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1. Introduction

The realization of rovibrationally stable dense samples of ultracold diatomic molecules
remains one of the main stepping stones to achieve the next slate of major goals in the field
of atomic and molecular physics. Though obtaining diatomic alkali molecules was seen as
a logical next step following the optical cooling of atoms, many of the possible applications
currently under investigation extend beyond atomic and molecular physics. For example,
spectroscopy of ultracold molecules can help in testing extensions of the Standard Model
via the search for a permanent electric dipole moment of the electron (1; 2), or the energy
difference between enantiomers of chiral molecules (3). Various molecular transitions can be
utilized to track the time dependence of fundamental constants, including the fine structure
constant and the proton to electron mass ratio (4). They also open the way for cold and
ultracold chemistry, where the interacting species and products are in a coherent quantum
superposition state (5) and reactions can happen via quantum tunneling. Dipolar ultracold
quantum gases promise to show a plethora of new phenomena due to anisotropic long-range
dipole-dipole interactions (6). Dipolar molecules in optical lattices can be employed as a
quantum simulator of condensed matter systems, and they are predicted to demonstrate new
quantum phases such as a dipolar crystal, supersolid, checkerboard and collapse phases (7; 8).
Ultracold polar molecules also represent an attractive platform for quantum computation
(9). They offer a variety of long-lived states for qubit encoding, including rotational, spin
and hyperfine (if electronic and nuclear spins are non-zero), Λ and Ω-doublet states (10) and
scalability to a large number of qubits. Polar molecules can be easily controlled by DC electric
and magnetic fields, as well as by microwave and optical fields, allowing the design of various
traps (11; 12). The main appeal of polar molecules for quantum information processing,
however, comes from their permanent electric dipole moment, permitting them to interact via
a long-range dipole-dipole interaction. The dipole-dipole interaction offers a tool to construct
two-qubit gates, required for universal quantum computation (9; 13).
Ultracold molecules in their ground vibrational state v = 0 (and even in specific rotational,
hyperfine or Zeeman states) are required for many of these applications since they have a large
permanent electric dipole moment and are stable with respect to collisions and spontaneous
emission. Currently translationally ultracold (100 nK - 1 mK) molecules are produced by
magneto- (14) and photo-association (15) techniques. In a typical photoassociation scheme,
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a pair of colliding atoms is photoassociated into a bound electronically excited molecular
state that spontaneously decays, forming molecules in the electronic ground state. In
magnetoassociation, a magnetic field is adiabatically swept across a Feshbach resonance,
converting two atoms from a scattering state into a bound molecular state. These techniques
have most successfully been applied to form alkali dimers from ultracold alkali metal atoms
(14–16). In both techniques the molecules are translationally cold, but vibrationally hot,
since they are formed in high vibrational states near a dissociation limit of the electronic
ground state. Therefore, once created, molecules have to be rapidly transfered to the ground
rovibrational state.
Basically all successfull methods for cooling vibrational (and rotational) degrees of freedom
require refined laser pulse techniques from simple STIRAP pulses to optical control. In
the recent past, several methods have been proposed to reach this goal: they can be
divided into non-coherent and coherent techniques. Non-coherent methods include the
pump-dump technique and radiative vibrational cascade. In the pump-dump technique a
pump pulse transfers population from an initial state to some intermediate vibrational level
of an electronically excited state, followed by a dump pulse which brings the population
from the intermediate to the ground vibrational level (17). Ultracold molecules in the ground
vibrational state have been produced using this technique in a photoassociation experiment
(16) with a 6% efficiency. The pump-dump technique requires pulses shorter than the excited
state lifetime (large intensity is therefore needed to achieve reasonable transfer efficiency).
The transfer efficiency is low, unless pulses of specific area (e.g. π pulses) are used. To
increase the transfer efficiency and avoid losses due to spontaneous emission from the excited
electronic state, a sequence of alternating short pump and dump pulses can be applied, each
transferring a small fraction of the population to the target state (18). Pulses in this case
can be weak, since each has to transfer only a small fraction of the population. Additional
spectral shaping of the pulses can provide population transfer to a desirable target state,
where population is coherently accumulated. In this case molecules formed in the ground
vibrational state have to be removed from the interaction volume to avoid excitation by
subsequent pulses, leading to increase in the duration of the transfer process. In the second
non-coherent method molecules in the ground electronic state are allowed to radiatively decay
from the initial high vibrational level reaching the ground v = 0 state after several decay steps
(19). In this case many intermediate vibrational states are populated which would result in
loss of molecules from a trap due to vibrationally inelastic collisions with background atoms
and formed molecules. Another incoherent technique, named molecular optical pumping
(20), allows to transfer molecules from high vibrational states to the ground state using a
shaped laser pulse. Molecules are excited to vibrational levels of higher-energy electronic
states and spontaneously decay back to the ground one. The excited state vibrational levels
are chosen to have a good Franck-Condon factors with the v = 0 vibrational level in the
ground electronic state. The laser pulse is spectrally shaped so that all frequencies allowing
molecules to be excited back from the v = 0 state are removed, and a significant fraction
of molecules accumulates in the ground vibrational state after a few excitation- spontaneous
emission cycles.
The major coherent methods are adiabatic passage and coherent control techniques. The latter
one utilizes spectrally shaped broadband optical pulses to transfer the molecules from an
initial to the ground vibrational state with high efficiency (21). Stimulated Raman Adiabatic
Passage (STIRAP) (22) has recently attracted significant interest as an efficient way to produce
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Coherent Laser Manipulation of Ultracold Molecules 3

deeply bound molecules, starting from Feshbach molecules (23; 24). It allows to realize high
transfer efficiency and preserve the high phase-space density of an initial atomic gas. In
STIRAP, the laser pulses, coupling an initial and a final state to an intermediate excited state,
are applied in a counter-intuitive sequence where a pump pulse is preceeded by a Stokes
pulse. During the transfer, the system stays in a “dark" state, i.e., a coherent superposition of
initial and final states, preventing any losses that would otherwise occur from the excited
state. By adiabatically changing amplitudes of the laser pulses, the “dark" state evolves
from the initial to the final state, resulting in nearly 100% transfer efficiency. A STIRAP
transfer from a Feshbach to a next lower vibrational state of a ground electronic potential has
been demonstrated in 87Rb2 molecules held in an optical lattice to avoid inelastic collisions
(25). Recently, heteronuclear 40K87Rb molecules have been transferred from a Feshbach to
a deeply bound (> 10 GHz binding energy) vibrational state using STIRAP (26). Prospects
of STIRAP-based photoassociation of a thermal ensemble of 85Rb atoms have recently been
analyzed theoretically in (27). Finally, in breakthrough experiments at JILA and Innsbruck
ultracold weakly bound KRb (23) and Cs2 (24) Feshbach molecules have been successfully
brought to their ground rovibrational state via two- and multi-photon STIRAP, respectively.
In principle, STIRAP allows lossless transfer of the population from an initial to the target
state with 100 % efficiency. The main difficulty with a two-pulse STIRAP in molecules
is to find an intermediate vibrational state of the excited electronic potential which has a
good Franck-Condon overlap with both highly delocalized initial high vibrational state and
a tightly localized ground vibrational state (28). It is particularly difficult for homonuclear
atoms having the ground electronic potential scaling as 1/R6 and the first excited potentials
as 1/R3 with interatomic distance R, resulting in a non-favorable potential curves’ overlap.
It is less an issue for heteronuclear molecules having both potentials falling off with distance
according to the 1/R6 law, making the overlap better and enabling a one-step STIRAP (23).
It was therefore proposed in (29) to transfer population in several steps down the ladder of
vibrational states using a sequence of stimulated optical Raman transitions. In this case the
initial and final vibrational levels of each step do not differ significantly, and it is easier to
find a suitable intermediate vibrational level in the excited electronic state. In this step-wise
approach, however, the population is transfered through a number of vibrational levels in
the ground electronic state subject to vibrational relaxation due to inelastic collisions with a
background atom or another molecule. The released kinetic energy greatly exceeds the trap
depth resulting in loss of both molecules and atoms from the trap. The step-wise transfer
therefore has to be faster than the vibrational relaxation time. In the next section we describe
a multistate chainwise STIRAP in which molecules are brought to the ground rovibrational
state through a series of intermediate states in one run, which allows to minimize collisional
losses in intermediate states. In Section III we discuss direct STIRAP conversion of ultracold
atoms from a scattering continuum into deeply bound molecules in the presence of a Feshbach
resonance. Direct conversion without first forming Feshbach molecules allows to reduce
collisional losses during formation of molecules.

2. Theory of multistate chainwise adiabatic passage in the presence of decay

In this section, we present a multistate chainwise STIRAP technique allowing an efficient
transfer of a molecule from a high-lying state to the ground vibrational state which minimizes
the population loss due to inelastic collisions during the transfer process (30).
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Fig. 1. Schematic showing the multistate chainwise STIRAP transfer of population from the
Feshbach |g1〉 to the ground |g3〉 vibrational state.

We analyze a simple five-level model molecular system with states chainwise coupled by
optical fields as illustrated in Fig. 1. The states |g1〉, |g2〉 and |g3〉 are vibrational levels of
a ground electronic molecular state, while |e1〉 and |e2〉 are vibrational states of an excited
electronic molecular state. Molecules are formed in a high energy state |g1〉, which in the
following we assume to be a molecular Feshbach state. The state |g3〉 is the deepest bound
vibrational state v = 0, and |g2〉 is an intermediate vibrational state. The goal is to efficiently
transfer the population from the state |g1〉 to state |g3〉. At least two vibrational levels |e1〉 and
|e2〉 in an excited electronic state are required, one which has a good Franck-Condon overlap
with |g3〉, and the other having a good overlap with the initial Feshbach molecular state |g1〉.
In the states |e1〉 and |e2〉, molecules decay due to spontaneous emission and collisions, and
in the states |g1〉 (for bosonic molecules) and |g2〉 they experience fast inelastic collisions with
background atoms leading to loss of molecules from a trap. It means that populating the states
|e1〉, |e2〉 and |g2〉 has to be avoided when a background atomic gas is present, or the transfer
process has to be faster than the collisional relaxation time.
First, we analyze the system neglecting all decays. The wave function of the system is |Ψ〉 =
∑i Ci exp (−iφi(t)) |i〉, where i = g1, e1, g2, e2, g3; φg1 = 0, φe1 = ν1t, φg2 = (ν2 − ν1)t, φe2 =
(ν3 + ν2 − ν1)t, φg3 = (ν4 − ν3 + ν2 − ν1)t; νi is the frequency of the ith optical field. The
evolution is then governed by the Schrödinger equation

ih̄
∂ |Ψ〉

∂t
= H(t) |Ψ〉 . (1)

The time-dependent Hamiltonian of the system in the rotating wave approximation is given
by

H(t) =

⎛

⎜

⎜

⎜

⎜

⎝

0 −Ω4(t) 0 0 0
−Ω4(t) ∆2 −Ω3(t) 0 0

0 −Ω3(t) 0 −Ω2(t) 0
0 0 −Ω2(t) ∆1 −Ω1(t)
0 0 0 −Ω1(t) 0

⎞

⎟

⎟

⎟

⎟

⎠

, (2)
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where Ω1(t) = μ1E1(t)/2h̄, Ω2(t) = μ2E2(t)/2h̄, Ω3(t) = μ3E3(t)/2h̄ and Ω4(t) =
μ4E4(t)/2h̄ are the Rabi frequencies of optical fields; Ei is the amplitude of ith optical field, μi is
the dipole matrix element along the respective transition, ∆1 = ω1 − ν1 and ∆2 = ω4 − ν4 are
one-photon detunings of the fields, and the ωi are the molecular frequencies along transition
i.
We assumed in Eq. (2) that pairs of fields coupling two neighboring ground state vibrational
levels are in a two-photon (Raman) resonance; in this case, the system has a dark state, given
by the expression

∣

∣

∣
Φ0

〉

=
Ω2Ω4 |g1〉 − Ω4Ω1 |g2〉+ Ω1Ω3 |g3〉

√

Ω2
4Ω2

1 + Ω2
1Ω2

3 + Ω2
2Ω2

4

. (3)

In c-STIRAP (as in classical STIRAP) the optical fields are applied in a counterintuitive way,
i.e. at t = −∞ only a combination of the Ω4, Ω3, Ω2 fields, and at t = +∞ only of Ω3, Ω2
and Ω1 is present. As a result the dark state is initially associated with the |g1〉 and finally
with the |g3〉 states. Adiabatically changing the Rabi frequencies of the optical fields so that
the system stays in the dark state during its evolution, one can transfer the system from the
initial high-lying |g1〉 to the ground vibrational |g3〉 state with unit efficiency, defined as the
population of the |g3〉 state at t = +∞. The dark state does not have contributions from
the |e1〉 and |e2〉 excited states, which means that they are not populated during the transfer
process. As a result, the decay from these states does not affect the transfer efficiency. Decay
from the |g1〉, |g2〉, |g3〉 states will, however, degrade the coherent superposition (3) and result
in population loss from the dark state and reduction of the transfer efficiency. In the next two
subsections we consider two c-STIRAP schemes which can be used for efficient population
transfer to the ground vibrational state with minimal population loss due to intermediate
states decay.

2.1 c-STIRAP with two pulses

Two regimes can provide efficient population transfer to the ground state using multiple
intermediate states. In the first one, called c-STIRAP, as also proposed in (31), the Stokes
pulses Ω2 and Ω4 are applied simultaneously followed with a delay by pump pulses Ω1 and
Ω3, applied at the same time as well. It means that, ideally, only two pulses can be used
so that Ω2(t) = Ω4(t) = Ωs(t) are Stokes pulses and Ω1(t) = Ω3(t) = Ωp(t) are pump
pulses. To simplify the analysis, we set the one-photon detunings to zero ∆1 = ∆2 = 0, and

define an effective Rabi frequency Ω(t) =
√

Ωp(t)2 + Ωs(t)2 and a rotation angle θ(t) by
tan θ = Ωp/Ωs. In this case the Hamiltonian (2) has a zero eigenvalue describing the dark
state (3). Four other eigenvalues correspond to bright states and are given in Appendix A
along with a rotation matrix W converting adiabatic eigenstates into the bare ones. To study
the effect of the decay from the intermediate state |g2〉 and the initial state |g1〉 on the dark
state evolution, we turn to a density matrix description (32). The density matrix equation
taking into account decay in the bare state basis is

ih̄
dρ

dt
= [H, ρ]−Lρ, (4)

where the Liouville operator L consists of the usual decays (see exact form in the Appendix
A), where only population decays (∝ T−1

1 ) into other vibrational states or the continuum are
considered. Initially, all population is assumed to be in state |g1〉.
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It is convenient to use the adiabatic basis states to study the effect of decay. In the adiabatic
basis the density matrix equation (4) transforms into

ih̄
dρa

dt
= [Ha, ρa]− ih̄

[

WTẆ, ρa
]

−Laρa (5)

where the density matrix and the Liouville operator in this basis are given by ρa = WTρW and
Laρa = WTLρW, and the Hamiltonian Ha is diagonal; W is the rotation matrix, given by (A1)
in the Appendix A. Initial conditions for Eq. (5) read as ρa

00 = 1, ρa
nm = 0 for n, m �= 0, where

ρa
00 denotes the dark state population. The second term on the right hand side of Eq. (5) is

responsible for non-adiabatic couplings. This term results in excitation of nondiagonal density
matrix elements due to coupling with the dark state. Since the nondiagonal elements ρa

0i,
i = 0, ..4, are excited first, the second term in the r.h.s. of Eq. (5), which is ∝ θ̇ρa

00, has to be
much smaller than the first term ∼ |ε0 − ε i|ρa

0i to keep these non-diagonal elements negligible.
Thus, in order to maintain adiabaticity for the system to stay in the dark state during the
transfer process, we must have

θ̇ ≪ |ε0 − ε1,2| , |ε0 − ε3,4| . (6)

This gives a standard STIRAP adiabaticity requirement ΩTtr ≫ 1, where Ttr is the c-STIRAP
transfer time.
From Eq. (5), the density matrix equation for the dark state population in terms of density
matrix elements in the bare state basis can be written as

ρ̇a
00/ξ = −Γ1 cos4 θρg1 g1 − Γ2 sin2 θ cos2 θρg2 g2 +

+
1
2

(

(Γ2 + Γ1) sin θ cos3 θρg1 g2 + Γ2 cos θ sin3 θρg2 g3 − Γ1 sin2 θ cos2 θρg1 g3 + c.c.
)

(7)

with ξ = (1 − 1
4 sin2 2θ)−1. Provided that the transfer is adiabatic, so that the system stays

in the dark state during the evolution: ρa
00 ≈ 1, the density matrix elements in the bare state

basis appearing in (7) are expressed via the dark state population in the following way:

ρg1 g1 ≈ ρa
00 ξ cos4 θ,

ρg2 g2 ≈ ρa
00 ξ sin2 θ cos2 θ,

Re
(

ρg1 g2

)

= Re
(

ρg2 g1

)

≈ −ρa
00 ξ sin θ cos3 θ,

Re
(

ρg2 g3

)

= Re
(

ρg3 g2

)

≈ −ρa
00 ξ cos θ sin3 θ,

Re
(

ρg1 g3

)

= Re
(

ρg3 g1

)

≈ ρa
00 ξ sin2 θ cos2 θ.

Inserting these back into Eq. (7), one obtains the equation describing the dark state population
decay

ρ̇a
00 ≈ −

(

Γ1 cos4 θ + Γ2 sin2 θ cos2 θ
)

ξρa
00. (8)
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Coherent Laser Manipulation of Ultracold Molecules 7

As expected, the dark state is not affected by the decay from the excited states |e1,2〉, but only
by the decay from the states |g1,2〉, which destroys the coherent superposition the dark state
is based on.
Taking Gaussian laser pulses with the pump and Stokes pulse Rabi frequencies Ωp =

Ω0 exp (−(t − τ/2)/T2) and ΩS = Ω0 exp (−(t + τ/2)/T2) with tan θ = exp (2tτ/T2), one
can see that at the moment t = 0 of maximal interaction the rotation angle is θ = π/4. The
density matrix equation (8) then takes a form

ρ̇a
00 = −ρa

00(Γ1 + Γ2)/3. (9)

Equation (9) shows that in this regime the decay of both the initial and intermediate
vibrational states is not suppressed, i.e. directly influences the dark state evolution. This
scheme therefore can be applied only if Γ1,2Ttr ≪ 1. It implies that c-STIRAP pulses have to be
shorter than the collisional relaxation time. This requirement combined with the adiabaticity
condition might result in large Rabi frequencies needed for high transfer effciency. However,
as will be shown in the next section, using reasonable values of Rabi frequencies (∼ 10 MHz)
and pulse durations, rather high transfer efficiencies of the order of 90% and 85% for fermionic
and bosonic alkali dimers, respectively, can be realized in this scheme in the presence of
collisions. High transfer efficiency with weaker and longer pulses is possible in this scheme if
the remaining atoms are removed after the molecules are formed. It can be done by applying
a "blast" laser pulse resonant with an atomic, but not a molecular electronic transition. In this
case Γ1,2 are determined by vibrationally inelastic molecule-molecule collisions, which result
in slower decay compared to atom-molecule collisions due to a typically smaller density of
molecules. Although, it is worth noting that in this case a collision results in two molecules lost
from a trap. Another situation when this regime gives high transfer efficiency using weaker
pulses can be used is when molecules are formed in an optical lattice with initially two atoms
per site. In this case Γ1,2 will be determined by off-resonant Raman scattering of lattice and
STIRAP laser fields (25), which can be sufficiently suppressed.

2.2 Chainwise "straddling" STIRAP

As we discussed in the previous subsection, if the remaining atoms are not removed from
the trap, the molecules in the |g1,2〉 states are subject to vibrationally inelastic atom-molecule
collisions. To maximaize the number of molecules transferred to the ground |g3〉 state the
population of the decaying intermediate state |g2〉 has to be minimized. This can be achieved
using an extension of the STIRAP technique to multiple chainwise-coupled states, called a
"straddling" STIRAP (33). Namely, if Ω2, Ω3 ≫ Ω1, Ω4 and Ω2, Ω3 temporally overlap both
the Ω1 and Ω4 pulses, populations in all intermediate states are minimized. To simplify
the analysis, we assume Ω2 = Ω3 = Ω0; Ω0 is independent of time (in practice the
corresponding pulses just have to be much longer than Ω1(t), Ω4(t) and overlap both of
them), and Ω0 ≫ |Ω1|, |Ω4|. As in the previous subsection, we set one-photon detunings
to zero ∆1 = ∆2 = 0, and define the effective Rabi frequency Ω(t) =

√

Ω1(t)2 + Ω4(t)2

and a rotation angle by tan θ(t) = Ω1(t)/Ω4(t). The eigenvalues of the system (2) are
ε0 = 0, corresponding to the dark state, and ε1,2 = ±Ω/

√
2, and ε3,4 = ±

√
2Ω0 to bright

states. Adiabatic eigenstates |Φ〉 = {|Φn〉}, n = 0, ...4 and the bare states |Ψ〉 =
{∣

∣

∣Ψl
〉}

,
l = g1, e1, g2, e2, g3 are transformed via a rotation matrix (A2), given in the Appendix A.
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The adiabaticity condition (6) in this case becomes θ̇ ≪ Ω, Ω0. If the condition θ̇ ≪ Ω is
satisfied, the dark state will not couple to the

∣

∣Φ1,2〉 states. Coupling to the
∣

∣Φ3,4〉 states will
be suppressed even more strongly, since Ω ≪ Ω0.
The density matrix equation for the dark state population in terms of density matrix elements
in the bare state basis in this case is given by

ρ̇a
00 = Γ1 cos2 θρg1 g1 − Γ2

(

Ω sin 2θ

2Ω0

)2
ρg2 g2+

+

(

Γ2
Ω

4Ω0
sin 2θ sin θρg2 g3 +

Γ1
2

sin θ cos θρg1 g3+

+(Γ1 + Γ2)
Ω

2Ω0
sin 2θ cos θρg1 g2 + c.c.

)

. (10)

For adiabatic evolution ρa
00 ≈ 1, and the density matrix elements in the bare state basis are

expressed via the dark state population as:

ρg2 g2 ≈ sin2 2θ
Ω2

4Ω2
0

ρa
00,

Re
(

ρg1 g2

)

= Re
(

ρg2 g1

)

≈ − Ω

2Ω0
sin 2θ cos θρa

00,

Re
(

ρg2 g3

)

= Re
(

ρg3 g1

)

≈ − Ω

2Ω0
sin 2θ sin θρa

00,

Re
(

ρg1 g3

)

= Re
(

ρg3 g1

)

≈ sin 2θρa
00/2.

The decay of the dark state due to the population loss from the |g1〉 and |g2〉 states is then
described by the equation (keeping only terms up to the Ω2/Ω2

0 order)

ρ̇a
00 ≈ −

(

(Γ2 + Γ1 cos2 θ)

(

Ω

2Ω0
sin 2θ

)2
+ Γ1 cos2 θ

)

ρa
00 . (11)

Equation (11) shows that intermediate state decay can be neglected during the transfer time
Ttr if (Γ1 + Γ2)Ttr (sin 2θΩ/2Ω0)

2 ≪ 1. From this expression one can see that the intermediate
state decay rate is reduced by a factor (Ω/Ω0)

2 ≪ 1 in this regime. It also follows from Eq. (11)
that decay from the initial state |g1〉 is not suppressed, so that the transfer process has to be
faster than this decay.
Both schemes can be readily extended to a general N-state chainwise-linked system with
odd number of states having (N + 1)/2 ground and (N − 1)/2 excited levels (33; 34). In
the two-pulse STIRAP scheme, considered in the previous subsection, all Stokes pulses are
applied simultaneously followed with a delay by pump pulses applied at the same time as
well. In the second regime counterintuitively ordered pump and Stokes pulses drive the first
and the last transitions in the chain, while intermediate states are coupled by strong CW
(or pulsed with durations longer than that of the pump and Stokes pulses) fields. In the
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Coherent Laser Manipulation of Ultracold Molecules 9

second regime analyzed in this subsection the population of all intermediate states is strongly
suppressed, and the transfer efficiency close to unity can be realized.
The major prerequisite for high transfer efficiency in STIRAP is the two-photon resonance
between fields coupling vibrational levels in the ground electronic state via Raman transitions.
It requires all fields to be phase coherent. In a general case the frequency difference between
any fields in the chain can be in the THz range. To maintain phase coherence at these large
frequency differences the fields can then be phase locked to an optical frequency comb (35).

2.3 Collisional relaxation rates for fermionic and bosonic alkali dimers

Magneto- and photo-association techniques produce molecules mostly from ultracold Bose,
two-spin component Fermi and mixture alkali metal atomic gases. Weakly bound Feshbach
molecules rapidly decay due to vibrationally inelastic atom-molecule collisions, which were
found to be the major molecule lifetime limiting factor in atomic traps. Depending on the
quantum statistics due to the nuclear spin of the constituent atoms, the alkali dimers show
different behavior with respect to inelastic atom-molecule and molecule-molecule collisions.
Fermionic alkali dimers in the Feshbach state are very stable with respect to collisions.
They are particularly stable close to the resonance, where the scattering length is large.
The stability of the fermionic molecules has been explained based on the Pauli exclusion
principle combined with significantly different length scales associated with the initial and
final vibrational states (36). Lifetimes of the Feshbach molecular states of the order of 1 s have
been observed experimentally for 6Li2 fermionic molecules (37; 38), giving Γ1 ∼ 1 s−1, and
of the order of 100 ms for 40K2 molecules (39), giving Γ1 ∼ 10 s−1. More deeply bound
Feshbach molecules have larger decay rates, with the corresponding collision coefficient
kinel ∼ 10−11 cm3s−1. With typical densities of atoms in traps nat ∼ 1011 − 1014 cm−3,
it gives Γ1 = kinelnat ∼ (1 − 103) s−1 for these molecules. To calculate the intermediate
state decay rate Γ2 we use results of a theoretical analysis of collisional stability of low-lying
vibrational states of fermionic and bosonic Li2 molecules (40). In low vibrational states, as
was shown, fermionic molecules experience fast vibrational quenching due to collisions with
surrounding atoms, leading to loss of both molecules and atoms from a trap. The inelastic
atom-molecule collision coefficient for fermionic molecules in these low vibrational states is
of the order of kinel ∼ 3 · 10−10 cm3s−1 (calculated in Ref.(40) for fermionic 6Li2 in v = 1).
The vibrational relaxation rate Γ2 can then be estimated using nat ∼ 1011 − 1014 cm−3, giving
Γ2 = kinelnat ∼ 3 · (101 − 104) s−1.
In contrast to fermionic alkali dimers, bosonic dimers experience fast vibrational quenching
due to inelastic atom-molecule collisions, even in their Feshbach state. As was observed
experimentally for 23Na (41) and 133Cs (42), the inelastic collision coefficient for bosonic
molecules due to atom-molecule collisions is of the order of kinel ∼ 5 · 10−11 cm3s−1 for the
Feshbach state. An inelastic atom-molecule collision coefficient kinel ∼ 10−10 cm3s−1 and
an elastic collision coefficient of the same order have been theoretically predicted for 87Rb2
molecules for magetic fields below the Feshbach 1007.4 G resonance (43). Fast vibrationally
inelastic atom-molecule collisions thus limit the lifetime of the molecules in the trap to 100
μs - 1 ms. They also limit the atom-to-molecule conversion efficiency during the magnetic
field ramp across the resonance. The lifetime of the bosonic molecules in the trap can be
significantly extended if at the end of the magnetic field ramp a "blast" laser pulse is applied,
selectively removing atoms from the trap (41). In this case, the main loss mechanism is
vibrationally inelastic molecule-molecule collisions. The corresponding collision coefficient
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Two-pulse c-STIRAP “Straddling” STIRAP

1 ≪ ΩTtr 1 ≪ ΩTtr ≪ Ω2
0

ΩΓ2

Ω ∼ EFesh Ω ∼ EFesh
1 ≫ Γ1,2Ttr 1 ≫ Γ1Ttr

Table 1

in the Feshbach state was measured for a bosonic 23Na2 molecule as kinel ∼ 5.1 · 10−11 cm3s−1

(41). In this experiment, the initial atomic density and the atom-to-molecule conversion
efficiency were nat ∼ 1.7 · 1014 cm−3 and 4%, respectively, giving the molecular density of
nmol ∼ 6 · 1012 cm−3 and therefore the decay rate Γ1 = kinelnmol ∼ 300 s−1. The vibrational
relaxation rate Γ2 of intermediate vibrational states for bosonic molecules can be estimated
from the inelastic atom-molecule collision coefficient in low vibrational states kinel ∼ 6 · 10−10

cm3s−1 (calculated in Ref.(40) for bosonic 7Li in v = 1). For a typical density of atoms in a
trap, nat ∼ 1011 − 1014 cm−3 and the resulting relaxation rate is Γ2 ∼ 6 · (101 − 104) s−1.
The heteronuclear molecules are formed from a mixture of Bose and Fermi atomic gases,
and their collisional properties are expected to differ from pure fermionic and bosonic
molecules discussed above. Stability of the KRb molecules with respect to collisions with
initial fermionic and bosonic atoms has been recently studied in (44). Vibrationally inelastic
relaxation was found to be dominated by atom-molecule collisions, and the corresponding
collision coefficients to strongly depend on the quantum statistics of the atoms. Close to the
heteronuclear Feshbach resonance the collision coefficient for collisions with indistinguishable
fermions (40K in the same hyperfine state) was found to be kinel < 10−11 cm3s−1; for collisions
with indistinguishable bosons (87Rb in the same hyperfine state) kinel ∼ (2− 3) · 10−10 cm3s−1

close to the resonance. Finally, for collisions with distinduishable atoms (40K in a different
hyperfine state) the collision coeffcient kinel ∼ (3 − 5) · 10−11 cm3s−1 was measured. These
results are therefore consistent with coefficients of vibrationally inelastic collisions with pure
fermionic and bosonic atoms, considered in previous paragraphs.
Let us now estimate the parameters of the optical pulses providing maximal transfer efficiency.
As follows from Eqs. (3) and Eq. (11), in both STIRAP schemes the decay of the Feshbach
state strongly affects the transfer efficiency, and the condition Γ1Ttr ≪ 1 has to be satisfied
to minimize molecular loss. At the same time the adiabaticity condition requires ΩTtr ≫ 1.
Weakly bound Feshbach states are very close to a dissociation threshold, a typical binding
energy EFesh being tens kHz -tens MHz (∼ 1 μK - 1 mK). At these small binding energies
the first pulse in the chain (Ωp or Ω1 in the two STIRAP schemes), coupling the Feshbach
state |g1〉 to the first excited state |e1〉 can lead to back-action, i.e. back transfer of the
molecule to the scattering contunuum, thus molecular dissociation, via a stimulated Raman
process. This effect is minimized if the binding energy of a molecule EFesh is much larger
than the effective Rabi frequency corresponding to the coupling between the |e1〉 state and the
scattering continuum. Typically, the dipole moment of the bound-bound transition greatly
exceeds the dipole moment of the bound-continuum transition. Therefore, the Rabi frequency
of the E1 field between the bound-bound transition |g〉1 − |e〉1 will be much larger than the
effective Rabi frequency for the same field corresponding to coupling between the |e1〉 and
the scattering continuum. It means that choosing Ω ∼ EFesh one can make the back transfer
process negligible. Finally, we have the following requirements for the Rabi frequencies and
durations of the STIRAP pulses (amplitudes and durations are assumed the same for the
Stokes and the pump pulse to maximize the transfer efficiency).
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The set of requirements in the table 1 allows one to obtain a general range of Rabi frequencies
and pulse durations, providing optimal population transfer. Since the goal is the production
of dense molecular gases with a large number of molecules, we consider a high initial atomic
density nat ∼ 1014 cm−3 in a trap in our estimates. For bosonic molecules the inelastic
atom-molecule collision coefficient differs at resonance and for deeper bound Feshbach
molecules by about a factor of two, giving Γ1 ∼ 5 · 103 − 104 s−1 at this density. One can
see that the c-STIRAP transfer time has be Ttr ≪ 10−4 s. Adiabaticity typically requires
ΩTtr ∼ 102, giving a lower limit on the Rabi frequencies of the c-STIRAP pulses Ω ≫ 106

s−1. As our analysis shows transfer efficiencies > 90% can be achieved with pulse durations
of several μs and Rabi frequencies of 5 − 10 MHz. It means that to minimize dissociation of
molecules due to the back transfer deeper bound Feshbach molecules with EFesh > 1 MHz
are prefered. For deeper bound fermionic molecules the decay rate Γ1 ∼ 103 s−1 at this
high atomic density, resulting in the same pulse durations and Rabi frequencies, maximizing
the transfer efficiency, as for bosonic molecules. At resonance, fermionic molecules have
significantly smaller decay rates Γ1 ∼ 1 − 10 s−1. In this case high transfer efficiencies > 90%
can be realized with longer and weaker pulses of hundred μs duration and Rabi frequencies
∼ 1 MHz.
Next we illustrate the technique with numerical simulations of a transfer process based on
the system (4) for model seven-state bosonic and fermionic molecular systems. A seven-state
system shown in Fig. 2a is easier to realize experimentally, i.e. to find transitions with good
Franck-Condon factors, than the five-level scheme, analyzed in the previous subsection. For
example, a seven-state chainwise path from the Feshbach to the ground vibrational state
was found in 87Rb2. The Feshbach state is experimentally formed after a magnetic field
crosses the Feshbach resonance at 1007.4 G. Far from the resonance at 973 G the Feshbach
state binding energy is 24 MHz (25). In the first step it can be coupled to an electronically

excited pure long range molecular state
∣

∣

∣
0−g , v, J = 0

〉

, located close to the 5S1/2 + 5P3/2

dissociation asymptote (45). For example, v = 31 vibrational level can be chosen located
6.87 cm−1 (≈ 206 GHz) below the asymptote. The corresponding Rabi frequency scales with
the field intensity as Ω1 = 2π × 2.9

√

I(W/cm2) s−1, giving the transition dipole moment
μ1 ∼ 0.3 D. The second transition of the STIRAP scheme in (25) was to the second-to-last
bound vibrational state, located 637 MHz below the ground electronic state dissociation
asymptote. The corresponding Rabi frequency scales as Ω2 = 2π × 6

√

I(W/cm2) s−1, giving
the transition dipole moment μ2 ∼ 0.6 D. The authors mention that the Franck-Condon

factors from the excited
∣

∣

∣
0−g , v = 31, J = 0

〉

state to the ground state vibrational levels down

to the X 1Σ+
g (v = 116) are similar to the second-to-last vibrational state. This includes the

X 1Σ+
g (v = 119) from where the ground vibrational state can be reached in five steps (29):

X 1Σ+
g (v = 119, J = 0) → A1Σ+

u (v′ = 185, J = 1),

A 1Σ+
u (v

′ = 185, J = 1) → X1Σ+
g (v = 52, J = 0),

X 1Σ+
g (v = 52, J = 0) → A1Σ+

u (v′ = 24, J = 1),

A 1Σ+
u (v

′ = 24, J = 1) → X1Σ+
u (v = 0, J = 0).

The results of the numerical solution of the density matrix equation (4) for a fermionic
molecular system are given in Fig. 2. The left column presents the maximal transfer efficiency
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case for the the two-pulse c-STIRAP scheme, and the right column for the "straddling" STIRAP
scheme. In the two-pulse c-STIRAP scheme, the states |g1〉 − |e1〉; |g2〉 − |e2〉; |g3〉 − |e3〉 are
coupled by the pump field Ωp = Ωmax

p (1 + tanh (t − τ/2)/T)/2, while the states |e1〉 − |g2〉;
|e2〉 − |g3〉; |e3〉 − |g4〉 are coupled by the Stokes field ΩS = Ωmax

S (1− tanh (t + τ/2)/T)/2. In
the "straddling" STIRAP scheme the states |e1〉 − |g2〉; |g2〉 − |e2〉, |e2〉 − |g3〉; and |g3〉 − |e3〉
are coupled by CW laser fields with a Rabi frequency Ω0, the first transition |g1〉 − |e1〉
and the last transition |e3〉 − |g4〉 in the chain are coupled by the fields Ω1 = Ωmax

1 (1 +
tanh (t − τ/2)/T)/2 and Ω4 = Ωmax

4 (1 − tanh (t + τ/2)/T)/2, respectively. The transfer
efficiency does not strongly depend on the form of optical pulses in this case, the same transfer
efficiency was obtained using Gaussian pulses. In the numerical analysis a deeper bound
Feshbach state with EFesh ∼ tens MHz was assumed, which was the case in the 87Rb2 STIRAP
experiment (25). The Rabi frequencies of STIRAP fields were chosen to satisfy the second
condition of the 1, and the pulse duration T and delay τ were varied to find the maximal
transfer efficiency. To estimate the decay rate of intermediate vibrational states, the atomic
density nat ∼ 1014 cm−3 was used along with the inelastic collision coefficient kinel ∼ 3 · 10−10

cm3s−1, giving Γ2,3 = 3 · 104 s−1. Lifetimes of vibrational states of an excited electronic state
of the order of 30 ns (γ1,2,3 = 3 · 107 s−1) were also assumed.
The numerical analysis demonstrates that > 90% of population in the case of two-pulse
c-STIRAP (see Fig. 2d) and > 96% in the case of "straddling" STIRAP (see Fig. 2e) can be
transfered from the Feshbach to the ground vibrational state for the chosen Rabi frequencies
using the two-pulse and "straddling" STIRAP schemes, respectively, even in the presence of
fast collisional decay of the Feshbach state. This transfer efficiency is realized using STIRAP
pulses much shorter than the Feshbach state lifetime. Thus the influence of the decay of this
state is significantly reduced.
Results of a similar analysis for a model seven-level bosonic molecular system are shown in
Fig. 3. Transfer efficiency of the order of 85% and 92% can be realized with the two-pulse and
"straddling" STIRAP schemes, respectively. In this case the form of the STIRAP pulses plays
an important role due to the fast decay of the Feshbach state. Using Gaussian pulses instead
of tanh pulses results in significantly smaller transfer efficiency since by the time the Stokes
pulse arrives the Feshbach state experiences noticable decay. With tanh pulses it is, however,
possible to make the delay time between the moment of molecule formation and the start of
the transfer process reasonably small to minimize the Feshbach state decay.
We can now estimate intensities of CW and pulsed fields corresponding to Rabi frequencies
used in our calculations. Typical dipole moments of electric dipole-allowed transitions
between molecular electronic states are of the order of 1 D (Debye) and larger. Assuming
that the chosen transitions have reasonably large Franck-Condon factors, we use an estimate
of transition dipole moments between vibrational levels in the ground and excited electronic
state Dv,v′ ∼ 1 D. Taking the peak Rabi frequency of the pump and Stokes fields Ωmax max

1,4 =

3 · 107 s−1, the corresponding intensity is I
peak
1,4 = cE2

1,4/4π = c(Ωmax
1,4 h̄/Dv,v′)2/4π ∼ 0.2

W/cm2; for CW fields with a Rabi frequency Ω0 = 6 · 107 s−1 the corresponding intensity is
I2,3 ∼ 0.9 W/cm2.
To conclude this section, we analyzed a method to coherently transfer ultracold molecules
formed in high-lying vibrational states to the ground vibrational state, based on the multilevel
chainwise STIRAP technique. Molecules are transfered from a high vibrational state into a
ground rovibrational state v = 0, J = 0 using Raman transitions via several intermediate
vibrational states in the ground electronic state. The former one has lower transfer efficiency
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Fig. 2. Results of numerical solution of Eq. (4) for a seven-state model fermionic molecular
system, shown in (a). Left colunm (figures (b),(c),(d)) and right column (figures ((e),(f),(g)))
present results for a two-pulse and "straddling" STIRAP schemes, respectively. Parameters
used: Γ1 = 103 s−1, Γ2 = Γ3 = 3 · 104 s−1, γ1 = γ2 = γ3 = 3 · 107 s−1; for a two-pulse
STIRAP Ωmax

p = Ωmax
S = 3 · 107 s−1, T = 2 μs, τ = −3 μs; for "straddling" STIRAP

Ωmax
1 = Ωmax

4 = 6 · 106 s−1, Ω0 = 6 · 107 s−1, T = 3 μs, τ = −3 μs.
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Fig. 3. Results of numerical solution of Eq. (4) for a model seven-state bosonic molecular
system. Parameters used: Γ1 = 104 s−1, Γ2 = Γ3 = 6 · 104 s−1, γ1 = γ2 = γ3 = 3 · 107 s−1; for
a two-pulse STIRAP Ωmax

p = Ωmax
S = 3 · 107 s−1; for "straddling" STIRAP

Ωmax
1 = Ωmax

4 = 3 · 107 s−1, Ω0 = 6 · 107 s−1, T = 1 μs, τ = −2 μs for both schemes.

for both fermionic and bosonic molecules compared to the "straddling" scheme, but is
experimentally simpler, since it can be realized with two pulses, while the "straddling" scheme
requires at least three optical fields (two pulsed and one CW). Numerical analysis of the
transfer process for a typical bosonic and fermionic molecular system in a trap with an atomic
density nat ∼ 1014 cm−3 shows that transfer efficiencies ∼ 92% and ∼ 96% respectively are
possible even in the presence of fast collisional relaxation of the Feshbach molecular state.
Multistate chainwise STIRAP, as described in subsection 2.2, has been recently used in the
Innsbruck experiment to transfer Cs2 molecules from a Feshbach to the ground rovibrational
state. The transfer efficiency of 55% has been achieved, limited by insufficient laser field
intensities resulting in imperfect adiabaticity of the transfer and finite laser linewidth.
The multistate chainwise STIRAP technique allows one to use various transitions, coupled
by e.g. rf fields and DC interactions. It can therefore be used in combination with the
recently demonstrated resonant association method, where a pair of atoms is converted into
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a molecule using a magnetic field modulated at a frequency close to a binding frequency of
a Feshbach molecule (46). Another possibility, which we discuss in the next section, is to use
the magnetic field dependent DC interchannel coupling between an entrance and a closed
channel states as a first transition in the STIRAP chain (47) followed by optical transitions
to the ground vibrational state. The first transition in these cases will directly couple the
continuum states of colliding atoms and either a Feshbach molecular state or a bound state in
the closed channel. As a result the overall atom-to-molecule conversion efficiency is expected
to be higher compared to the two-step conversion sequence, when first a Feshbach molecular
state is created, from where a molecule is transferred to the ground vibrational state. The
chainwise STIRAP can be applied to resonant photoassociation as well, then the first transition
in the STIRAP chain will couple the continuum states to a high energy vibrational state in the
ground electronic state (48).

3. Efficient formation of ground state ultracold molecules via STIRAP from the

continuum at a Feshbach resonance

In this section we describe photoassociative Stimulated Raman Adiabatic Passage (STIRAP)
near a Feshbach resonance in a thermal atomic gas (49). We show that it is possible to use
low intensity laser pulses to directly excite pairs of atoms in the continuum near a Feshbach
resonance and to transfer nearly the entire atomic population to the lowest rovibrational level
of the molecular ground state. This differs from the STIRAP techniques used in creation of
ground state KRb (23) and Cs2 (24) molecules in that the formation process starts directly
from the atomic scattering continuum, avoiding formation of Feshbach molecules.
Feshbach molecules, used in the STIRAP transfer of KRb and Cs2 to the ground rovibrational
state (23; 24) are usually short-lived because of inelastic collisions with background atoms
or other molecules. This is especially true for those produced from bosonic or mixed
bosonic/fermionic atoms, for which collisions are not suppressed by the Fermi statistics at
ultralow temperatures. In a dense atomic gas of density nat ∼ 1013 − 1014 cm−3, the collisional
decay rate can be up to ∼ 104 s−1 (with inelastic rate coefficient Kinel ∼ 0.5 − 1.0 × 10−10

cm3s−1 for Feshbach molecules (50; 51)). The STIRAP transfer must therefore be fast enough
to avoid loosing molecules by inelastic decay. To alleviate this problem, we propose to start
the STIRAP process directly from the scattering continuum without first forming Feshbach
molecules. Using this approach with many STIRAP pulses and a fast repetition rate would
also allow the conversion of nearly an entire atomic ensemble into ground state molecules,
not only those atoms that were first transferred to a Feshbach molecular state.
Efficient adiabatic passage from the continuum requires laser pulses shorter than the
coherence time of the continuum (27; 52; 53). The adiabaticity condition of STIRAP, ΩT ≫ 1,
where T is the transfer time, therefore implies a large effective Rabi frequency Ω for the pulses.
In addition, dipole matrix elements between the continuum and the bound state are usually
small, and so the pump pulse that couples the continuum and the excited state would require
a very high intensity, which proves impractical. Thus the previous STIRAP experiments (23),
being restricted by the very short coherence time of the continuum, used a Feshbach molecular
state as an initial state.
The small continuum-bound dipole matrix elements can be dramatically increased by
photoassociating atoms in the vicinity of a Feshbach resonance. It has been shown, both
theoretically and experimentally, that the photoassociation rate increases in the presence
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of a Feshbach resonance by several orders of magnitude (54–57). This can be explained
by considering that delocalized scattering states acquire some bound-state character due to
admixture of a bound level associated with a closed channel, resulting in a large increase
of the Franck-Condon factor between the initial scattering state and the final excited state.
The recently proposed Feshbach Optimized Photoassociation (FOPA) technique (57) relies on
this enhancement to directly reach deeply bound ground state vibrational levels from the
scattering continuum. Consequently, photoassociation in the vicinity of a Feshbach resonance
is expected to increase molecular formation rate up to 106 molecules/s (57).
Here we show that the approach used in FOPA can be combined with STIRAP for reducing
the required pulse intensity. We predict highly efficient transfer of an entire atomic ensemble
into the lowest rovibrational level in the molecular ground state. We note that a proposal,
where the admixing of a short-range potential to a longer-range excited electronic potential,
was recently suggested for improving a two-color pump-dump photoassociation scheme (58).
The scattering continuum states have good overlap with the long-range potential, while the
admixed short-range potential provides a good overlap with tightly bound vibrational levels
of the ground electronic state, greatly improving the efficiency of photoassociation.
This section is organized as follows. In the next subsection, we derive a theoretical model
of a combined atomic and molecular system. Fano theory is used to describe the interaction
of a bound molecular state with the scattering continuum, represented as closed and open
channel, respectively. The resulting continuum states are coupled by two laser fields to the
vibrational target state in the ground state via the intermediate excited molecular electronic
vibrational state. Next, we describe STIRAP-assisted conversion of a pair of colliding atoms
into a deeply bound molecule. In subsection B, we present the results of numerical solutions
of the model described in subsection A and in the Appendix B, using typical parameters of
alkali dimers. We find optimal Rabi frequencies and profiles of STIRAP pulses. In subection
C we average the pair-of-atoms STIRAP transfer efficiency over a thermal atomic ensemble,
calculate a fraction of atoms that can be converted into molecules by one STIRAP sequence,
and the number of pulses and overall time required to convert an entire atomic ensemble into
molecules.

3.1 Model

We consider a three level system plus a continuum as shown in Figure 4, representing
scattering states of two colliding atoms and bound states of a molecule. The ground level
labeled |1〉 is the final product state to which a maximun of population must be transfered.
Typically, this level will be the lowest vibrational level (v′′ = 0, J′′ = 0) of a ground molecular
potential. This ground level is coupled to an excited bound level |2〉 of an excited molecular
potential via a ”Stokes” pulse depicted by the blue down-arrow in Figure 4. This level |2〉 is
itself coupled via a pump pulse (red up-arrow) to an initial continuum of unbound scattering
states |Ψǫ〉 of energies ǫ (shaded area in Figure 4). If we denote C1(t), C2(t) and C(ǫ, t) the
time dependent amplitudes associated to the final, intermediate, and initial states |1〉, |2〉, and
|Ψǫ〉, respectively, then the total wave function |Φ〉 of the system is given by:

|Φ〉 = C1(t) |1〉+ C2(t) |2〉+
∫

dǫ C(ǫ, t) |Ψǫ〉 . (12)
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Fig. 4. Schematics: population from the initial state |Ψǫ〉 is transferred to a final target state
|1〉 via an intermediate state |2〉. Both |Ψǫ〉 and |1〉 are coupled to |2〉 by a pump and a Stokes
pulse, respectively labeled ΩP and ΩS. A bound level |b〉 corresponding to a closed channel
can be imbedded in the continuum.

We assume that the levels associated with states |1〉 and |2〉 are well-isolated, and that there
are no off-resonant laser couplings to other levels: this ensures the sufficient accuracy of the
three-state model (see e.g. (23; 24; 59)).
No restriction applies to the definition of the continuum state |Ψǫ〉 as it can be associated
to either a single-channel or a multi-channel scattering state. In this work, we consider the
multi-channel case in which a bound level |b〉 associated to a closed channel is embedded in
the continuum of scattering states |ǫ′〉 of an open channel. When the energy of |ǫ′〉 coincides
with that of |b〉, a Feshbach resonance (14) occurs. These are common in binary collisions of
alkali atoms due to hyperfine mixing and the tuning of the Zeeman interaction by an external
magnetic field, hence the possibility to control interatomic interactions with a magnetic field.
Following the Fano theory presented in Ref.(60), the scattering state |Ψǫ〉 can be expressed as:

|Ψǫ〉 = a(ǫ) |b〉+
∫

dǫ′ b(ǫ, ǫ′)
∣

∣ǫ′
〉

, (13)

with

a(ǫ) =

√

2
πΓ(ǫ)

sin ∆ , (14)

and

b(ǫ, ǫ′) =
1
π

√

Γ(ǫ′)
Γ(ǫ)

sin ∆

ǫ − ǫ′
− cos ∆ δ(ǫ − ǫ′) . (15)

Here, ∆ = − arctan( Γ
2(ǫ−ǫF)

) is the phase shift due to the interaction between |b〉 and the

scattering state |ǫ〉 of the open channel. We assume ∆ ∈ [−π/2, π/2]. The width of the
Feshbach resonance, Γ = 2π|V(ǫ)|2, is weakly dependent on the energy, while V(ǫ) is the
interaction strength between the open and closed channels. The position of the resonance,

ǫF = Eb + P
∫ |V(ǫ′)|2dǫ′

ǫ−ǫ′ , includes an interaction induced shift from the energy of the bound
state Eb.
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If we label Ei the energy of the state |i〉, the total Hamiltonian H is given by:

H = ∑
i=1,2

Ei|i〉〈i|+
∫

dǫ ǫ|Ψǫ〉〈Ψǫ|+ Vlight . (16)

The light-matter interaction Hamiltonian Vlight takes the form:

Vlight = − [�μ21|2〉〈1|+ H.c.] ·
(

�Ep + �ES + c.c.
)

−
∫

dǫ [�μ2Ψǫ
|2〉 〈Ψǫ|+ H.c.] ·

(

�Ep + �ES + c.c.
)

, (17)

where �Ep,S = êp,SEp,S exp(−iωp,St) are the pump and Stokes laser fields of polarization êp,S,
respectively, while �μ21 and �μ2Ψǫ

are the dipole transition moments between the states |2〉 and
|1〉, and |2〉 and |Ψǫ〉, respectively. In this form, the Hamiltonian already takes into account
the mixing between the bound state of the closed channel and the scattering states of the open
channel. The Schrödinger equation describing the STIRAP conversion of two atoms into a
molecule gives:

ih̄
∂C1

∂t
= E1 C1 −�μ∗

21 · �E∗
S C2, (18)

ih̄
∂C2

∂t
= E2 C2 −�μ21 · �ES C1 (19)

−
∫ ∞

ǫth

dǫ �μ2Ψǫ
· �Ep C(ǫ, t),

ih̄
∂C(ǫ, t)

∂t
= ǫ C(ǫ, t)−�μ∗

2Ψǫ
· �E∗

p C2. (20)

For simplicity, we set the origin of the energy to be the position of the ground state |1〉, and use
the rotating wave approximation with C1 = c1, C2 = c2e−iωSt, and C(ǫ, t) = c(ǫ, t)e−i(ωS−ωP)t.
Eqs.(18)-(20) then become:

i
∂c1

∂t
= −ΩSc2, (21)

i
∂c2

∂t
= δc2 − ΩSc1 −

∫ ∞

ǫth

dǫ Ωǫc(ǫ, t), (22)

i
∂c(ǫ, t)

∂t
= ∆ǫc(ǫ, t)− Ω∗

ǫ c2, (23)

where δ = E2/h̄ − ωS, ∆ǫ = ǫ/h̄ − (ωS − ωp), and ǫth is the dissociation energy of the ground
electronic potential with respect to the state |1〉. The Rabi frequencies of the fields are ΩS =
�μ21 · êSES/h̄ (assumed real), Ωǫ = �μ2Ψǫ

· êpEp/h̄.
The previous system of three equations can be reduced into a two-equation system by
eliminating the continuum amplitude c(ǫ, t) in Eq.(23). Introducing a solution in the form
of c(ǫ, t) = s(ǫ, t) exp (−i∆ǫt) into Eq.(23), we get

s = i
∫ t

0
dt′ Ω∗

ǫ(t
′)c2(t

′)ei∆ǫt′ + s(ǫ, t = 0), (24)
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where t = 0 is some moment before the collision of the two atoms. The resulting continuum
amplitude is

c(ǫ, t) = i
∫ t

0
dt′ Ω∗

ǫ(t
′)c2(t

′)ei∆ǫ(t′−t) + s(ǫ, t = 0)e−i∆ǫt. (25)

Inserting this result into Eq. (22), we obtain a final system of equations for the amplitudes of
the bound states:

i
∂c1

∂t
= −ΩSc2 , (26)

i
∂c2

∂t
= (δ − iγ)c2 − ΩSc1 −

∫ ∞

ǫth

dǫ Ωǫ(t)s(ǫ, t = 0)e−i∆ǫt

+i
∫ ∞

ǫth

dǫ Ωǫ(t)
∫ t

0
dt′ Ωǫ(t

′)∗c2(t
′)ei∆ǫ(t′−t)

≡ (δ − iγ)c2 − ΩSc1 − S + T , (27)

where we introduced a spontaneous decay term γc2 in Eq.(27).
The third term of Eq.(27), labelled S, corresponds to the source function, wheareas the last
term, labelled T, corresponds to the “back-stimulation" term (or back-conversion) which
accounts for the transfer of the bound molecules back into the continuum. The initial
amplitude of the continuum wave function s(ǫ, t = 0) appearing in the source term has been
discussed in various contributions (27; 52; 53). A Gaussian wavepacket provides the most
classical description of a two-atom collision characterized by a minimal uncertainty relation
between the energy bandwidth δǫ of the wavepacket and the duration of the collision:

s(ǫ, t = 0) =
1

(πδ2
ǫ)1/4

e
− (ǫ−ǫ0)

2

2δ2
ǫ

+ i
h̄ (ǫ−ǫ0)t0 , (28)

where t0 is the moment of the collision and ǫ0 is the central energy of the wavepacket.
Futhermore, the Rabi frequency of the field coupling continuum states |Ψǫ〉 to the state |2〉 is
given by (60)

Ωǫ =
�μ2ǫ · êpEp

h̄

qΓ/2 + ǫ − ǫF
√

(Γ/2)2 + (ǫ − ǫF)2
sgn(ǫ − ǫF), (29)

where �μ2ǫ is the dipole matrix element between an unperturbed scattering state |ǫ〉 and the
state |2〉, and q is the Fano parameter, expressed as:

q =
(�μ2b · êp) + P

∫ V(ǫ′)(�μ2ǫ′ ·êp)dǫ′

ǫ−ǫ′

πV∗(ǫ)(�μ2ǫ · êp)
, (30)

where êp is the polarization vector of the pump field, and �μ2b is the dipole matrix element
between bound states |2〉 and |b〉. The q factor is essentially the ratio of the dipole matrix
elements from the state |2〉 to the bound state |b〉 (modified by the continuum) and to an
unperturbed continuum state |ǫ〉. This factor can be made much larger than unity, and as will
be shown below, the total dipole matrix element from the continuum can be enhanced by this
factor in the presence of the resonance. The magnitude of q can be controlled by the choice of
the vibrational state |2〉. Selecting a tightly bound excited vibrational state will increase the
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bound-bound and decrease the continuum-bound dipole matrix elements, resulting in larger
q, whereas choosing a highly excited state close to a dissociation threshold will decrease q.
Using the expressions given in Eqs.(28), (29), and (30) for the initial amplitude of the
continuum wave function, the Rabi frequency between the continuum state |Ψǫ〉 and the
excited bound state |2〉, and the Fano parameter, respectively, we obtain the following
complete expression for the source term:

S = S0

∫ ∞

ǫth

dǫ g(q, ǫ) sgn(ǫ − ǫF)e
− (ǫ−ǫ0)

2

2δ2
ǫ

+
i(ǫ−ǫ0)t0

h̄ e−i∆ǫt, (31)

with S0 = �μ2ǫ · êpEp/h̄(πδǫ)1/4, and where the function g(q, ǫ) is defined as

g(q, ǫ) ≡ q + 2
Γ (ǫ − ǫF)

√

1 + 4
Γ2 (ǫ − ǫF)2

. (32)

We assume that the unperturbed continuum is structureless and that the corresponding Rabi
frequency �μ2ǫ · êpEp/h̄ depends only weakly on the energy. We also extend ǫth to −∞ to have
the initial continuum wavefunction normalized to unity1:

∫ ∞

−∞
dǫ|C(ǫ)|2 = 1.

We can as well obtain a complete expression for the back-stimulation term T. We have:

T =

∣

∣

∣

∣

�μ2ǫ êp

h̄

∣

∣

∣

∣

2

Ep(t)
∫ ∞

ǫth

dǫ g2(q, ǫ)
∫ t

0
dt′ c2(t

′)Ep(t
′)ei∆ǫ(t′−t). (33)

Extending the lower integration limit2 allows for an analytical solution for the integrals over
energy and time, leading to the following expression for the back-stimulation term:

T =

∣

∣

∣

∣

�μ2ǫ êp

h̄

∣

∣

∣

∣

2 [

πh̄E2
p(t)c2(t) +

πΓ

2
(q − i)2Ep(t)

×
∫ t

0
dt′ c2(t

′)Ep(t
′)e[Γ/2h̄+i(ǫF/h̄−ωS+ωp)](t′−t)

]

. (34)

3.2 Results of STIRAP transfer for a pair of atoms

In this subsection, we consider two different cases: first, when Γ ≫ δǫ, i.e., when the width Γ

of the Feshbach resonance is much larger than the thermal energy spread δǫ of the colliding
atoms, and second when Γ ≪ δǫ . By considering these two limiting cases of broad and narrow

1 Extension of ǫth to −∞ in the source term (31) can be justified by the sharp reduction of the Gaussian
term exp(−(ǫth − ǫ0)

2/2δ2
ǫ) for ǫ0 − ǫth > δǫ. For ǫ0 close to ǫth, this approximation is less accurate,

but as will be shown in Section IV, these low energies give negligible contribution to transfer efficiency
averaged over an atomic ensemble due to their small weight in the Maxwell-Boltzmann distribution.

2 The extension of the lower integration limit to −∞ in the back-stimulation term (33) can be explained by
the following argument. For an optimal transfer the duration of laser pulses has to be of the order of the
coherence time of the populated continuum, given by 1/δǫ. The period of the exponent exp(i∆ǫ(t′ − t))
on the other hand is given by 2π/∆ǫ. The integral over time therefore quickly goes to zero if this
period is smaller then the duration of pulses. As a result, the time integral is non-zero only for energies
|∆ǫ| = |ǫ/h̄ − (ωS − ωp)| < δǫ. In the case of the pump laser resonant with the center of the thermal
distribution |ǫth − (ωS − ωp)| ∼ δǫ, and the extension of the energy integration to −∞ is well-justified.
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Reso- δǫ Γ Ω0
S IS Ip TS Tp τS τp

nance μK μK 108 s−1 W/cm2 W/cm2 μs μs μs μs

None 10 — 0.72 62 4 × 105 1.5 3 0.75 1.0
Broad 10 1000 0.74 65 4000 1.4 3.4 0.65 1.0

Narrow 100 1 2.24 600 400 0.157 0.3 0.1 0.207

Table 2. Parameters of the Stokes and pump photoassociating pulses providing optimal
population transfer for a pair of atoms shown in Fig.5. We use q = 10, γ = 108 s−1, and
μ2b = μ21 = 0.1 D. Rabi frequencies are modeled by Gaussians
ΩS,p = Ω0

S,p exp (−(t − t0 ± τS,p))/T2
S,p, where ± refers to the Stokes and pump pulse,

respectively.

resonances, more practical expressions for both the source term S and the back stimulation
term T can be found. The derivation of the final system of equations used in numerical
solutions is given in Appendix B. Here, we describe the solutions of these systems for both
broad and narrow resonances.
We note that during the transfer an initial incoherent mixture of atomic scattering states is
converted into a pure internal state, which seems to decrease the entropy of the system.
However, the entropy is transferred to the center-of-mass motion of the created molecules,
which can lead to a slight translational heating of the sample.
Using Eqs.(A3)-(A4) and (A7)-(A8) with the parameters listed in Table 2 for a broad (Γ = 1
mK) and a narrow (Γ = 1 μK) Feshbach resonance, we obtain the results for the STIRAP
transfer of an atom pair, depicted in Fig. 5. Here the left column corresponds to the broad
resonance, and the right column to the narrow resonance. The top row shows the variation
of the Rabi frequencies over the time period required for the population transfer along with
population in the intermediate state |2〉 (middle row) and final state |1〉 (bottom row).
For the broad case, we considered a Feshbach resonance with a width Γ = 1 mK (typical for
broad resonances), and a thermal atomic ensemble with an energy bandwidth δǫ = 10 μK.
We see that the transfer efficiency can reach ∼ 97% of the continuum state into the target
state |1〉 (see Fig. 5 c). The parameters of the Gaussian laser pulses used (optimized Rabi
frequencies, durations and delays of laser pulses) are given in Table 2: the peak intensities
of the Stokes and pump fields were calculated from Rabi frequencies as IS = cE2

S /8π =

c(Ω0
S h̄)2/8πμ2

21 and Ip = cE2
p/8π = c(Ω0

p)
2δǫ/32π3/2μ2

2ǫ, where we use Eq.(30) to estimate

the continuum-bound dipole matrix element μ2ǫ ≈ μ2b/qπV(ǫ) =
√

2μ2b/q
√

πΓ, resulting
in Ip = q2c(Ω0

p)
2δεΓ/64

√
πμ2

2b.
When comparing the results for a broad resonance to that of the unperturbed continuum (i.e.,
far from the resonance), we find that the source term S is enhanced by the factor g(q, ǫ0) (see
Eq. (38) in Appendix B):

g(q, ǫ0) =
q + 2

Γ (ǫ0 − ǫF)
√

1 + 4
Γ2 (ǫ0 − ǫF)2

. (35)

This factor has a maximum at 2(ǫ0 − ǫF)/Γ = 1/q, with the corresponding maximum
value

√

1 + q2 ≈ q for q ≫ 1: hence, the source amplitude is enhanced q times. In this
limit, all populated continuum states experience the same transition dipole matrix element
enhancement factor to the state |2〉, so that the system essentially reduces to the case of a flat
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Fig. 5. Time-dependence of the Stokes and pump pulses (top row) and population in state |2〉
(middle row) and target state |1〉 (bottom row) for the STIRAP transfer of a pair of atoms
within the center of the thermal distribution. The left column is for a broad Feshbach
resonance, while the right column is for a narrow resonance (see Table 2 for values of
parameters used). The dashed blue lines in the left column are the results obtained without
resonance, when the parameters are adjusted to obtain the same overall transfer efficiency as
for the broad resonance. The Stokes Rabi frequency is in units of 106 s−1, while the pump
Rabi frequency is in dimensionless units (16π/δǫ)

1/4
�μ2ǫ êpEp in the broad resonance limit

and (2π/Γ)1/2
�μ2ǫ êpEp in the narrow resonance limit. Note that the scale for the Rabi

frequencies in the narrow resonance case is 40 times the scale for the broad resonance, and
the magnitude of the pump Rabi frequency is enlarged 10 times for better visibility.

continuum with an uniformly enhanced transition dipole matrix element. One thus expects
that in this limit, the adiabatic passage should be efficient, requiring less pump laser intensity
when compared to the unperturbed (i.e. without resonance) scattering continuum. This is
clearly demonstrated in Fig. 5 (left column, dashed lines): to reach the same ∼ 97% transfer
efficiency achieved with the broad resonance, a very large pump laser intensity (∼ 100 times
larger) is required if there is no resonance in the continuum (Fig. 5 a), while the Stokes laser
intensity is basically the same. Considering the intensity used in this particular example, this
would lead to intensities in the range of 5 × 105 W/cm2, making STIRAP from the continuum
technically impossible to achieve without a resonance. This is consistent with the analysis
of photoassociative adiabatic passage from an unstructured continuum (27), and the above
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Fig. 6. Illustration of the reduction of STIRAP transfer efficiency due to destructive quantum
interference for a narrow resonance: (a) a simplified level scheme where the scattering
continuum is modeled by a single state |c〉 and the interaction between the continuum and
the Feshbach state |b〉 is neglected; (b) an equivalent scheme, where the strong coupling
between the Feshbach state |b〉 and the excited state |c〉 by the pump field forms "dressed"
states |±〉. We have the Rabi frequency Ω2c = Ω2

+c/∆+ + Ω2
−c/∆− = 0, since Ω+c = Ω−c

and ∆+ = −∆−.

prediction that in the presence of a wide resonance the required pump laser intensity is
reduced by a factor of ∼ 1/q2.
Results of adiabatic passage for a pair of atoms in a narrow resonance limit are shown in
Fig. 5 (right column). We considered typical values for a narrow resonance width Γ = 1 μK
and the ensemble energy bandwidth δǫ = 100 μK. Again, we give the parameters providing
the optimal transfer in Table 2. In this limit, the transfer efficiency is lower: in the specific
case analyzed here, it does not exceed 47%. The reason for this lower efficiency compared to
a wide resonance is the destructive quantum interference which leads to electromagnetically
induced transparency (61) in the transition from the continuum to the excited state. It can be
explained using the following argument (see Fig. 6). The limit of a narrow Feshbach resonance
corresponds to a weak coupling between the bound Feshbach state and the scattering
continuum, and thus can be neglected in this simplified explanation. The system then can
be viewed as consisting of bound and continuum states |b〉 and |c〉 having the same energy,
which are coupled by the pump field to a molecular state |2〉, itself coupled to the state |1〉 by
the Stokes field. Assuming that initially all the population is in the state |c〉, due to the small
interaction strength between |b〉 and |c〉, we can eliminate the state |b〉, taking into account its
coupling to |2〉 by the pump laser as the formation of “dressed" states |±〉 = (|2〉 ± |b〉)/

√
2. If

the dipole matrix element of the |b〉 → |2〉 transition is much larger than that of the |c〉 → |2〉
transition, the detuning of the “dressed" states satisfies |∆±| = Ω2b

p ≫ Ω2c
p , ΩS. As a result,

the one-photon coupling of |c〉 to the excited state, as well as two-photon coupling to |1〉
vanishes, preventing the adiabatic transfer. This mechanism is similar to the Fano interference
effect, the difference is that the continuum is initially populated. One can therefore view it as
an inverse Fano effect. The effective dipole matrix element of the |c〉 → |2〉 transition is
μ2c ∼ μ2b/q

√
ξ. In the case we analyzed, q = 10, ξ = Γ/

√
2δǫ = 0.01, and μ2c ≈ μ2b, which

gives ∼ 50% transfer efficiency.
The transfer efficiency increases if the Feshbach state is far detuned from the populated
continuum. Our calculations show that for a Feshbach state detuning ǫF/h̄ − (ωS − ωp) ≫
|Ω2b|2/γ, the transfer efficiency reaches 70% using the laser pulse parameters in Table 2. We
note that the smaller intensity of the pump pulse used for the narrow resonance, as compared
to the broad resonance, is due to the fact that we used the same q = 10 and assumed μ2b = 0.1

75Coherent Laser Manipulation of Ultracold Molecules

www.intechopen.com



24 Will-be-set-by-IN-TECH

Reso- δǫ Γ Ω0
S IS Ip TS Tp τS τp

nance μK μK 108 s−1 W/cm2 W/cm2 μs μs μs μs

None 10 — 0.50 30 1.7 × 105 1.5 3.3 0.75 1.3
Broad 10 1000 0.60 40 2500 1.3 3.2 0.7 1.25

Narrow 100 1 2.24 600 400 0.157 0.3 0.1 0.207

Table 3. Parameters of the Stokes and pump photoassociating pulses providing optimal
population transfer shown in Fig.7 for averaging over a Maxwell-Boltzmann distribution of
energies. We use q = 10, γ = 108 s−1, and μ2b = μ21 = 0.1 D (1 D=10−18 esu cm = 0.3934 ea0).

D for both resonances. From the definition of q, it means that the continuum-bound dipole
matrix element μ2ε is higher in the narrow than in the broad resonance we considered. This
explains the smaller resulting pump pulse intensity. The overall conclusion for a narrow
resonance is that, as opposed to a broad resonance, the presence of the Feshbach resonance
prevents one from realizing high transfer efficiencies. It should be noted, however, that
the destructive quantum interference effect is based on negligible interaction between the
Feshbach and continuum states during the transfer time, since T < δ−1

ε ≪ Γ−1. This argument
shows that already for Γ ≥ δǫ, there is enough interaction to neutralize the effect of destructive
interference. Therefore, we expect that the broad resonance limit can be extended down to
Γ ∼ δǫ, making it applicable to a wide variety of atomic species.

3.3 Conversion of atomic ensembles into ground state molecules

The results of Fig. 5 were obtained for a pair of atoms having a specific mean collision energy
ǫ0 = h̄(ωS − ωp). Such a situation could be realized in very tight traps, e.g., in tight optical
lattices. For a system with a wider energy distribution, one would like to find an ensemble
averaged transfer efficiency, and thus one needs to calculate the transfer probability P(ǫ0) =

|c1|2 for all central wavepacket energies ǫ0 within the thermal spread of energies, and perform
the averaging as

Pavg =
2√

π(kBT)3/2

∫ ∞

0
e−ǫ0/kBT√ǫ0P(ǫ0)dǫ0, (36)

where we assume a Maxwell-Boltzmann energy distribution, the pump laser resonant with
the center of the distribution at 〈ǫ〉 = 3/2kBT, and set the bandwidth of the distribution at
δǫ =

√

〈(∆ǫ)2〉 =
√

3/2kBT. The results are shown in Fig.7: while the maximum transfer
efficiency in the broad resonance case is ∼ 70%, it can be achieved with lower laser intensities
than in the case of a pair of atoms of Fig.5.
Given the adiabatic photoassociation probability P(ǫ) for two colliding atoms with relative
energy ǫ, we can calculate the number of atoms photoassociated during the time overlap τ of
the Stokes and pump pulses. During this time, the atom with the energy ǫ = μv2/2, where μ
is the reduced mass, will collide with atoms in the volume πb2vτ, where πb2 is the collision
cross-section. The impact parameter for the collision corresponding to a partial wave with
angular momentum ℓ is b = (ℓ + 1/2)h̄/p = (ℓ + 1/2)h̄/

√

2μǫ. The number of collisions
that atoms with a relative energy in the interval (ǫ, ǫ + dǫ) will experience during the transfer
time is therefore N(ǫ)dǫ = πb2vτρ(ǫ)dǫ, where ρ(ǫ) = 2ρ exp (−ǫ/kBT)

√
ǫ/

√
π(kBT)3/2 is

the spectral density of the atoms (ρ is the density of the sample). Finally, ℓ = 0 for ultracold
s-wave collisions, and the fraction of atoms in the energy interval (ǫ, ǫ + dǫ) photoassociated
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Fig. 7. Same as Fig. 5, but for the energy averaged transfer. The parameters are listed in
Table 3.

by the two pulses is f (ǫ) = P(ǫ)N(ǫ), or

f (ǫ) =

√
2πh̄2

4(μkBT)3/2 τρP(ǫ) exp (−ǫ/kBT). (37)

The total fraction of atoms photoassociated by a pair of pulses is f =
∫ ∞

0 dǫ f (ǫ) ≈
Pavgρ

√
2πτh̄2/4μ3/2√kBT, where we assumed that P(ǫ) does not significantly vary within

the ensemble, and approximated it by the averaged value Pavg. Considering as an example
6Li atoms at T = 100 μK with an atomic density ρ = 1012 cm−3, an overlap time τ ∼ 1 μs, and
assuming Pavg = 0.7, the fraction of atoms photoassociated by the Stokes and pump pulses is
f ∼ 2.5 × 10−4: for heavier atoms f ∼ 10−6 − 10−5. It will therefore require ∼ 104 − 106 pairs
of pulses to convert an entire atomic ensemble into deeply bound molecular levels.
As was shown in (62), in the limit of a narrow resonance longer pulses with durations
TS, Tp ∼ 1/Γ can be used. The reason is that population gets "trapped" in the bound state |b〉
for a time ∼ 1/Γ (it can be seen from the expression for the narrow resonance source function
A.6), and as a result coherent transfer is still possible. The fraction of atoms associated per
pulse pair in this case is comparable to the case of a wide resonance, since the smaller transfer
efficiency P(ǫ) is compensated by a larger pulse overlap τ. The long pulse duration results in
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its narrow bandwidth ∼ Γ, much smaller than the thermal ensemble energy δǫ. Conversion
efficiency per pulse pair in this case might be increased by simultaneously chirping the
Feshbach resonance energy and the pump pulse frequency, i.e. by tuning ǫF and ωP in time
keeping the two-photon resonance condition ǫF = ωS − ωp satisfied.
While only a small fraction of atoms can be transferred to |1〉 by a pair of STIRAP pulses, a
train of pulse pairs can be applied to photoassociate the entire atomic ensemble. To prevent
excitation of molecules in |1〉 back to the continuum by subsequent pulses, they have to be
removed before the next pair of pulses is applied. This could be realized by applying, after
each pair of Stokes and pump pulses, a relatively long pulse resonant to a transition from |1〉 to
some other vibrational level in the excited electronic potential which decays spontaneously to
a deep vibrational state in the ground electronic potential. This long pulse would optically
pump molecules out of the state |1〉 to deeper vibrational states in the ground electronic
potential. It therefore has to be longer than the spontaneous decay time of the excited state.
The excited state has to be chosen carefully so that it does not decay back into the scattering
continuum. This would empty the |1〉 state and deposit molecules into ground potential
vibrational states according to Franck-Condon factors before the next pair of pulses arrives.
Finally, after all atoms have been converted into molecules the recently demonstrated optical
pumping for molecules method (20) can be applied, which would transfer molecules from all
populated vibrational states into the ground level v = 0.
The optimal strategy is to actually choose an excited state that decays mostly to the v = 0
level. This would allow one to avoid storing molecules in unstable vibrational states and
using the optical pumping method. If such a state cannot be directly reached from |1〉, a
four-photon STIRAP transfer can be applied (30), which provides efficient transfer to deeply
bound molecular states. It allows one to choose the final state |1〉, from which the excited state
decaying predominantly to v = 0 can be easily reached. In this case rotational selectivity can
also be preserved, since only v = 0, J = 0 and v = 0, J = 2 states will be populated.
The total time required to photoassociate the whole atomic ensemble and transfer it to the
v = 0 level can be estimated as follows. As the numerical results show, the adiabatic passage
requires ∼ 5 μs, the follow-up pulse emptying state |1〉 can have a ∼ 100 ns duration, if the
excited state lifetime is tens of ns, resulting in the whole sequence ∼ 6 μs. Then the train of
104 − 106 pulse pairs will take ∼ 0.1 − 10 s. The final step, optical pumping to the v = 0 level,
requires ∼ hundred μs, so the overall formation time is ∼ 0.1 − 10 s. Given an illuminated
volume ∼ 10−2 − 10−3 mm3 and an atomic density ρ ∼ 1012 cm−3, the resulting production
rate is expected to be 105 − 108 molecules/s. This compares well with recent experiments
on STIRAP production of ground state KRb molecules starting from the Feshbach bound
state, where ∼ 3× 104 ground state molecules are produced during the entire cycle, including
creation of Feshbach molecules, taking ∼ 10 − 30 s (23).
Alternatively, back-stimulation of formed molecules into the continuum by subsequent
STIRAP pulses can be avoided by placing them in a moving optical lattice, holding molecules
but not atoms (27). Another way to avoid back-stimulation, applicable to polar molecules, is
to overlap the atomic trap with a gradient of a DC electric field. It will leave dipoleless atoms
unaffected, while shifting molecules out of STIRAP laser beams.
To summarize, combining both photoassociation and coherent optical transfer to rovibrational
levels of the ground electronic molecular potential can allow one to convert an entire atomic
ensemble into deeply bound molecular states, and to produce an ultracold molecular gas
with high phase-space density. Photoassociative adiabatic passage in a thermal ultracold
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atomic gas can be greatly facilitated by a Feshbach resonance. The presence of a bound
state imbedded in and resonant with scattering continuum states strongly enhances the
continuum-bound transition dipole matrix element to an excited electronic state, thus
requiring less laser intensity for efficient transfer. In the limit of a wide resonance, when
compared to the thermal spread of collision energies, the dipole matrix element is enhanced
by the Fano parameter q. By choosing a tightly bound excited vibrational state, q can be
made much larger than unity, resulting in the intensity of the pump pulse required for
efficient adiabatic passage to be ∼ 1/q2 times smaller than in the absence of the resonance.
Numeical modeling of the adiabatic passage using typical parameters of alkali dimers shows
that intensities of the pump pulse, coupling the continuum to an excited state, of kW/cm2 are
sufficient for optimal transfer, which is ∼ 100 times smaller than without resonance. Optimal
pulse durations are several μs, resulting in energies per pulse ∼ 10 μJ for a focus area of 1
mm2.
If the Feshbach resonance is narrow compared to the thermal energy spread of colliding
atoms, adiabatic passage is hindered by destructive quantum interference. The reason is that
electromagnetically induced transparency significantly reduces the transition dipole matrix
element from the scattering continuum to an excited state in the presence of the bound
Feshbach state. In the narrow resonance limit, photoassociative adiabatic passage is therefore
more efficient if the resonance is far-detuned.
Due to low atomic collision rates at ultracold temperatures, only a small fraction of atoms
can be converted into molecules by a pair of photoassociative pulses. To convert an
entire atomic ensemble, a train of pulse pairs can be applied. We estimate that 104 − 106

pulse pairs will associate an atomic gas of alkali dimers with a density 1012 cm−3 in an
illuminated volume of 10−2 − 10−3 mm3 in 0.1 − 10 s, resulting in extremely high production
rates of 105 − 108 molecules/s. High transfer efficiencies combined with low intensities of
adiabatic photoassociative pulses also make the broad resonance limit attractive for quantum
computation. For example, a scheme proposed in (63) can be realized, where qubit states
are encoded into a scattering and a bound molecular states of polar molecules. To perform
one and two-qubit operations, this scheme requires a high degree of control over the system,
which our model readily offers.
Finally, marrying FOPA and STIRAP is a very promising avenue to produce large amounts of
molecules, for a variety of molecular species. In fact, although we described here examples
based on magnetically induced Feshbach resonances, such resonances are extremely common,
and can be induced by several interactions, such as external electric fields or optical fields.
Even in the absence of hyperfine interactions, other interactions can provide the necessary
coupling, such as in the case of the magnetic dipole-dipole interaction in 52Cr (64; 65).

4. Conclusions

Precise control over internal and external degrees of freedom of molecules will open the
way for new fundamental studies and applications in physics and chemistry. As has been
clearly seen with atoms in the recent decades, well-controlled laser fields offer an exquisite
control tool over atomic internal and external states, including laser cooling and trapping,
coherent manipulation of atomic quantum states and in particular various techniques used
for quantum information applications, atomic spectroscopy. Recent years have witnessed
mastering of single atom manipulation in individual traps, including optical dipole traps and
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atom chips, and optical lattices, with most manipulation techniques relying on laser fields.
There is a great incentive in the atomic and molecular optics community to extend the precise
control techniques developed for atoms to molecules. We have outlined in this chapter some
experimentally relatively simple laser pulse techniques that can accomplish this task.
A prerequisite for many of the new studies is a high phase space density molecular sample in a
stable internal state, specifically in the ground rovibrational state and preferably in the lowest
hyperfine sublevel. We have in particular discussed two examples of coherent laser control
of molecular states, multistate chainwise STIRAP and photoassociatice adiabatic passage near
Feshbach resonance, which provide efficient transfer of molecules to the ground rovibrational
state. In chainwise STIRAP the transfer is based on a generalized dark state, which is a
superposition of all ground vibrational levels involved in the process. Selecting a special time
order of the laser pulses coupling vibrational states and optimizing durations and intensities
transfer efficiencies > 90% are predicted even in the presence of fast collisional decay of
intermediate vibrational states. This technique has recently been applied to transfer Cs2
Feshbach molecules to the ground rovibrational state with 55% efficiency, limited by technical
issues. Additionally, we outlined how the step from the atomic scattering continuum to the
ground rovibrational molecular state can be done in one coordinated step. In the presence
of a Feshbach resonance delocalized scattering states acquire some bound-state character due
to admixture of a bound level associated with a closed channel. It strongly enhances the
Franck-Condon factor between the initial scattering state and a bound intermediate excited
molecular state, a technique named Feshbach Optimized Photoassociation. We analyzed the
transfer efficiency and intensities of the laser pulses required for optimal transfer both with
and without the resonance and found that > 70% efficiencies are possible with relatively low
intensity pulses of several W/cm2 in the presence of the resonance.
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6. Appendix

A. Rotation and dephasing matrices

The Hamiltonian (2) in the case of the two-pulse STIRAP scheme, discussed in Section 2.1
has a zero eigenvalue ε0 = 0, describing the dark state, and four eigenvalues, ε1,2 =
±Ω

√
1 − sin 2θ/2 and ε3,4 = ±Ω

√
1 + sin 2θ/2, corresponding to bright states. Adiabatic

eigenstates |Φ〉 = {|Φn〉}, n = 0, ...4 and the bare states |Ψ〉 =
{∣

∣

∣
Ψl

〉}

, l = g1, e1, g2, e2, g3

are transformed as
∣

∣

∣
Ψl

〉

= ∑n Wln |Φn〉, |Φn〉 = ∑l Wln

∣

∣

∣
Ψl

〉

via an orthogonal (W−1 = WT)
rotation matrix, given by the expression

W =
1
2

⎛

⎜

⎜

⎜

⎜

⎝

2c+c− s− s− s+ s+

0 1 −1 −1 1
2s−c+ −(s− + c−) −(s− + c−) (s+ + c+) (s+ + c+)

0 −1 1 −1 1
−2s+s− c− c− c+ (s+ − c+)

⎞

⎟

⎟

⎟

⎟

⎠

,
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where c± = cos θ/
√

1 ± sin 2θ/2, s± = ± sin θ/
√

1 ± sin 2θ/2.
In the "straddling" STIRAP scheme the rotation matrix reads as:

W =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2 cos θ 0 sin 2θ Ω
Ω0

0 −2 sin θ

−
√

2 sin θ 2 − cos 2θ Ω√
2Ω0

−1
√

2 cos θ

−
√

2 sin θ −1 − cos 2θ Ω√
2Ω0

1
√

2 cos θ

sin θ Ω
Ω0

−1
√

2 −1 cos θ Ω
Ω0

sin θ Ω
Ω0

1
√

2 1 cos θ Ω
Ω0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where terms of the order of O(Ω2/Ω2
0) and higher are neglected.

The Liouville operator in the bare state basis has a form

Lρ =
1
2

⎛

⎜

⎜

⎜

⎜

⎝

2Γ1ρg1 g1 (γ1 + Γ1)ρg1 e1 (Γ2 + Γ1)ρg1 g2 (γ2 + Γ1)ρg1 e2 Γ1ρg1 g3

(γ1 + Γ1)ρe1g1 2γ1ρe1e1 (γ1 + Γ2)ρe1g2 (γ1 + γ2)ρe1e2 γ1ρe1g3

(Γ2 + Γ1)ρg2 g1 (γ1 + Γ2)ρg2 e1 2Γ2ρg2 g2 (γ2 + Γ2)ρg2 e2 Γ2ρg2 g3

(γ2 + Γ1)ρe2g1 (γ1 + γ2)ρe2e1 (γ2 + Γ2)ρe2g2 2γ2ρe2e2 γ2ρe2g3

Γ1ρg3 g1 γ1ρg3 e1 Γ2ρg3 g2 γ2ρg3 e2 0

⎞

⎟

⎟

⎟

⎟

⎠

.

We include the decay from the Feshbach and the intermediate state using a rate Γ1 and Γ2,
respectively, and from the excited states |e1,2〉, given by γ1,2, and assume that all decay is due
to population loss out of the system, e.g. to other vibrational levels or continuum. We also
assume that molecules in the ground vibrational state |g1〉 do not decay.

B. Adiabatic passage in the limits of broad and narrow Feshbach resonances

In this appendix, we discuss Eqs.(26) and (27) for various relative widths of the Feshbach
resonance Γ with respect to the thermal energy spread δǫ of the colliding atoms. We first
describe the case of a broad resonance, i.e. when the width of the Feshbach resonance greatly
exceeds the thermal energy spread (Γ ≫ δǫ), and second consider the opposite situation of a
narrow resonance (Γ ≪ δǫ). Finally, we briefly present the case where there is no resonance.

B.1 Limit of a broad Feshbach resonance

The typical thermal energy spread for colliding atoms in photoassociation experiments with
non-degenerate gases is δǫ ∼ 10 − 100 μK. The broad resonance case occurs for resonances
having a width of several Gauss (∼ 1 mK), for which we have Γ/δǫ ∼ 10 − 100. A wide
variety of systems exhibit broad resonances. For instance, they can be found in collision of
6Li atoms at 834 G for the | f = 1/2, m f = 1/2〉 ⊗ | f = 1/2, m f = −1/2〉 entrance channel
(Γ = 302 G= 40 mK) and in 7Li at 736 G for the | f = 1, m f = 1〉 ⊗ | f = 1, m f = 1〉 entrance
channel (Γ = 145 G = 19 mK). We note here that these values of Γ are slightly different than
the “magnetic" width ∆B usually given and based on the modelling of the scattering length.
The source function can be readily calculated from Eq.(31) by noticing that the Rabi frequency
term can be set at ǫ = ǫ0 corresponding to the maximum of the Gaussian function in the
integrand. Using the function g(q, ǫ) defined in Eq.(32), the result takes the form

Sw = S0
√

2πδǫg(q, ǫ0)sgn(ǫ0 − ǫF)e
−(t−t0)2δ2

ǫ /2h̄2−i(ǫ0/h̄−(ωS−ωp))t

= Sno−resg(q, ǫ0)sgn(ǫ0 − ǫF), (38)
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where Sno−res is the source function without a resonance given below in Eq.(47). Strictly
speaking, this expression is valid for |ǫF − ǫ0| ≥ δǫ , but since Γ ≫ δǫ Eq.(38) is a good
approximation for a wide range of detunings ǫF − ǫ0.
The back-stimulation term (34) can be further simplified in the limit of a broad resonance. In
this case, both c2(t) and Ep(t) change on a time scale ∼ 1/δǫ , i.e. slowly compared to the
decay time ∼ h̄/Γ of the exponent. Therefore, we can rewrite (34) as:

∣

∣

∣

∣

�μ2ǫ êp

h̄

∣

∣

∣

∣

2

πh̄

[

1 +
(q − i)2

1 + 2i(ǫF − h̄(ωS − ωp))/Γ

]

c2(t)E2
p(t). (39)

The system (26)-(27) in the case of a broad resonance becomes:

i
∂c1

∂t
= −ΩSc2, (40)

i
∂c2

∂t
= −ΩSc1 − Sw + (δ − iγ)c2

−iπh̄|Ωno−res(t)|2
[

1 +
(q − i)2

1 + 2i(ǫF − h̄(ωS − ωp))/Γ

]

c2, (41)

where Ωno−res = �μ2ǫ êpEp/h̄ is the continuum-bound Rabi frequency in the absence of
resonance. We also added a spontaneous decay term γc2, assuming that the excited molecules
dissociate into high energy continuum states and the resulting atoms leave a trap. From
Eq.(38), one can see that in a broad resonance case, the source amplitude is enhanced
by the factor g(q, ǫ0) = (q + 2(ǫ0 − ǫF)/Γ)/

√

1 + 4(ǫ0 − ǫF)2/Γ2 when compared to the
unperturbed continuum case. This factor has a maximum at 2(ǫ0 − ǫF)/Γ = 1/q, with the
corresponding maximum value gmax ∼ q for q ≫ 1.

B.2 Limit of a narrow Feshbach resonance

This situation occurs when the width of the resonance is of the order of a few micro-Gauss
or less. Examples of narrow resonances include 6Li23Na at 746 G for the | f1 = 1/2, m f 1 =

1/2〉| f2 = 1, m f 2 = 1〉 channel (Γ = 7.8 mG = 1 μK) (66), or 6Li87Rb at 882 G for the | f1 =
1/2, m f 1 = 1/2〉| f2 = 1, m f 2 = 1〉 channel (p-wave, Γ = 10 mG = 1.3 μK).
We note that the source term expressed in Eq.(31) can be rewritten in a time representation:

S = S0
√

2πδǫe−i(ǫ0/h̄−(ωS−ωp))t

×
[

e−(τ−τ0)2
+ ξe2iD−D2

∫ ∞

−∞
e−(τ′−iD)2

(I1(ξ|τ − τ0 − τ′|)

−L−1(ξ|τ − τ0 − τ′|)− iq(I0(ξ|τ − τ0 − τ′|)
−L0(ξ|τ − τ0 − τ′|))sgn(τ − τ0 − τ′))dτ′] , (42)

where we introduced the dimensionless variables τ = tδǫ/
√

2h̄, D = (ǫF − ǫ0)/
√

2δǫ ,
ξ = Γ/

√
2δǫ; I0,1 and L0,−1 are modified Bessel and Struve functions. One can see from this

expression that the source function is a sum of the pure source function of the unperturbed
continuum, given by the first term in square brackets, and of the admixed bound state, given
by the integral. The coefficient ξ = Γ/

√
2δǫ, which is the ratio of the Feshbach resonance
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width to the width of the thermal energy spread, gives the ratio of contributions from the
bound state and the unperturbed continuum, respectively.
It is then easier to notice that in the limit of a narrow resonance, the Gaussian function in the
integrand of Eq.(42) is much narrower than the Bessel and Struve functions, which change on
the time scale ∼ 1/ξ. Therefore the source term can be aproximated as:

Sn = S0
√

2πδǫe−i(ǫ0/h̄−(ωS−ωp))t[e−(τ−τ0)2

+ξ
√

πe2iD−D2
(I1(ξ|τ − τ0|)− L−1(ξ|τ − τ0|)

−iq(I0(ξ|τ − τ0|)− L0(ξ|τ − τ0|))sgn(τ − τ0))]. (43)

Since ξ ≪ 1, the real part of the source function is given by the first term in the square brackets,
which is a pure continuum source function, while the imaginary part is due to the admixed
bound state and its magnitude depends on the product ξq. Using asymptotic expansions of
modified Bessel and Struve functions I0(x)− L0(x) → −2/πx, I1(x)− L−1(x) → −2/πx2, it
is seen from Eq.(43) that the contribution to the source function from the bound state decays
on the time scale |τ − τ0| ∼ 1/ξ, while the contribution from the unperturbed continuum
decays on the time scale |τ − τ0| ∼ 1 ≪ 1/ξ.
In the limit of a narrow resonance the system (26)-(27) becomes:

i
∂c1

∂t
= −ΩSc2, (44)

i
∂c2

∂t
= −ΩSc1 − Sn + (δ − iγ)c2

−i

∣

∣

∣

∣

�μ2ǫ êp

h̄

∣

∣

∣

∣

2 [

πh̄E2
pc2 +

πΓ

2
(q − i)2Ep(t)

×
∫ t

0
dt′ c2(t

′)Ep(t
′)eΓ(t′−t)/2h̄+i(ǫF/h̄−(ωS−ωp))(t′−t)

]

. (45)

B.3 Continuum without resonance

Finally, let us consider the case of a continuum without resonance. In this case the
continuum-bound Rabi frequency Eq.(29) is:

Ωǫ = Ωno−res = �μ2ǫ · êp Ep/h̄, (46)

and the source function is

Sno−res = S0
√

2πδǫe−(t−t0)
2δ2

ǫ /2h̄2−i(ǫ0/h̄−(ωS−ωp))t. (47)

The back-stimulation term (34) reduces to

∣

∣�μ2ǫ · êp/h̄
∣

∣

2
πh̄E2

pc2 = πh̄ |Ωno−res(t)|2 c2, (48)
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and the system (26)-(27) takes the simple form:

i
∂c1

∂t
= −ΩSc2, (49)

i
∂c2

∂t
= −ΩSc1 + (δ − iγ)c2 − iπh̄|Ωno−res(t)|2c2 − Sno−res. (50)
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