Ilas = 31017 W/cm2, and the calculation was done at Ti = 100 eV, ne = 21020 

cm-3,  = 1015 s-1, and E0 = 6108 V/cm. 

5. Conclusion 

The above-described mechanisms for accelerating electrons and ions to a greater or lesser 
degree comply with up-to-date concepts on the generation of fast particles in laser plasma. 
According to these concepts, the energy of an initial laser pulse is converted to the energy of 
electron motion. The mechanisms for such energy conversion are mainly related to (1) a 
ponderomotive potential; (2) a phase interruption of electron oscillations in the laser wave 
due to various mechanisms, among which the main one is electron ejection beyond the 
sharp boundary of a target (vacuum heating), and (3) various resonance mechanisms where 
the electron motion is at resonance with plasma waves (wake-field resonance absorption or 
acceleration) or the cyclotron or betatron oscillation of an electron in the channel produced 
by laser radiation in the presence of a magnetic field. Ion acceleration in this case is a 
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secondary effect mainly caused by the electric fields of the spatial charge produced when 
fast accelerated electrons are separated from ions. The detailed distribution of such fields 
substantially depends on the target thickness, which makes a difference in the ion 
acceleration at the front and rear target surfaces. 
As a whole, particle acceleration is characterized by the multifactor character of the 
parameters involved. Such parameters are the intensity, frequency, and duration of the laser 
pulse; the contrast, which determines pre-plasma parameters; the thickness and structure of 
the target; the presence of magnetic fields, and some other factors. By combining these 
parameters, one can reach the optimal (in certain limits) conditions of particle acceleration. 
There is a wide range of various applications of such laser-driven accelerators, starting from 
fundamental investigations concerning nuclear processes for isotope production, to the 
initiation of thermonuclear reactions using laser setups that are quite small in size compared 
to standard accelerators, and ending by particular applications such as sources of proton 
radiation for medical purposes. 
Nevertheless, there are a sufficiently large number of problems to be solved related to 
particle acceleration. These are, for example, ion beam focusing and annular structures 
arising in the beam. In electron acceleration, the problem of forming a monoenergetic beam 
of fast electrons with a maximum energy has not yet been solved. 
As far as the generation of super-strong magnetic fields is concerned, the main problems are 
determination of their lifetime and topology. Experimental results definitely indicate that 
the lifetimes of magnetic fields are considerably longer (by orders of magnitude) than the 
laser pulse duration. 
From our point of view, this is direct evidence that long-living magnetic configurations exist 
in laser plasma. This is also confirmed by investigations into the dynamics of pinch 
structures in irradiating wire targets by laser pulses. The topology and dynamics of such 
structures are, as was noted above, in surprisingly good agreement with those obtained 
under the pulse action of mega-ampere currents. 
It is clear that the presence of high-intensity fast particles and magnetic fields in plasma, in 
addition to the specific features of particle acceleration mentioned above, should result in 
numerous instabilities arising in plasma. This is directly illustrated by the results mentioned 
above on measuring the profiles of spectral lines for multiply charged ions. Profile 
irregularity is indicative of the existence of intense electrostatic oscillations possessing 
definite frequencies and intensities. Thus, in view of all the specific features mentioned 
above, one can conclude that in the case of ultra-short laser pulses we are dealing with 
magneto-active turbulent plasma, numerous properties of which are not clear presently. 
Nevertheless, it is possible to choose sufficiently optimal conditions for generating high-
energy charged particles in such plasmas. 
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