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1. Introduction

Skin cancer is the most common type of cancer affecting Caucasian populations. It has a
very high rate of incidence, exceeding the sum of all other cancers combined (Simonette et
al., 2009). There are three forms of skin tumors that stand out: cutaneous malignant
melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC).

BCC and SCC are classified as nonmelanoma skin cancers, with BCC being the most
common and constituting 75% of cases (Anthony, 2000). The incidence of nonmelanoma
skin cancers has steadily increased, making them a major challenge in terms of
management of public health. Moreover, these cancers can have a huge impact on health
care costs. In the United States, it is estimated that there are approximately 3 to 4 million
cases annually of BCC and approximately 100,000 cases of SCC. Nonmelanoma skin
cancers are not fatal but can destroy facial sensory organs such as the nose, ear and lips
(Alam et al., 2011). Therefore, these lesions should preferably be treated using
noninvasive techniques.

In contrast, melanoma skin cancers are an aggressive type that can metastasize and cause
death. These cancers originate from melanocytes, which are pigment-producing cells, and
are associated with chronic exposure to sunlight (Einspahr et al., 2002). Because melanoma
has a much higher mortality rate than nonmelanoma skin cancers, different treatments,
including invasive interventions, are required (Martinez & Otley, 2001).

There are some well-established treatments for nonmelanoma skin cancer, such as curettage,
surgery, cryotherapy and chemotherapy. However, these conventional treatments lead to
severe inflammation, pain and unappealing scars (Lopez et al, 2004). Treatments for
melanoma, in turn, are primarily surgical because these tumors can be resistant to traditional
chemo- and radiotherapies (Davids & Kleeman, 2010). Nonsurgical treatments for melanomas
are limited to adjuvant therapies, such as immunotherapy, biochemotherapy, gene therapy
and photodynamic therapy (Martinez & Otley, 2001; Davids & Kleeman, 2010).

To increase patient compliance and to reduce surgical costs and undesirable scars,
particularly in cases where the cancer has spread over large areas of the body, the topical
administration of anticancer drugs has been investigated. The topical administration of
anticancer drugs is an interesting alternative for reducing side effects and for increasing
drug targeting and therapeutic benefits. The major challenge of this kind of treatment is to
increase penetration of the antineoplastic tumor drug in sufficient levels to kill tumor
cells.
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Several techniques and formulations have therefore been developed to successfully
overcome skin barriers and to reach skin malignancies by favoring drug penetration into the
deep layers of the epidermis. The use of chemical penetration enhancers is the simplest
strategy, causing temporary and reversible disruption of the stratum corneum bilayers and
leading to increased anticancer drug penetration into the tumor. Moreover, great interest
has been shown in nanoparticle delivery systems that can protect anticancer drugs against
degradation and, combined with physical methods, significantly increase the tumor
penetration of the drug.

This chapter will briefly discuss skin anatomy, the primary barriers to topical anticancer
drugs’ skin penetration, and the most studied penetration enhancer methods for topical skin
cancer treatment. The aim of this chapter is to provide a basic understanding and
description of the strategies that can be used to overcome the skin barrier, such as
liposomes, polymeric and lipid nanoparticles, iontophoresis and electroporation. Each of
these modalities will be discussed in the context of their application for promoting and
targeting the delivery of skin tumor drugs following topical, noninvasive, administration.

2. The skin as a barrier against anticancer drug penetration

The skin is the largest organ of the body and is composed of three primary layers: the
epidermis, dermis and hypodermis. The epidermis plays an important role in the
penetration of substances into the skin. It is the outer avascular layer of the skin, primarily
composed of keratinocytes. Because of cellular differentiation, the epidermis is divided
into different layers, which are formed by the division of basal cells from the inner part of
the body toward the surface (Figure 1). Hence, basal cells undergo progressive
maturation, giving rise to the spinous layer or squamous cells. These cells also
differentiate, forming the granular layer and finally the stratum corneum, which is the
outermost layer of the skin.

The stratum corneum is the major barrier for the penetration of substances into the skin
because of its heterogeneous composition and packed organization of corneocytes and the
intracellular lipid matrix. The corneocytes are flat anucleated squamous cells packed
primarily with keratin filaments and surrounded by a lipid matrix composed primarily of
ceramides, cholesterol, and free fatty acids (Bouwstra et al., 2003).

Two other cell types that are important in the context of skin tumor composition,
melanocytes and Langerhans, are embedded between the basal keratinocytes. Melanocytes
are dendritic cells capable of melanin production, and Langerhans cells are antigen-
presenting cells that are responsible for the immune response in the skin (McGrath & Uitto,
2010) (Figure 1).

Because the skin is a heterogeneous organ, this wide variety of cell types can generate
several types of benign and malignant tumors. For instance, SCC and BCC originate from
keratinocytes. The development of these tumors is associated with many factors, but most of
these cancers are related to excess ultraviolet radiation (UV) exposure. Following sun
exposure-induced damage, the stratum corneum of tumor lesions usually presents with
hyperkeratinization (Neel & Sober et al., 2006), a factor known to hamper drug penetration.
Topical anticancer administration therefore requires a well-designed formulation to increase
drug penetration into the thicker stratum corneum and to favor drug penetration into the
deep skin layers, where tumors are usually located.
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Fig. 1. Schematic representation of the epidermis/dermis and epidermis layers consisting of
basal cells, squamous cells, the granular layer and the stratum corneum.

For example, the most superficial malignancy that develops in the epidermis is actinic
keratosis, so-named because of the exaggerated production of keratin in the stratum
corneum, which causes it to become thicker (Figure 2A and 2B). These lesions can develop
into tumors, usually SCCs, which may be nodular (invasive) and hyperkeratotic (Figure 2C).
For topical treatment of both actinic keratosis and SCC, anticancer drugs should penetrate
the stratum corneum to reach the tumor cells.
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Fig. 2. Schematic representation of the skin layers, especially the stratum corneum, of (A)
Normal skin, (B) Actinic Keratosis: (1) hyperkeratosis, (2) atypia of cells, (3) Langerhans
cells; (C) Invasive SCC: (1) hyperkeratosis and (2) squamous cells with atypical nuclei
(enlarged and hyperchromatic).
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Another example for the necessity of drug penetration through the stratum corneum is the
use of immunoregulator drugs for the topical treatment of actinic keratosis. To be effective,
these drugs need to act in the Langerhans cells to induce the release of proinflammatory
cytokines, which stimulate an immune response. To reach Langerhans cells, anticancer
drugs must cross the hyperkeratotic stratum corneum (Figure 2B).

Within this context, it is important to understand the mechanisms of drug penetration
through the stratum corneum to determine methods or strategies that can increase drug
penetration such that the drug reaches sufficient concentrations to kill tumor cells.

2.1 Drug penetration in the skin

Over the past two decades, significant attention has been paid to understanding the
mechanisms by which drugs penetrate the skin. It is well known that substances usually
penetrate the skin by three different routes: through the stratum corneum between the
corneocytes (intercellular route); through these cells and the intervening lipids (intracellular
route); or through the skin appendages, such as hair follicles and sweat glands (Moser et al.,
2001). Molecules with adequate solubility in water and oil, with a log of oil/water partition
coefficients between 1 and 3 (Hadgraft & Lane, 2005) and a molecular weight lower than 0.6
kDa (Schéfer-Korting et al., 2007; Barry, 2001), may penetrate the skin. Therefore, topical
administration is limited to hydrophobic and low-molecular weight drugs. Because most
anticancer drugs are hydrophilic, have low oil/water partition coefficients, high molecular
weights and ionic characters (Souza et al., 2011), they do not easily penetrate the stratum
corneum.

Drug permeation through the stratum corneum can be described with Ficks’s second law
(Williams & Barry, 2004) (Equation 1).

:DmCVP’ (1)
L

where | is the flux, Dm is the diffusion coefficient of the drug in the membrane, Cv is the
drug concentration in the vehicle, P is the drug partition coefficient and L is the stratum
corneum thickness.

It can be seen in Equation I that the flux of a drug through the skin is governed by the
diffusion coefficient of the drug in the stratum corneum, the concentration of the drug in the
vehicle, the partition coefficient between the formulation and the stratum corneum and the
membrane thickness. Using this equation, it is a simple matter to determine which
parameters can be manipulated to increase drug flux through the stratum corneum.
Formulations containing chemical penetration enhancers or the use of physical penetration
methods, such as iontophoresis and electroporation, may alter one or more of these
parameters to increase drug penetration in the skin. For instance, chemical enhancers can
disrupt the stratum corneum barrier and increase the diffusion coefficient of the drug
through the altered membranes. Alternatively, enhancers can alter the solvent nature of the
skin and improve partitioning between the formulation and the stratum corneum.
Nanocarriers can increase drug concentration in the vehicle and so increase drug flux.
Physical penetration methods can modify drug penetration routes through the stratum
corneum, making it less tortuous, facilitating drug penetration (Williams & Barry, 2004).

In this context, several manuscripts have reported the use of anticancer drugs in
combination with penetration-enhancing methods or nanocarriers aimed at obtaining high
penetration of the drug through the skin for tumor elimination.

]
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3. Current topical therapies for skin cancer treatment

Current topical treatments for skin cancer include semi-solid formulations of 5-fluorouracil,
diclofenac and imiquimod. Another topical treatment also used and approved by the US
Food and Drug Administration (FDA) is photodynamic therapy (PDT). These therapies are
used to treat nonmelanoma skin cancers and its precursor lesions, such as actinic keratosis.
Several studies have discussed the preferred schedules for topical treatment to avoid tumor
recurrence. Advantages and disadvantages of each topical treatment will be discussed to
give a better understanding of treatment limitations and to propose different approaches
that may improve topical skin cancer treatment.

5-fluorouracil has been considered the topical treatment of choice for actinic keratosis since
its approval in 1970 by the US FDA (Barrera & Herrera, 2007). It is a structural analogue of
thyamine and inhibits the enzyme thymidylate synthetase, blocking DNA synthesis and
preventing cell proliferation (Galiczynski & Vidimos, 2011). There are many 5-fluorouracil
preparations, and it is available through a variety of trademarks both as creams (5%, 1% and
0.5%) and in solution (5%, 2% or 1%) (Barrera & Herrera, 2007). This medication has some
side effects, such as an intense local inflammatory reaction, that result in a lack of patient
compliance. Other disadvantages are the relative long treatment period and partial
inefficacy of the treatment in the deep layers of skin, such as in cases of hyperkeratotic
actinic keratosis (Barrera & Herrera, 2007). These drawbacks emphasize the need for
alternative methods or techniques to improve the skin penetration of antineoplastic drugs.
Imiquimod is an immune response modifier that directly and indirectly interacts with the
immune system (Perrotta et al., 2011). It was initially approved by the FDA in 1997 for
genital and perianal wart treatment but has been used off-label for neoplastic skin
treatments (Burns & Brown, 2005). In 2004, the FDA approved the use of imiquimod 5%
cream for the treatment of actinic keratosis and superficial BCC in patients for whom
surgery is not an option (Perrota et al.,, 2011). Still, without FDA approval, it has been
commonly used for many other cutaneous disorders, such as cutaneous melanoma
metastases, BCC, Bowen’s disease, SCC and lentigo maligna. Studies have revealed that
almost all patients treated with imiquimod exhibit some degree of local inflammation at the
application site. In FDA studies, patients presented some degree of erythema, edema,
ulceration or erosion (Burns & Brown, 2005).

The formulation of 3% diclofenac gel has been used for the topical treatment of actinic
keratosis. At present, it is approved by the FDA and is used only in the US (Berrera &
Herrera, 2007). Diclofenac is a nonsteroidal anti-inflammatory drug and has been show to
have an antitumor effect by inhibiting arachidonic acid metabolism (Galiczynski & Vidimos,
2011). The examined treatment schedules have been two applications daily for 60 or 90 days,
with patients showing complete resolution of actinic keratosis lesions in 47% of cases
(Berrera & Herreara, 2007).

PDT is also approved by the FDA for the treatment of nonhypertrophic actinic keratosis of
the head and scalp (Galiczynski & Vidimos, 2011). Nevertheless, it has been used off-label to
treat various dermatoses, such as superficial and nodular BCC, SCC in situ and others
(Galiczynski & Vidimos, 2011). PDT involves the administration of a photosensitizing drug
or a pro-drug that is converted in a photosensitizer intracellularly (usually 5-aminolevulinic
acid, 5-ALA). Subsequent activation by light of a specific wavelength leads to the formation
of highly reactive singlet oxygen (10O;), destroying the cells via chemical, biological and
physiological reactions (Aratjo et al., 2010). To specifically kill tumor cells, it is therefore
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important that the photosensitizing drug target the tumor cells at a high concentration.
Great efforts have been made to design topical nanocarriers and techniques that can increase
the penetration of photosensitizers into the deep skin layers (Souza et al., 2011; Aradgjo et al,
2010; Gelfuso et al., 2008; Gelfuso et al., 2011) to make topical PDT more effective.

Other clinical trials are underway. The retinoids, or vitamin A analogs, which are commonly
used in cosmetic products, have been considered to have certain chemopreventive effects
(Berrera & Herrera, 2007). Resiquimod, which is structurally similar to imiquimod but 10-
100 times more potent, is another new drug that modulates the immune system (Perrotta et
al., 2011) when topically applied. Adequate formulations for both of these drugs still need to
be designed for successful skin penetration.

It is interesting to note that the current topical medications approved by the FDA for skin
cancer treatment are used primarily to treat superficial skin cancers. This is due to the fact
that some skin cancers, such as SCC, can metastasize, and topical therapy is only used for
invasive tumors if the patient cannot receive surgical treatments. Moreover, response rates
differ for superficial and invasive cancers. For example, Burns (2005) reported that
imiquimod was more effective in treating superficial BCC than for nodular BCC. This is
likely because nodular BCC occurs deep in the dermis and the drug may not reach the full
depth of the tumor invasion.

Again, these limitations highlight the importance of developing new formulations or
methods that improve drug penetration of the skin for the treatment of different skin
cancers. Several chemical/physical methods and nanocarriers have been studied with the
aim of overcoming the above limitations of current treatments and are discussed further.

4. Methods to improve drug skin penetration

Different approaches have been developed to increase skin permeability, such as the use of
chemical enhancers, the application of an electric field (e.g., iontophoresis and
electroporation) and the use of nanocarriers, such as liposomes and polymeric and solid
lipid nanoparticles (Figure 3). These methods have the common goal of overcoming the
stratum corneum and targeting tumor cells.

Methods to improve drug skin
penetration

Formulation Chemical Physical
optimization enhancers enhancers
I ic aci v lontophoresis
: ¥ Oleic acid p
Nanocarriers 7 Azone v Sonophoresis
| v Dimethyl sulfoxide v Eletroporation
v Polymer nanoparticles | | ¥ Propylene glycol
v Lipid nanoparticles v Ethanol
v Nanoemulsions v Transcutol
¥ Dendrimers ¥ Monoolein
v’ Liposomes v Terpenes

Fig. 3. Methods to improve drug penetration through the skin and examples of each method.
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Figure 4 lists the percentage of articles published between 1990 and 2011 that used the most
commonly studied nanocarriers and physical/chemical methods to increase the penetration
of drugs into the skin. Liposomes are the most frequently studied drug delivery system for
topical delivery. Physical penetration methods were used in 22% of the publications,
contributing to nearly one quarter of all publications for topical drug delivery (Figure 4). In
total, chemical and physical penetration enhancers were employed in nearly half of studies.
The other half examined nanocarriers, specifically liposomes and nanoparticles. Other
nanocarriers or techniques that have been used to improve topical treatments, such as
dendrimers, microemulsions, sonophoresis, etc., were not represented in Figure 4 because
they represent a small percentage of studies (less than 10%) when compared to the other
systems.

12%

B Nanoparticles

OLiposomes

O Chemical enhancer

MW lontophoresis

B Electroporation

Fig. 4. Percentage of articles published between 1990 and 2011 related to skin-applied
liposomes, nanoparticles, chemical enhancers, iontophoresis or electroporation to increase
drug penetration (“Science direct®” database, June/2011).

Studies have examined a variety of nanoparticles in the context of improving drug delivery
through the skin, including solid lipids, polymeric, gold and silver. Among studies
addressing only polymeric or solid lipid nanoparticles, there has been more focus on the
former than the latter. This is likely because the studies related to polymeric nanoparticles
began around the 1970s, whereas studies related to solid lipid nanoparticles began around
the 1990s (Guimardes & Ré, 2011). However, in the last 5 years, articles related to lipid
nanoparticles for topical applications have nearly doubled, from 145 to 279 (data available in
the “Science Direct” database June 2011).

It is interesting that when considering only publications related to skin cancers that use the
strategies outlined in Figure 4, the same distribution of techniques is observed. Specifically,
a large number of articles examine the use of liposomes for skin cancer treatment or
prevention (33%). Nanoparticles are the second most studied system (20%), followed by
chemical enhancers (28%), electroporation (13.5%) and iontophoresis (4.5%). These strategies
were therefore chosen for further discussion in this chapter.

4.1 Chemical penetration enhancers

Penetration enhancers have been extensively used in topical formulations. These are chemicals
that, when added to the topical formulation, generally promote drug diffusion by 1) reversibly
disturbing the structure of the stratum corneum, 2) increasing drug diffusivity and 3)
increasing the solubility in the skin (Shah et al., 2000). There are many well known substances
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that may act as penetration enhancers. Fatty acids, oleic acid, azone, dimethyl sulfoxide
(DMSO) and terpenes all increase the drug diffusion coefficient by disordering the stratum
corneum lipid matrix (Moser et al., 2001). Propylene glycol, ethanol, transcutol and N-methyl
pyrrolidone act by increasing a drug’s solubility in the skin. Monoolein, a frequently studied
substance used to enhance the skin penetration of anticancer drugs, causes a temporary and
reversible disruption of the stratum corneum, increasing drug penetration.

Table 1 lists studies that employed chemical penetration enhancers for topical anticancer
delivery.

Anticancer Drug Chemical Enhancer Results References
Azone increased drug flux through the

5-fluorouracil Azone, lauryl falCOhOI and skin more than the other penetration Singh
isopropyl myristate etal., 2005.
enhancers.
Doxorubicin Monoolein and propylene Increased drug retention in the skin ~ Herai
glycol avoiding transdermal delivery. et al., 2007.
. Increased drug concentration in the . .
. . Monoolein and propylene . Simonetti
Cisplatin skin by a factor of two when compared
glycol et al., 2009.
to the control.
Liposomes comb‘med with Association of the nanocarrier with the
decylpolyglucosid , . . .
o penetration enhancers improved drug Manconi
Tretinoin caprylocaproyl macrogol . i d 1d 1L 2
8-ol ide. eth diel | retention, avoiding transdermal drug etal, 011.
glyceride, ethoxydiglycol 4 .
elivery.
and propylene glycol.
DMSO at 10 and 20% increased the
penetration of 5-ALA, a
protoporphyrin IX (PpIX) precursor, in De Rosa
DMSO and DMSO with hairless mouse skin. These et al., 2000,
EDTA formulations also increased the Malik
5-Aminolevulinic production and accumulation of PpIX et al., 1995.
acid (5-ALA) and derived from 5-ALA in healthy skin
ALA derivatives. and tumor skin.

Significantly increased drug
penetration and retention in the skin.

Monoolein and propylene Results in vivo demonstrated that the Steluti

glycol ) ) et al., 2005.
increase of PpIX was monoolein
concentration-dependent.

DMSO, Caprylic/capric

triglycerides PEG-4 esters,
triisostearin PEG-6 esters,
caprylocaproyl macrogol
8-glyceride,
ethoxydiglycol,
1-[2-(decylthio)
ethyl]azacyclopentan-2-
one (HPE-10)

Penetration enhancers increased the  Bugaj
formation of porphyrins in the skin. et al., 2006a.
Caprylic/ capric triglycerides PEG-4 ~ Bugaj
esters was less irritating than HPE-10. et al., 2006b.

In vitro and in vivo studies

Oleic acid demonstrated that oleic acid was a Pierre
potential penetration enhancer of ALA et al., 2006.
in the skin.

Table 1. Chemical penetration enhancers associated with anticancer drugs for skin cancer
treatments.
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It can be seen in Table 1 that penetration enhancers generally increase drug penetration and
retention into the skin. The most common and extensively studied chemical enhancers for
topical chemotherapy are DMSO and monoolein. The lack of toxicity of monoolein
compared to DMSO increases the potential use of this penetration enhancer in clinical trials.
In addition, monoolein is biodegradable, safe and has been used in different formulations in
the pharmaceutical field.

The use of a chemical enhancer to increase the penetration of 5-ALA for topical PDT is
another frequently studied strategy. 5-ALA is a prodrug, converted in situ by the heme
biosynthetic pathway into a highly fluorescent substance, protoporphyrin IX (PpIX), an
effective photosensitizer. Thus, for successful PDT therapy, it is important that high
concentrations of 5-ALA penetrate the skin for its conversion to PpIX and to facilitate the
death of tumor cells when light is applied. Although the FDA has already approved a
topical application of ALA for actinic keratosis, extensive efforts have been made to increase
5-ALA penetration into the skin in an appropriate semi-solid formulation. Thus, chemical
enhancers appear to be promising for PDT treatment in combination with ALA topical
delivery.

4.2 Physical penetration methods

Iontophoresis and electroporation are the most frequently studied physical methods used to
improve antineoplastic topical delivery. Both techniques employ an electrical current to
overcome the stratum corneum and to increase drug penetration into the skin. In the next
sections, the basic principles of iontophoresis and electroporation will be described, and
some of the studies that have employed these modalities in the context of skin cancer
treatment will be discussed.

4.2.1 lontophoresis

Iontophoresis is a non-invasive technique that consists of the application of a weak electrical
current to increase drug penetration into biologic membranes. It has been extensively
studied to increase drug transdermal delivery, i.e., drug penetration across the skin and
towards the blood stream. In early 2000, however, iontophoresis began to be used to
increase the skin penetration of topical ALA (Gerscher et al., 2000).

To iontophoretically deliver drugs, a constant direct electrical current (usually less than 0.5
mA/cm?) is applied over the skin using an electrolytic solution containing the drug. A
battery or a power supply and two oppositely polarized, insulated electrodes are used to
apply this current. The positive electrode is the anode, and the negative electrode is the
cathode. When the current is applied, cations from the electrolytic solution in the anode
compartment move toward the cathode, whereas anions in the cathode compartment move
toward the anode (Figure 5) (Gratieri et al., 2008).

All cations and anions, including ionized molecules (which can be an anticancer drug), are
dispersed in the electrolytic solution and transport a fraction of the electrical current,
referred to as the transport number (Sieg et al., 2004). The maximum transport number of a
specific ion is 1, which is the case when this ion alone carries 100% of the current through
the skin. Therefore, several factors related to the electrical properties of the system need to
be considered when attempting to increase drug transport by iontophoresis, including the
current density and type of electrode. Moreover, the solution/formulation characteristics,
such as ionic strength and pH, need to be optimized to increase the fraction of the current
(i.e., the transport number) of the drug of interest (Gratieri et al., 2008).
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Fig. 5. Schematic representation of an iontophoretic device: cations and anions migrate
through the skin during the application of a low-strength electrical current.

— Cathode

The electrode choice has an important influence on the stability of the driving electric
current, which is necessary to control drug delivery. Electrodes must guarantee the
electroneutrality of the system without changing the pH of the electrolytic solution or
altering the drug’s properties (Cullander et al., 1993). The most commonly used electrodes
are the reversible Ag/AgCl electrodes. This choice is primarily because their electrochemical
reactions are rapid and occur at a voltage lower than that required for the water to undergo
electrolysis, thereby avoiding variations in the pH of the formulation (Kalia et al., 2004).
During the application of the electrical current, Cl-ions in the electrolyte solution react with
the silver electrode, i.e., the anode, donating one electron to the electric circuit (Age + Cl- >
AgCl + e). This electron arrives at the cathode, reducing the AgCl electrode (AgCl + e >
Age + CI). To ensure the system’s electroneutrality, a cation in the anode moves to the skin
or an anion moves from the skin toward the anode. In the cathode, the opposite occurs, i.e.,
an anion moves to the skin or a cation moves from the skin toward the cathode (Kalia et al.,
2004; Chang et al., 2000). Therefore, the electric circuit is completed by the inorganic ions of
the skin, primarily Na* and CI-.

Antineoplastic drugs can be delivered to the skin by iontophoresis through two mechanisms:
electromigration and electroosmosis. These mechanisms can act in combination to increase
drug skin penetration.

Electromigration refers to the orderly movement of ions in the presence of an electric
current. For instance, positively charged antineoplastic drugs, when placed in the positive
electrode compartment (anode), migrate away from the electrode with the same polarity
into the skin (Tesselaar & Sjoberg, 2011). The same occurs when a negative drug is placed in
contact with the cathode compartment. The electromigration contribution to a drug’s skin
penetration depends on the concentration and the electrical mobility of the drug (ion)
(Gratieri et al., 2008). High-molecular weight drugs, which include most antineoplastic
drugs, generally have a low electric mobility, decreasing the electromigration contribution
for their permeating.

Electroosmosis refers to the solvent flow when an electric potential is applied to the skin.
Under physiologic conditions, this flow occurs from the anode toward the cathode due to
the skin’s cation permselectivity (Figure 6). Specifically, the skin is twice more permeable to
cations than to anions (Burnette & Ongpipattanakul, 1987). This is because the skin is
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negatively charged when in contact with a solution at physiological pH (Merino et al., 1999).
As a result, solvent flow occurs in the direction of cation flux, enhancing the transport of
cations and slowing the transport of anions (Singh & Mabach, 1996). Electroosmotic flux is
the dominant mechanism for macromolecule’s skin permeation. This is because the solvent
flux pushes the macromolecule and takes advantage of the low-resistance of the skin when
iontophoresis is applied (Abla et al., 2005; Pikal, 2001). Hence, neutral and high molecular
weight antineoplastic drugs can take advantage of solvent flow and penetrate the skin by
iontophoresis. Furthermore, positively charged drugs can penetrate the skin by both
electromigration and electroosmotic contributions.

Anode | (4 = (| Cathode

Fig. 6. Schematic representation of the electroosmotic flow that accompanies the
electromigration of cations, which is due to the negative charge of the skin at pH 7.

The use of iontophoresis in the topical administration of antineoplastic drugs offers
important advantages for tumor drug delivery. Most of these advantages are related to the
precise control of drug delivery by electrical current adjustments and formulation
characteristics. The applied current density and the short duration of this application,
combined with the components and formulation characteristics, may rapidly target the drug
to the tumor in high concentrations, avoiding the blood stream (Kalia et al., 2004). As an
example of the application of targeted drug delivery using iontophoresis and simple
modifications in drug formulation, Taveira et al. (2009) demonstrated that iontophoresis
significantly increased skin permeability to doxorubicin. However, because this drug is
positively charged at a physiological pH, it interacted with the negatively charged stratum
corneum, decreasing its permeation to the deep skin layers. Interestingly however, the
authors demonstrated that the incorporation of a cationic polymer (chitosan) in the drug
formulation decreased the skin’s negatives charge when iontophoresis was applied,
releasing doxorubicin from ionic interactions with the skin and improving its diffusion into
the deep skin layers.

Despite the obvious benefits that iontophoresis may offer for topical skin tumor treatment,
there have been limited studies using this technique to this purpose. Most studies have
applied iontophoresis to increase the penetration of ALA and porphyrins for topical PDT
(Table 2)
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Electrode Current
Drug Skin model . density Formulation®  References
polarity> (mA/cm?)
ALA and ester In vivo: human Anode 0.25 Aqueous Gerscher
’ ) solution et al., 2000.
ALA and Ester In vivo: human Anode 0.25 Aque.ous Gerscher
solution et al., 2001.
isotonic
- ) phosphate Bodde
ALA In vitro: human SC Anode 0.15 -0.78 buffer et al., 2002.
(pH2.1)
Aqueous
ALA In vivo: human Anode 0.2 solution and Choudry
et al., 2003.
cream
In vivo: rabbits - . Tanaka
ALA oral mucosa Anode 0.5 Ointment et al., 2003.
o Anode and Physiological Lopez
ALA In-vitro: pig ear cathode 0.5 buffer et al., 2003.
o . Lopez
ALA and esters In vitro: pig ear Anode 0.5 Distilled water et al., 2003.
Lipid sponge
phase and Merclin
ALA and m-ALA  Inwvitro: pig ear Anode 0.5 buffer with et al., 2004.
propylene
glycol
. . o Merclin
ALA and m-ALA In vitro: pig ear Anode 0.5 Anionic Gel et al., 2004.
Meso-tetra-[4- Electrolytic
. . Gelfuso
sulfonatophenyl]-  In vitro: pig ear Cathode 0.5 aqueous
) ) et al., 2008.
porphyrin solution
ALA In vivo: human Anode 0.25-0.5  Distilled water Mizutani
et al., 2009.
. L Non-ionic and Taveira
Doxorubicin In vitro: pig ear cathode 0.5 cationic gel et al., 2009.
zinc
. ) . Anode and - Souza
phthalocya.mne' In vitro: pig ear cathode 0.5 Non-ionic gel et al, 2011.
tetrasulfonic acid
Meso-tetra-(N-
methylpiridinium-4-
yl)-porphyrin and N Anode and - Gelfuso
meso-tetra-(4- In vitro: pig ear cathode 0.5 Norionic Get etal., 2011.

sulfonatophenyl)-
porphyrin

2 Polarity of the electrode in contact with the formulation containing the drug.
B Composition of the principal components/ions of the formulation/electrolytic solution that contains

the drug.

Table 2. Drugs that have been delivered into the skin using iontophoresis as a skin cancer

treatment.

The experiments shown in Table 2 demonstrate that iontophoresis significantly increases
drug penetration into and through the skin much more rapidly than passive (no current)
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administration. For examples, a 50-fold higher flux over passive transport was observed
with iontophoretic delivery of methyl-ALA after 2 h (Lopez et al, 2003). Furthermore, the
same amount of ALA delivered passively into the stratum corneum in several hours was
delivered in only 10 minutes of iontophoresis application (Bodde et al., 2002). In vivo
experiments performed with ALA and its esters generally show an increase in the depth and
intensity of PpIX fluorescence following administration of the prodrug ALA. However,
adjustments of electrical and formulation parameters are still required to improve the
performance of iontophoretic delivery in vivo. In vitro, modifications in the pH and ionic
strength of drug formulation have shown extensive improvements in drug delivery. For
example, the simple elimination of Na* from a gel formulation containing the porphyrin
meso-tetra-(N-methylpyridinium-4-yl)-porphyrin at pH 5.5 increased anodal drug
iontophoretic transport by approximately 30% (Gelfuso et al., 2011).

In summary, iontophoresis has a huge potential for drug delivery in topical skin cancer
therapy. Clearly, more studies should be performed in vivo with other antineoplastic drugs
and with optimized iontophoretic parameters. Moreover, risks and toxicity for other organs
should be evaluated to ensure that antineoplastic drugs accumulate in the tumor without
entering the systemic circulation in significant quantities.

4.2.2 Electroporation

Electroporation is the application of high-voltage pulses (100 to 1,500 V) in cells or
membranes to increase drug penetration (Prausnitz et al., 1996). When applied in cell
culture, the pulses create openings in the cell membrane similar to pores, and non-permeant
drugs can access the cytosol (Gothelf et al., 2003). The following sequence of events is
believed to take place during electroporation: (1) within nanoseconds to microseconds, new
aqueous pathways (‘pores') are created in the cell membrane, (2) molecules move through
these pathways primarily by electrophoresis and/or electroosmosis due to the local electric
field, and (3) following the pulse, the pores remain open for milliseconds to hours (Prausnitz
et al., 1996) (Figure 7).

A B ngh voltage pulses

Citosol Nucleous

e

Cell membrane Membrane pores

[

Anticancer drugs —» g ,®/e ®

Fig. 7. Schematic illustration of the formation of pathways ('pores') in cell membranes
created by electroporation. (A) Schematic representation of a cell, (B) Pathways created in
the cell membranes following electroporation, (C) Membrane permeabilization and drug
flux into the cells.
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When applied to the skin, these high-energy pulses generate transient aqueous pores in the
stratum corneum. These pores are responsible for the increase of skin permeability, thereby
increasing the penetration of the drugs, especially macromolecules and hydrophilic drugs
(Charoo et al., 2010). The electrical pulses are primarily applied using plate electrodes
placed on the skin’s surface. However, other types of electrodes can be used for different
tumors, such as needle electrodes (Gothelf et al., 2003). These may be inserted into the tumor
to favor membrane electroporation of the tumor cells. Electroporation has been shown to
increase the transdermal delivery of many drugs, such as metoprolol, heparin, fentanyl
(Denet et al., 2004), insulin (Murthy et al., 2006), piroxican (Murthy et al., 2004; Guogiang et
al., 2007).

The administration of anticancer drugs followed by electroporation is referred to as
electrochemotherapy. The first studies of electrochemotherapy treated subcutaneous tumors
by injecting the anticancer drug into the tumor and locally applying high voltage pulses to
permeabilize the cells. In clinical trials, bleomycin has been administered by intravenous,
intratumoral or intraarterial injection. Different schedules of current application, varying
from 8 to 28 minutes, were then performed to define a time window for the administration
of electrical pulses and to ensure that the drug reached the tumor (Gothelf et al., 2003).

Most of the electrochemotherapeutic protocols involve the invasive application of the
anticancer drug, primarily by intravenous route, followed by the application of the high-
voltage pulse over the tumor site. Few studies have examined non-invasive, topical
anticancer drug administration. Because the aim of this chapter is the topical administration
of anticancer drugs, Table 3 summarizes a subset of the studies that examined topically
applied antineoplastic drugs using electroporation.

Pru In vitro/ Pulse Time of Electrode References
8 In vivo model Voltage application Type
Photosensitizer . One pulse per 1 Johnson
Methylene blue In vitro: pig ear 0-240V msec for 10-30 min Ag/AgCl etal., 1998.
In vitro: pig ear One pulse per 1 Johnson
5>-ALA In vivo: mice 0-240V msec for 15 min Ag/AgCl et al., 2002.
) . one pulse per 30 s, .

5-ALA In vitro: pig ear 300V applied for 10 min Platinum  Fang et al., 2004.
Photosensitizer

. In vitro: one pulse per 0.1 Labanauskiene
chlorir} and . fibroblast cell line 1200Y ms for 20 min Ag/AgCl et al., 2007.
phthalocyanine
Ruthenium In vzltro: melanoma 80 - 240V One pulse per stainless Bicek et al., 2007,
complex cell line 100 ps for 8 s steel plate

Table 3. Drugs that have been delivered by electroporation into the skin following topical
administration.

Table 3 shows that, as with other physical/chemical penetration methods, a great number of
studies that use electrochemotherapy are related to PDT and the increase of
photosensitizer’s permeation through the skin. In each of these studies, electroporation
increases drug skin penetration and even drug cytotoxicity (Labanauskiene et al., 2007;
Bicek et al., 2007). Combinations of electroporation with other physical methods, such as
iontophoresis, often lead to synergistic effects in increasing drug penetration (Johson et al.,
2002; Fang et al., 2004). When applied alone, electroporation increases the penetration of the
drugs more than iontophoresis. This is because the former creates new pathways through
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the skin, whereas the later mostly takes advantage of the decreased electrical resistance in
existing routes into the skin. In this context, electrochemotherapy is a potential strategy for
topical anticancer drug administration. Nevertheless, more studies are required to
investigate the side effects and to minimize patient discomfort during the application of the
electroporation protocol.

4.3 Nanocarrier systems for topical anticancer drug delivery

Semi-solid conventional formulations, such as creams, ointments and gels, have been used
for topical administration of drugs for many years. Simple application of the formulation on
the skin’s surface, however, is not sufficient to allow the drug to reach the site of action. This
means that it is important for the formulation to aid in drug penetration through the
different skin layers to reach the tumor site (Schmid & Korting, 1996). Nanocarriers could
improve skin targeting, improving the drug’s ability to reach and penetrate into tumor cells.
Moreover, nanocarriers can improve drug stability and reduce skin irritation by avoiding
direct contact of the drug with the skin’s surface (Schimid & Korting, 1996).

Different nanocarriers have been used for topical application. This section will discuss the
most frequently studied, topically applied carriers for the treatment of skin tumors.

4.3.1 Liposomes

Liposomes are one of the most studied nanocarriers for the treatment of cancer. They are
colloidal particles and are biocompatible and biodegradable, consisting primarily of
phospholipid vesicles. These vesicles are in turn composed of one or several lipid bilayers
(Gratieri et al., 2010). Phospholipids are able to self-assemble into vesicular structures when
dispersed in an aqueous medium because of their amphiphilic characteristic. The non-polar
tails orient toward non-polar tails of other phospholipid molecules present in the medium in
an attempt to avoid the water. This process forms lipid bilayers that are separated by the
polar heads of the phospholipids (Figure 8). Because of this special arrangement, liposomes
are able to entrap both hydrophilic and hydrophobic compounds in the aqueous
compartments or within the lipid bilayer, respectively. Moreover, lipid bilayers are
biocompatible with the stratum corneum, increasing the liposome’s affinity for the skin and
making them able to release drugs directly to this membrane.

Lipid bilayer I Hydrophilic substance

Agueous

I Hydrophobic substance
core

] Amphiphilic substance

Phospholipid

Fig. 8. Schematic representation of liposomes, which are vesicles formed primarily from
phospholipids that can self-organize into vesicles in aqueous media. Liposomes have
regions capable of encapsulating drugs with different physicochemical characteristics.
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Traditional liposomes are composed primarily of phospholipids. Liposomes formed with
different components have been developed in an attempt to increase the stability of the
vesicles and their ability to penetrate through different membranes, especially the stratum
corneum. In this way, elastic liposomes, also called ultradeformable or ultraflexible
liposomes, are the new generation of liposomes. These contain surfactants, other
amphiphiles or ethanol in their composition, which improve the flexibility of the lipid
bilayer. Transfersomes®, niosomes and ethosomes® were the names given to the first, second
and third flexible liposome generations, respectively (Santana & Zancheta, 2011).
Transfersomes® were introduced by Cevc and Blume (1992) and are composed of
phosphatidylcholine and sodium cholate. Ethosomes® consist of a mixture of
phosphatidilcoline and ethanol, and niosomes are non-ionic surfactant vesicles (Manconi et
al., 2002). The ability of these vesicles to deform gives them the ability to pass through
narrow pores, such as the pores present on the skin surface, possibly improving the
penetration of drugs carried by these vesicles into the deep skin layers (Manconi et al., 2002,
Santana & Zancheta, 2011). These new generations of liposomes have been well studied in
the context of topical administration and have also been introduced into the field of topical
skin cancer treatments.

Most of the studies involving liposomes in the treatment of cancer have been performed
using invasive administration, such as intravenous injections. Liposomes containing
doxorubicin (Hosoda et al., 1995; Barenholz et al., 2001), cisplatin (Lasic et al., 1999; Krieger
et al., 2010), oxaliplatin (Lila et al., 2010), camptothecin (Watanabe et al., 2008) and others
have been shown to increase these drugs cytotoxicity and to reduce side effects because of
direct targeting. Some of these liposomes, such as DOXIL®, are already commercially
available. This liposomal formulation contains doxorubicin and was approved in the US in
1995 (Barenholz, 2001).

The topical application of anticancer drugs is, once again, primarily related to the
administration of the pro-drug ALA for topical PDT. Fang et al. (2008) performed an in vivo
study of the influence of liposomes and ethosomes in ALA skin penetration. This study
showed that the flexible liposomes (ethosomes) increased 5-ALA penetration to a greater
degree than did the traditional liposomes, although both formulations increased ALA
penetration when compared to the control treatment. Cationic ultradeformable liposomes
have also been shown to increase ALA skin permeability in vitro. In vivo, these liposomes
result in persistent ALA retention in the skin and induce the production of high levels of
PpIX (Oh et al., 2011). ALA skin retention was also improved when a traditional ALA-
containing liposome was examined in vitro (Pierre et al., 2001).

In addition to these ALA studies, 5-fluorouracil-loaded niosomes showed an 8-fold
improvement of this drug’s cytotoxicity and penetration when compared to the aqueous
solution (Paolino et al., 2008). It is worth noting that liposomes in combination with other
drugs not traditionally used in skin cancer treatments have also been studied. For instance,
tretinoin and diclophenac-loaded liposomes (Kitagawa et al., 2006; Zaafarany et al., 2010)
showed improvement in these drugs’ skin penetration over non-liposomal formulations.
These studies, however, were aimed at treating acne, psoriasis and other inflammatory
conditions but not skin tumors. These formulations, however, are currently proposed to
treat skin cancer malignances.

In summary, liposomes have been shown to increase drugs” penetration into the skin, and it
appears that ultradeformable liposomes may have an even stronger effect. However, some
reports describe liposome instability and drug leakage during the storage period (Glavas-
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Dodov et al., 2005). Therefore, more studies should be performed to develop more stable
liposomes. In vivo experiments with humans should be performed to demonstrate the
potential of flexible liposomes loaded with different anticancer drugs for topical skin cancer
treatment.

4.3.2 Polymeric and lipid nanoparticles

Nanoparticle drug carrier systems are potential formulations to improve the therapeutic
effectiveness and safety profile of conventional cancer chemotherapies (Wong et al., 2007).
Different types of nanoparticles have been investigated for topical delivery. The most
commonly studied nanoparticles are solid lipid nanoparticles and polymeric nanoparticles,
such as those made from poly(dl-lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and
poly-e-caprolactone (PCL) (Rancan et al., 2009).

Polymeric nanoparticles can be classified as nanocapsules and nanospheres. Nanospheres
have a solid matrix while nanocapsules have a shell that surrounds a core usually oily
(Figure 9). Anticancer drugs can be encapsulated inside or be associated with the
nanoparticle surface.

Nanocapsules

Nanospheres

Surface associated Entrapped
drug drug

Fig. 9. Schematic representation of polymeric nanoparticles. Nanocapsules have
a polymeric shell with an interior phase that is often oily. Also shown are
the solid-matrix nanospheres.

Solid lipid nanoparticles (SLNs) have been studied since the 1990s and are considered new
relative to liposomes and polymeric nanoparticles. SLNs are primarily composed of lipids,
which are solid at room temperature, dispersed in water. They are similar to nanoemulsions,
but the inner liquid lipid is replaced with a solid lipid (Gratieri et al., 2010). This structure
can improve sustained drug release because drug mobility is lower in SLNs. When
compared to liposomes, SLNs exhibit greater stability, prolonged drug release and greater
ease in sterilization and in scaling the manufacturing process to an industrial level. The
absence of organic solvents in the preparation of SLNs is a huge advantage compared to
polymeric nanoparticles. However, low drug loading and drug expulsion during storage
can be a limiting factor for some therapeutic treatments.

Both SLNs and polymeric nanoparticles have been shown to promote sustained drug release
and protection against drug degradation when topically applied (Teixeira et al., 2010;
Marquele-Oliveira et al., 2010). In addition, they allow for modifications to matrix softness
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and superficial charges, adjustments that may improve skin targeting. The exact mechanism
by which these particles increase drug penetration through the skin is not completely
understood, but efforts to understand this property have been made by developing and
characterizing different nanoparticles (Lopez et al., 2011). It appears that nanoparticles can
closely contact the superficial junctions of corneocyte clusters and furrows, possibly
favoring drug accumulation for several hours. This would allow for the sustained release of
anticancer drugs. However, there are controversies regarding the ideal mean diameter,
flexibility and superficial charge of nanoparticles to contribute to skin penetration.

Studies of nanoparticles have not been limited to the examination of cytotoxic cancer drugs;
numerous studies have also been performed that use these systems to deliver anti-
proliferative drugs. Of studies of the topical administration of anticancer drugs,
nanoparticles containing the 5-ALA, 5-fluorouracil and tretinoin are the most common
(Prow et al., 2011). Some examples of recent results obtained with these and other drugs
encapsulated in nanoparticles are described below. SLNs have been shown to increase
tretinoin stability and to decrease drug irritation (Kumar et al., 2007, Mandawgade et al.,
2008 ). Microparticles containing ALA were shown in vitro to be capable of temperature-
triggered ALA release, enhanced drug stability and improved penetration through
keratinized skin (Kassas et al., 2009). In vivo, high levels of PpIX were observed in mouse
skin treated with ALA-loaded microparticles. This study also demonstrated a reduction in
skin tumor growth rate (Donelly et al., 2009). Polymeric micro- and nanocapsules increased
porphyrin-induced phototoxicity by a factor of 4 in cultured HeLa cells when compared to a
liposomal emulsion of phosphatidylcholine loaded with an equivalent amount of porphyrin
(Deda et al., 2009). PLA nanoparticles containing the prodrug 5-fluorouracil demonstrated
linear release of this drug for 6 h with no evidence of a burst effect (McCarron et al., 2008).
Promising results were found for resveratrol encapsulated in SLNs, a formulation that
showed increased cellular uptake (Teskac et al., 2010). Nitrosyl ruthenium complex-loaded
SLNs performed well at releasing and protecting the complex against degradation in vitro,
showing this formulation to be a promising carrier for the topical delivery of nitric oxide
(Marquele-Oliveira et al., 2010). Podophyllotoxin-SLNs were demonstrated in vitro to
increase drug retention on the skin’s surface, avoiding transdermal penetration (Prow et al.,
2011).

In summary, most studies have described the advantages of drug encapsulation in
nanoparticles by demonstrating increased drug stability, sustained release and improved
skin penetration and cytotoxicity. Despite such promising results, more studies should be
performed to elucidate the mechanisms by which nanoparticles increase the ability of
anticancer drugs to penetrate the skin.

5. Conclusion

The penetration of drugs into the skin through the keratinized stratum corneum is a major
obstacle to the delivery of high concentrations of anticancer drugs into tumor cells. The use
of chemical and physical methods and the development of nanoparticle-based drug delivery
systems are very important strategies to improve the ability of drugs to penetrate the skin.
Nanocarriers appear to be promising systems because they offer several advantages, such as
low skin irritation and increased protection of encapsulated drug. An especially important
advantage of these formulations is that they often increase anticancer drug penetration
through the skin. Iontophoresis also appears to be a promising technique for improving
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drug delivery through the skin, especially for PDT, for which high concentrations of the
photosensitizer are required for effective treatment. The use of physical methods to improve
the penetration of nanocarriers should be considered to increase the anticancer drug's
penetration into the skin and to provide for targeted drug release inside tumor cells.
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