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1. Introduction  

Within a large modern combine cycle gas turbine (CCGT) power station, it is typical for 
thousands of process signals to be continually recorded and archived. This data may contain 
valuable information about plant operations. However, the large volume of data 
accompanied with inconsistencies within the data often limits the ability to identify useful 
information about the process. Utilising data mining techniques, such as Principal 
Component Analysis (PCA) and Partial Least Squares (PLS), it is possible to create a 
reduced order statistical model representing normal plant conditions. Such a model can then 
be utilised for fault identification and identifying possible improvements in key 
performance indicators such as thermal efficiency. Moreover, the gas turbine performance 
can be affected by changes in ambient conditions. A long term nonlinear PLS techniques can 
be applied here to investigate the seasonal changes in gas turbine. 
In this chapter, an approach to establish a long term statistical model for gas turbine will be 
given, and the application of the model in fault detection and performance analysis will be 
demonstrated.  

2. The data mining techniques 

Within the power station, data are continuously collected and archived representing 
thousands of data points including temperatures, steam flow rates, pressures, etc.  
Potentially this data may contain valuable information about unit operation.  However, 
collecting a large amount of data does not always equate to a large amount of information, 
leading to a lot of databases being regarded as data rich, but information poor. The task of 
extracting information from data is known as data mining, which is defined as the non-
trivial process of identifying valid, novel, potentially useful, and ultimately understandable 
patterns in data. Data mining is the nontrivial process of extracting valid, previously 
unknown, comprehensible and useful information from large databases (Weiss and 
Indurkhya, 1998). Also, data mining is a generic term for a wide range of techniques which 
include intuitive, easily understood methods such as data visualisation to complex 
mathematical techniques based around neural networks and fuzzy logic (Wang, 1999; Olaru 
and Wehenkel, 1999). Applications are found within diverse areas such as marketing 
(Humby et al., 2003), finance (Blanco et al., 2002) and industrial process control (Martin et 
al., 1996). However, despite being a widely applied technique, it is reported that three 
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quarters of all companies who attempt data mining projects fail to produce worthwhile 
results (Matthews, 1997). Unfortunately, this indicates that the potential of data mining 
techniques, with regard to the available data is often overestimated than the reality. 
The act of data mining is itself part of a larger process known as knowledge discovery in 
data, KDD, which encompasses not only the analysis of data, but the gathering and 
preparation of data and the interpretation of results. Extracting knowledge from large data 
sets can be achieved through exploratory data analysis to discover useful patterns in data, in 
the form of relationships between variables. 
Many techniques are applied as classification tools, to categorise new data following the 
analysis of a historical data set. In this chapter, the first method discussed in Section 2.1 is 
machine learning techniques which use a logical induction process to categorise a series of 
examples, resulting in decision tree and rules set which can be implemented in decision 
making processes. Typical application areas are fault diagnosis in industria1 machines 
(Michalski et a1., 1999) and the assessment of power system security (Voumvoulakis, 2010) 
Case based reasoning methods as discussed in Section 2.2, are commonly applied to 
decision making tasks where previous experience is desirable, but may not be available. 
Case based reasoning provides an inexperienced user with exposure to experiences from 
others, through a set of historical ‘cases’, and has been of particular use in areas such as fault 
diagnosis (Wang et al. , 2008; Yan et al. , 2007) and system design and planning (Hinkle and 
Toomey, 1995).  
Finally, Section 2.3 discusses multivariate statistical techniques, namely principal 
component analysis and partial least squares regression, which have been successfully 
applied to a range of applications areas including chemistry (Wold et a1., 1987), 
manufacturing (Oliveira-Esquerre et a1., 2004), and power system analysis (Prasad et a1., 
2007). It is also extended to finance (Blanco et a1, 2002) and medicine (Chan et a1, 2003) area. 
Principal component analysis and partial least squares regression are particularly popular in 
the area of chemometrics, where they are employed in the monitoring of processes which 
generate large and highly correlated data sets (Yoon and MacGregor, 2001; Kourti et al., 
1996). 

2.1 Machine learning 

Machine learning techniques are those that use logical or binary operations to ‘learn’ a task 

from a series of examples, such as symptoms of medical or technical problems, leading to 

the diagnosis of the problem through the use of decision trees and rule sets which classify 

data using a sequence of 1ogical steps (Michalski et a1., 1999).  

Decision trees are simple top down learning structures, which use Boolean classifiers to 

‘grow’ a tree through recursive partitioning of the sample data using the available attributes. 

The development of a decision tree starts with the inclusion of all the training data in a root 

node, resulting in both correctly and incorrectly classified data. In order to ‘grow’ the tree, 

the data is recursively split by each attribute until all the attributes in the data have been 

used. Each node in the final tree, known as a leaf, represents a test on one of the attributes, 

and the branches from the node are labelled with the Boolean outcomes of the test (Quinlan, 

1996).  

The basic algorithm of building a decision tree, also known as ID3/C4.5 algorithm, follows a 
down rule (Quinlan, 1993). In the beginning, all the data is collected in the root node, and 
the data is recursively subdivided into fewer branches by assessing the information gain of 

www.intechopen.com



 
Application of Statistical Methods for Gas Turbine Plant Operation Monitoring 

 

167 

each attribute in the training data to split the data further, until the terminal node which 
only contains one attribute is obtained (Quinlan, 1993).  
Rule induction is achieved using a bottom up structure, starting with a rule that specifies a 
value for every available attribute on the decision tree, thereby making the rule as specific as 
possible. This rule is known as the seed and further rules are developed from it by 
successfully removing attributes one at a time, until more general rules are acquired. Any 
rule which includes a counter example is regarded as incorrect and is therefore discarded 
from the process. The rule learning terminates by saving a set of‘shortest’rules. Also a new 
"RBDT-1" algorithm is devolved for learning a decision tree from a set of decision rules that 
cover the data instances rather than from the data instances themselves. The method's goal 
is to create on-demand a short and accurate decision tree from a stable or dynamically 
changing set of rules (Abdelhalim, A. 2009). 
The primary advantage of decision trees is that their simplicity makes them very intuitive to 
users. However, large data sets call result in vast trees which can be ‘needlessly’ complex 
resulting in a largely unusable knowledge base：the ideal tree is as small and linear as 

possible. Due to their simple nature, decision trees are not suitable for more complex data 
structures and this is demonstrated by trees that, after pruning, still remain too large to be 
comprehensible. 

2.2 Case based reasoning 

Case based learning acquires knowledge from solutions to prior problems and employs it to 
derive solutions to the current problems. Once a current problem occurs, the similar case 
and previous solution are retrieved and possibly revised to better fit the current problem. 
The new solution can be retained into the case base in case to solve future problems. As a 
result, case based reasoning (CBR) systems are effectively used as lookup tables where ‘the 
system’ interrogates an indexed database of relevant cases, and one or more similar cases 
are retrieved and applied to discover an appropriate solution (Watson, 1999).  
A significant issue in CBR is indexing, which limits the search space, thereby reducing case 
retrieval times. There are many methods for indexing, such as check list based indexing, 
which identifies predictive features for a case (inductive learning methods may be used) and 
places them on a list which is then used for indexing, and difference based indexing which 
selects features as indices that best differentiate one case from another. The user can also 
manually implement an indexing system, and it has been suggested that selection of indices 
by the user can be more effective than algorithms for practical applications (Kolodner, 1993). 
The indexed cases can then either be stored sequentially, making the system easy to 
maintain but slow to query for larger case sets, or using a hierarchical structure, which will 
organize cases so that only a small subset are considered during retrieval, thereby reducing 
search times (Smyth et a1., 2001).  
CBR is a self-maintaining system, the database of historical events is updated when new 
cases occurred and adding to the system’s problem solving resources. The advantage of CBR 
is that it does not require a large number of historical data patterns to achieve satisfactory 
levels of performance：a CBR model may be created from a small number of cases and the 
case base can be refined over time (Hinkle and Toomey, 1995). CBR is particularly useful 
when studying data which has complex internal structures when there is little domain 
knowledge, enabling the sharing of experience.  
Despite these benefits, CBR can be unsuitable for large scale applications as retrieval 
algorithms are inefficient when faced with handling thousands of cases. Maintenance of the 
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case base, with respect to adding new cases and the removal of out date cases, may also be a 
problem as it is largely left to human intervention (Watson and Marir, 1994). 

2.3 Multivariate statistical techniques 

Statistical methods are employed to analyse the relationships between individual points in a 
data set, determining characteristics such as the average value and distribution of the data. 
The simple statistical measure represents a univariate approach to data analysis, which lacks 
the ability to constructively analyse large, multivariate data sets as the interactions between 
variables are ignored (Martin et a1., 1996). In contrast, multivariate statistical analysis 
describes methods capable of observation and analysis of the multiple variables required for 
system monitoring (Kourti and MacGregor, 1995).  This section discusses the multivariate 
techniques, principal component analysis (PCA), least squares regression and partial least 
squares (PLS), as they are more suitable to the analysis of large data sets than univariate 
methods.  
Principal component analysis (PCA) is a statistical technique useful for identifying 
underlying systematic structures in data and separating it from noise (Wold et al., 1987).  
The identification of patterns in data structures allows PCA to be applied to problems 
requiring a reduction in the dimensionality of a data set, for example image 
processing(Bharati et a1., 2003), or monitoring of industrial processes including chemical 
and microelectronics manufacturing processes (Wise and Ricker, 1991；MacGregor and 

Koutodia, 1995). These objectives are achieved by transforming variables, which are 
assumed to be correlated, into a smaller number of uncorrelated variables called principal 
components (PCs), providing a simpler description of the data structure. Each successive PC 
accounts for the most significant variability in the data in a particular direction, with the 
reduction in dimensionality achieved, the original data set can be represented by few PCs. 
PCA is a useful tool when large data sets containing highly correlated variables are to be 
managed. PCA achieves reductions in data dimensionality, thereby simplifying future 
observation of variables：plotting a few PCs is significantly more convenient than plotting 

all original variables. Furthermore, the comparison capabilities between the historical 
information used to construct the model and newly presented data is a desirable 
characteristic for system monitoring applications (Martin et a1., 1996). Fault identification 
can also be undertaken by analyzing the contribution of the independent variables to each 
PC (MacGregor et a1., 1994).  
Projection to latent structures, also known as partial least squares (PLS), is developed to 
solve the multi-collinearity problem in linear least squares regression (LSR) which can 
determine the best linear approximation for a set of data points (Freund and Willson, 1997). 
The benefit of PLS is achieved by identifying a set of uncorrelated, latent variables.  This 
avoids the co-1inearity problems encountered by likelihood-ratio (LLR) test and utilises 
some of the techniques associated with PCA, with the new latent vectors composed of scores 
and orthogonal loading vectors. PLS regression is a robust, multivariate linear regression 
technique which is considered to be more suitable for the analysis and modelling of noisy 
and highly correlated data than LLR as parameters do not exhibit large variation when new 
data samples are included (Otto and Wegscheider, 1985). A high number of variables, with 
respect to the number of data samples, are also permissible in PLS, which can result in the 
modelling of noise for LLR(wise and Gallagher, 1996).  
In summary, PLS is capable of producing robust, effective models, despite operational data 
limitations, for example, imprecise measurements and missing data (Oliveira-Esquerre, 
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2004). The ability to predict dependent data values, especially in the case of product quality 
data, which is often measured infrequently, is useful in process monitoring (MacGregor, 
2005). The proficiency of PLS dealing with the highly correlated and collinear data is also 
frequently utilized in its application to process monitoring (Kresta, 1994). 

2.4 Method selection 

A selection of data mining techniques has been presented in this section and the 
characteristics of each shall now be considered with respect to the problems and available 
data presented by power plant monitoring and analysis.  
Data derived from power plant monitoring can potentially consist of thousands of sensor 
measurements generated on a second by second basis. The data recorded is highly 
correlated, due to multiple sensors, which are in place to introduce redundancy into the 
measurements, and parallel paths within the system, for example, the steam and gas 
circuits. Data quality is also a factor, with noisy signals and missing data as the common 
problems. The correlated structure and data quality considerations present in power plant 
monitoring records bear strong similarities to other application areas discussed in this 
section, such as chemical process control(Ma et al., 2009; Ahvenlampi and Kortela, 2005), 
manufacturing (Oliveira-Esquerre et al., 2004; Baharati et a1., 2004; Hisham et al., 2008) and 
medicine (Chan et a1., 2003). 
When monitoring a process which records a vast array of sensor data, individual analysis of 
each signal by a human operator is clearly not possible. The data analysis techniques 
discussed in this section can be applied to this problem as they identify essential correlations 
within the data. This simplifies the monitoring process by identifying the most relevant 
process signals and thereby reducing the search space. 
When undertaking system monitoring, there are three main objectives. The first is the 
detection of a change in process operation and its nature - should this be a sensor fault, 
faults within the process or a change in product quality or system performance. Once a 
change in process behaviour is detected, diagnostic tests are then required to identify the 
cause of the change, which may require analysis of recent process data and/or consultation 
with an experienced operator. Finally, with the source of the change ascertained, a solution 
should then be identified and implementation of corrective action undertaken, if 
appropriate (Cinar and Undey, 1999). This may require either disabling the source of the 
problem, or in the event of a faulty sensor reading, reconstruction of the value.  
The methods presented here provide different solutions to the process monitoring problem. 
Clustering, machine learning and CBR are diagnostic tools, which compare current fault 
conditions to historical examples of faults. While these techniques will identify the nature of 
the problem, they are not capable of detecting its occurrence or providing signal 
reconstruction in the event of a sensor fault. Statistical methods offer a model based 
approach, where process operation data is compared to a system model, based on ‘normal’ 
operating conditions. This provides continuous process monitoring, which can supply early 
warning of a small process change and offers operators the opportunity to take action to 
prevent the fault becoming more serious. In particular, PCA and PLS can supply the 
operator with information as to which process variables are outside normal limits 
(MacGregor et a1., 1994). This serves to focus the operators’ attention on the problem area, 
allowing process knowledge to be used to identify the source of the problem. 
Not all of the techniques discussed in this section are capable of providing a solution that 
enables preventative action to be taken for CCGT power plant.  
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CBR, providing a historical event that is similar to the currently observed event, is also of 
little use in this instance, as it again offers classification of new events, however, an 
explanation of the similarities identified between cases is unavailable. 
Cluster analysis and ‘rules’ may be useful in identifying groups of similar events, as their 
aim is to suggest correlations in data. Once similarities have been identified for events 
resulting in groupings with common characteristics further investigation would be required 
to identify the relationships between variables that cause these groupings. A more complete 
solution is offered by statistical methods.  
Both PCA and PLS are capable of identifying correlations within data, while PLS also offers 
the ability to extend this to identifying the correlations which are predictive of a dependent 
quantity. The correlations identified within the data can then be studied using the scores 
and loading vectors obtained, indicating the contribution of variables, if any, to the variation 
of the dependent parameter. The historical data is suitable for the development of a system 
model, by means of PCA and PLS, which can be applied to continuous monitoring. 
Archived data is available, detailing sensor data, for example temperatures, pressures, etc, 
throughout the plant at regular intervals. Once the PCA and PLS models are developed, it 
can provide a relatively straight forward model which has both the ability for online fault 
monitoring and offline performance analysis. For practical application, those PCA and PLS 
models are required for fast online response within 20 seconds, and reasonable prediction 
accuracy in a wide operation range. 
With PCA and PLS identified as possessing properties that are useful in relation to the 
problems posed by power plant and power system operation, the statistical modelling 
methods will provide the most suitable approach for operation monitoring and performance 
analysis of CCGT power station. 

3. PCA and PLS algorithm 

Give an original data matrix X (m n) formed from m samples of n sensors, and 
subsequently normalised to zero mean and unit variance, can be decomposed as follows: 

 
1 1 2 1 2

... ...T T Tt p t p         
2

X TP E E PC PC E  (1) 

where T m AR   and P n AR   are the principal component score and loading matrices, E is the 
residual matrix (Lewin, 1995).  
The principal component matrices can be obtained by calculating eigenvectors of original 
data.  Following the creation of the correlation matrix of original data, the corresponding 
eigenvalues and eigenvectors are calculated, where an eigenvalue is an eigenvector’s scaling 
factor.  As the eigenvectors with the largest eigenvalues correspond to the dimensions than 
have the strongest correlation in the dataset, the data can then be ordered by eigenvalue, 
highest to lowest to give the components in order of significance (Jolliffe, 2002). There are a 
number of methods available to determine the number of ordered PCs.  A cross validation 
which calculates the predicted error sum of squares (PRESS) (Valle et a., 1999) is provide 
more reliable solutions than a simple scree test (Jackson, 1993). 
Partial least square requires two block of data, an X block (input variables) and Y block 
(dependent variables).  PLS attempts to provide an estimate of Y using the X data, in a 
similar manner to principal components analysis (PCA).  If T and U represent the score 
matrixes for the X and Y blocks, and P and Q are the respective loadings, the decomposition 
equations can be presented as:- 
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 T X TP E  (2) 

 T Y UQ F   (3) 

where E and F are the residual matrices.  If the relationship between X and Y is assumed to 
be linear then the residual matrices E and F will be sufficiently small, and the score matrices 
T and U can be linked by a diagonal matrix B such that: 

 U BT  (4) 

Hence the predicted dependent variable can be translated (Flynn, 2003) as: 

 ˆ T  Y BTQ E F  (5) 

4. Nonlinear modeling approach 

As we discussed previously, PCA and PLS model are powerful linear regression techniques. 

However, in the real power generation industry, many processes are inherently nonlinear. 

When applying linear model to a nonlinear problem, the minor latent variables cannot 

always be discarded, since they may not only describe noise or negligible variance 

structures in the data, but may actually contain significant information about the 

nonlinearities. This indicates that the linear model may require too many components to be 

practicable for monitoring or analyzing the system.   

Recognition of the nonlinearities can be achieved using intuitive methods, for example, 

which apply nonlinear transformations to the original variables or create an array of linear 

models spanning the whole operating range. More advanced methods have also been 

proposed including nonlinear extensions to PCA (Li et al. 2000)， introducing nonlinear 

modifications to the relationship between the X and Y blocks in PLS (Baffi et al., 1999) or 

applying neural network, fuzzy logic, etc. methods to represent the nonlinear directly. 

Transformation of the original variables using nonlinear functions can be introduced prior 

to a linear PCA and PLS model. For this purpose, the input matrix X is extended by 

including nonlinear combinations of the original variables. However, process knowledge 

and experience is required to intelligently select suitable nonlinear transformations, and 

those transforming functions must sufficiently reflect the underlying nonlinear relationships 

within the power plant. Another problem with this approach is the assumption that the 

original sets of variables are themselves independent. This is rarely true in practice, which 

can make the resulting output from the data mining exercise difficult to interpret.  

An alternative and more structured approach is the kernel algorithm. The purpose of kernel 

algorithm is to transform the nonlinear input data set into a subspace with kernel function. 

In the kernel subspace, the nonlinear relationship between input variables can be 

transformed into linear relationship approximately. By optimising the coefficients of kernel 

function, the transformed data can be represented using a Gaussian distribution around 

linear fitting curve in the subspace. Furthermore, introducing neural network approaches 

into the kernel structure is generally seen to be more capable of providing an accurate 

representation of the relationship for each component (Sebzalli and Wang, 2001). In this 

area, the multilayer perceptron (MLP) networks are popular for many applications. 

However the initial model training is a nonlinear optimization problem, requiring conjugate 
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gradient and Hessian-based methods to avoid difficulties arising from convergence on local 

minima. In order to solve this problem, a radial basis function (RBF) network has been 

selected over other approaches, due to its capability of universal approximation, strong 

power for input and output translating and better clustering function. A standard RBF 

network consists of a single-layer feedforward architecture, with the neurons in the hidden 

layer generating a set of basis functions which are then combined by a linear output neuron. 

Each basis function is centered at some point in the input space and its output is a function 

of the distance of the inputs to the centre. The function width should be selected carefully 

because each neuron should be viewed to approximate a small region of the input surface 

neighboring its centre. Therefore, the RBF network also has been named localized receptive 

field network. This localized receptive character implies a concept of distance, e.g. the RBF 

function is only activated when the input has closed to the RBF network receptive field. For 

this reason, the performance of RBF network is more dependent on the optimisation of RBF 

function coefficients rather than the type of function (Jiang et al., 2007).     

In order to reduce the neural network dimension, the input data are firstly decomposed into 
few components, then the output can be reconstructed with nonlinear relationship. Hence, 

each component will possess its own nonlinear function
non linear

f  , so that  

 ˆ ( )
non linear

f  X
X T  (6) 

 ˆ ( )
non linear

f  Y
Y T   (7) 

In this research, radial basis functions have been selected to represent the non-linearities, 
since once the RBF centres and widths have been chosen, as described below, the remaining 
weights can be obtained using linear methods.  

4.1 RBF network 

The radial basis function network employed in this research is illustrated in Figure 1. 
 

 

Fig. 1. Radial basis function network 
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The network topology consists of m inputs, p hidden nodes and n outputs, and the network 

output,
i

y , can be formulated as:- 

 ( )

1

( ) 1, 2,...
p

i

i j j
j

jy w i n


   X c  (8) 

where, ( )i

j
w  are weighting coefficients, and 

j
  is the basis function. In this research, a 

Gaussian base function was selected, which is defined as:- 

 2

1

( ) exp ( ) , 1, 2, ...
m

k j

j j
k j

x
i p



 
    

  


c
X c   (9) 

The Euclidean distance 
j

X c  represents the distance between the input space X and each 

RBF centre
j

c , where X = [x1 x2 … xm], and 
j
  is the width coefficient of each RBF node. The 

coefficient matrix [ , c, w] is obtained off-line using a suitable training algorithm. Some of 
the more popular options are least mean squares (LMS) (Moody et al., 1989), orthogonal 
least squares (OLS) (Li et al,. 2006) and dual-OLS (Billing et al., 1998). These traditional 
algorithms often employ a gradient descent method, which tends to converge on local 
minima. In order to address the global optimisation problem, a recursive hybrid genetic 
algorithm (RHGA) (Li and Liu, 2002, Pan et al., 2007) is employed here to search for valid 
solutions. 

4.2 The genetic algorithm 
The typical genetic algorithm (GA) is based upon survival of the fittest, and the network 
framework [ , c] is coded into the binary genes as illustrated in Table 1. The initial 
population are selected at random from the entire solution space, with the binary coding 
denoting whether the training samples are selected as the centers of the hidden neurons 
(Goldberg, 1989). 
 

All the potential hidden 
centers 

A randomly created gene 
code 

Coded network 
framework 

[ 1 1
ˆ, c ] 1 [ 1 1

ˆ, c ] 

[ 2 2
ˆ, c ] 0 --- 

[ 3 3
ˆ, c ] 0 --- 

[ 4 4
ˆ, c ] 1 [ 4 4

ˆ, c ] 

[ 5 5
ˆ, c ] 1 [ 5 5

ˆ, c ] 

Table 1. Encoding scheme of genes 

For each generation, random crossover and mutation is applied to the genes, leading to a 
new generation of network frameworks being obtained. The fitness, f, of the new population 
is determined using:- 

 2

1

1
ˆ( )

n

j j
j

y y
f 

   (10) 
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where, ˆ
j

y  is the jth RBF output and 
j

y  is the actual value. The most recent framework will 

be retained if its fitness improves upon previous generations.  
Although the genetic algorithm has the capability of wide region searching and efficient 
global optimizing, it is weak in some local point fitting. This may lead to a decrease in 
model accuracy. Therefore, the genetic and gradient descent algorithm can be combined in 
order to obtain both the global and localize optimizing capability (Pan, et al., 2007). In this 
hybrid algorithm, an initial optimized network can be obtained by the genetic algorithm, 
and then the structure of network can be further shaped for some specific points with the 
gradient descent algorithm. The next step is to examine the variate of fitness coefficient. If 
the fitness reached the preset bound then the regression will be completed, otherwise, the 
network will be reconstructed for next generation optimisation, and repeat the gradient 
descent regression, until reach the preset number of generations or meet the request fitness.  

5. The auxiliary methods 

Once a PCA/PLS model for normal operating conditions has been developed, the real time 
online DCS data then can be applied into the model to obtain a reconstruction of input data. 

It can be used to determine whether recorded plant measurements are consistent with 
historical values and neighboring sensors. A comparison can then be made between the 
reconstructed value for each variable and the actual measurements. Performed manually 

this can be a time consuming task. In this section, some efficient auxiliary methods will be 
discussed for the quality control, sample distribution analysis and fault identification.  

5.1 Quality control method 

There are two approaches that can quickly help to identify differences between the actual 
and reconstructed value of a variable, which are the squared prediction error (SPE) and 
Hotelling’s T2 test. 

The SPE value, also know as the distance to the model, is obtained by calculating a 

reconstruction of each variable, ˆ
i

x , from the model, and then comparing it with the actual 

value, xi. The SPE for all variables in each data sample can be calculated as 

 2

1

ˆ( )
n

i i
i

x x


 SPE   (11) 

In order to distinguish between normal and high values of SPE, a confidence limit, known 
as the Q statistic test is available, which can be determined for α percentile confidence as: 

 

1/
2

2 0 2 0 0

1 2

1 1

0
2 ( 1)

1

h

c h h h


 
 

    
 
 

Q   (12) 

where cα is the confidence coefficient for the 1– α percentile of a Gaussian distribution, ┠i is 
the sum of unused eigenvalues to the ith power and h0 is a combination of ┠ as outlined 

below: 

 1 3

0 2

2

2
1

3
h

 


   (13) 
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The T2 statistic test is designed as a multivariate counterpart to the student’s t statistic. This 

test is a measure of the variation within normal operating conditions. With Tracy- Widom 

distribution, the T2 test can be extended to detect peculiar points in the PCA model (Tracy et 

al., 1993). 

Given h components in use, ti is the ith component score and si is its covariance, then the T2 

can be defined as 

 
2

2

2
1

h
i

i i

t

s

T   (14) 

As with SPE, an upper control limit, Tα2 can be calculated with n training data. This relates 

the degrees of freedom in the model to the F distribution, 

 
2

2

12

( 1)
( , )

( )

h n
h n h

n n h
 


 


T F   (15) 

It should be noted that a rise in the SPE or T2 value does not always indicate a fault, it also 

may be caused by the process is moving to a new event which is not accounted in the 

training data. Additionally, both indicators are affected by noise on the system and 

deviation of measurements from a normal distribution. This can result in nuisance values 

for both SPE and T2. However, false alarms can be largely eliminated by simple filtering, 

and adjustment of the associated threshold (Qin et al., 1997). 

5.2 Sample distribution 

Both the SPE and T2 are unlikely to differentiate between a failing sensor and a fault on the 
power plant. In this case, a plotting of t scores can be combined with the previous methods 
to distinguish between the two conditions.  
The PCA model gives a reduction of data dimension with minimum information less. 
Therefore, the original m dimension data can be plotted in a plane coordinated by the first 
two components, and the relative position between each data point is remained the same as 
the original m dimension space. This character gives a capability to directly observe the 
similar distribution structure of original sample data, in a 2-dimension plane. 
Especially, quoting the T2 control limit into the 2-dimension plane, we have 

 2 2

2 2D D T T  (16) 

substituting Eq. (14) and (15), the Eq. (16) can be transformed as 
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then it gives that 
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Eq. (19) defines a control ellipse for t-score plotting. Score for normal operating conditions 
should fall within this ellipse. So when a process fault occurs, the individual points on the t 
score plots may be observed drifting away from the normal range into a separate cluster. 
The relative position of these fault clusters can assist in latter diagnosis. 

5.3 Fault orientation 

Having confirmed that there is a sensor fault, and not a process condition, the next step is to 
identify which sensor is failing. If a signal is faulty, a significant reduction in SPE before and 
after reconstruction would be expected. However, in practice the reduction in SPE can affect 
all inputs, making the faulty sensor unidentifiable. This situation arises due to a lack of 
redundancy, or degrees of freedom, among the measurements. 
The above difficulties can be overcome by calculating a sensor validity index (SVI) (Dunia et 
al, 1996). This indicator is determining the contribution of each variable to the SPE value. 
The SPE value should be significantly reduced by using the reconstruction to replace the 
faulty input variable. If an adjusted data set zi represents a input set with the xi variable 

being replaced by reconstructed data ˆ
i

x , and the adjusted model predicted value being ˆ
i

z , 

then the sensor validity index for ith sensor ┟i can be defined as 

 
2

2
ˆ( )

i i

i

z z 


SPE
  (20) 

The SVI is determined for each variable, with a value between 0 and 1 regardless of the 
number of samples, variables, etc. The value of SVI close to unity is indicative of a normal 
signal, while a value approaching zero signifies a fault. It is assumed that a single sensor has 
failed, and the remaining signals are used for reconstruction. Also, system transients and 
measurement noise can lead to oscillations in SVI, and possibility of false triggering. 
Consequently, each signal should be filtered and compared with a user-defined threshold. 

6. Application of PCA and PLS model 

As these power plants operate in a competitive market place, achieving optimum plant 
performance is essential. The first task in improving plant operation is the enhancement of 
power plant operating range. This power plant availability is a function of the frequency of 
system faults and the associated downtime required for their repair (Lindsley, 2000). As 
such, availability can be improved through monitoring of the system, enabling early 
detection of faults. This therefore allows the system working at non-rated conditions, 
corrective actions, or efficient scheduling of system downtime for maintenance (Armor, 
2003). 
Monitoring of power plant operations is clearly an important task both in terms of 
identifying equipment faults, pipe leaks, etc. within the generating units or confirming 
sensor failures, control saturation, etc. At a higher level, issues surrounding thermal 
efficiency and emissions production for each generating unit, as measures of plant 
performance, and the seasonal influence of ambient conditions will also be of interest. 
Fortunately, the frequency of measurement and distribution of sensors throughout a power 
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station provides a great deal of redundancy which can be exploited for both fault 
identification and performance monitoring (Flynn et al., 2006). However, modern 
distributed control systems (DCSs) have the ability to monitor tens of thousands of process 
signals in real time, such that the volume of data collected can often obscure any 
information or patterns hidden within. 
Physical or empirical mathematical models can be developed to describe the properties of 

individual processes. However, there is an assumption that faults are known and have been 

incorporated into the model. This can be a time-consuming exercise and requires the 

designer to have extensive knowledge of the application in question (Yoon and MacGregor, 

2000). Alternatively, data mining is a generic term for a wide variety of techniques which 

aim to identify novel, potentially useful and ultimately understandable patterns in data. The 

most successful applications have been in the fields of scientific research and industrial 

process monitoring, e.g. chemical engineering and chemometrics (Ruiz-Jimenez et al., 2004), 

industrial process control (Sebzalli et al., 2000) and power system applications such as fault 

protection in transmission networks (Vazquez-Martinez, 2003). In the following sections it 

will be shown how using the principal component analysis (PCA) technique. It is possible to 

exploit data redundancy for fault detection and signal replacement, as applied to 

monitoring of a combined cycle gas turbine. 

Furthermore, the archived data is used to assess system performance with respect to 

emissions and thermal efficiency using a partial least square (PLS) technique. 

6.1 Raw data pre-process 

The PCA and PLS models are trained using historical data to suit the ‘normal’ plant 
operating, and the training data have to be selected carefully to avoid failing and over range 
data from normal power plant operation. The normal power plant operation was defined 
around the typical output range of 60 MW – 106 MW for single shaft unit and 300 MW – 500 
MW for multi-shaft unit. There are severe dynamic conditions existing in the starting up and 
shutting down period. Therefore, those periods has to be removed from raw data archives. 
An instance is illustrated in Figure 2, for a single shaft unit operation, approximately one 
hour operating data was removed after and before system shut down and start up, in order 
to avoid the transient process. 
The DCS normally collects sensor data every second, however, due to the power plant 
parameters are mainly consisted by temperature and pressure signals, the typical power 
plant responding time is around minutes. Therefore, consider of the balance of 
computational complexity and information quality, the sampling interval was determined 
as 1 minute. Since the raw data sample was archived from DCS, it still contains lots of 
anomalous signals such as break down process, which the power out suddenly crash down. 
Noised signal, is a signal disturbed by white noise. And spike, is an instantaneous 
disturbance which can cause a far deviation from normal signal level. Those data must be 
pre-filtered before being employed to train a model. 
It is generally recognized that CCGT performance, and in particular gas turbine 

performance, can be affected by changes in ambient conditions (Lalor and O’Malley, 2003). 

For example, a fall in barometric pressure causes a reduction in air density and hence inlet 

compressor air flow. Similarly, an increase in ambient temperature causes a reduction in air 

density and inlet compressor air flow. Since the turbine inlet temperature is maintained as a 

constant, there is a subsequent reduction in turbine inlet pressure and hence cycle efficiency. 
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Variations in other external variables such as relative air humidity and system frequency 

(affecting compressor rotational speed) can also impact on gas turbine performance. 

Therefore, the training data selection for a widely suitable PCA model has to contain the 

information of the seasonally changes of ambient condition. 

 

 

Fig. 2. Removed transient period 

In order to obtain a entire seasonal model, the training data sorting process is designed to 
archive power plant operating data for years, then split all of the ambient variables into 
many small intervals, and pick up a sample data from each intervals to ensure that the 
training data contain the operating information for every ambient conditions. 

6.2 Sensor data validation 
With aging sensors, and the associated performance degradation, inevitable, faulty sensors 
are a relatively common occurrence in system monitoring. A common example of sensor 
failure is ‘stuck at’ signal, as illustrated in Figure 3 (a), which the fault is occurred at 300th 
data point. The following data is missed and the sensor’s output is stuck at the last 
measurement. Another example is drifting signal, shown as Figure 3 (b), that the original 
data is disturbed by an increasing interference. Also, a biased signal is a constant noise 
which biased the sensor’s data to other level, as shown in Figure 3 (c). 
Univariate limits, i.e. upper and lower bounds are often applied to the detection of these 
faults. Problems such as biased sensors can be detected when the value eventually exceeds 
the predefined limits. However, a faulty signal within the univariate limits, such as a 
drifting sensor, will often go undetected for a long period of time. In order to identify such 
those faulty sensors, a multivariate approach is required, which will give consideration to 
the sensor value as part of wider plant operation. 
Furthermore, if a sensor is faulty, an operator may choose to disable the sensor, but if the 
signal is used for feedback/feedforward control, disabling the sensor can only be part of the 
solution. In this instance, the problem can normally be resolved by signal reconstruction 
based upon sensor readings from neighboring sensors in the plant. This will require a 
system model, operating in parallel with the real plant. 
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Fig. 3. Sensor faults 

Principal component analysis, PCA, as a suitable technique for sensor monitoring and 
validation as it captures data variability for normal process operation. The development 
of a PCA model is intended to reduce the dimensionality of a set of related variables, 
while retaining as much of their variance as possible. This is achieved by identifying new, 
latent variables known as principal components, PCs, which are linearly independent. A 
reduced set of these latent variables are then used for process monitoring, with a small 
number of components normally sufficient to capture the majority of variability within 
the data.  
Monitoring of a system using PCA is a modeling based approach, achieved by comparing 

observed power plant operation to that simulated by the model from available sensor data. 

The comparison between model and plant data, resulting in residuals, can then determine if 

the recorded information is consistent with historical operation and neighboring sensors. 

Faults are detected by observing deviations from normal operation, which can then be 

investigated to determine the exact source of the problem.  

There are two common automated methods to compare recorded data with the model, as 

defined in section 5.1, the squared prediction error, SPE, and Hotelling’s T2 test. Also, the 

sensor validity index, SVI, will identify failing sensors, and t score plots, from a cluster 

representing normal, fault free operation. All of those techniques are detailed in section 5. If 

an individual sensor is identified as being at fault, it can be replaced with a value 

reconstructed by the PCA model from other sensor data. However, if the fault is actually 

with the power plant, corrective maintenance or other necessary action should then be 

scheduled. 
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6.3 PCA model performance 
In order to demonstrate the monitoring capabilities of this PCA model, a drift signal is 
introduced to the testing data set. As shown in Figure 4, the drift occurred in the sensor 
monitoring the steam temperature at 5:00 am. Generally, the lower bound of steam 
temperature is 500 ºC during power plant normal operating period. Consequently, this drift 
can be detected by under limit indicator approximately 2 hours after the drift was 
introduced. In contrast to sensors limit indicator, the associated squared prediction error 
(SPE) monitoring test is illustrated in Figure 5 and shows that the SPE test detects the sensor 
fault 30 minutes after the introduction of the drift with 95% confidence limit, and 45 minutes 
with 99% confidence limit. Similarly, the T-squared test detected this sensor fails within 35 
minutes using 95% confidence limit, and it crossed the 99% threshold 10 minutes later, as 
shown in Figure 6. The earlier SPE and T-square fault identification can provide more time 
for the power plant operator to take actions to solve problems.    
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Fig. 4. Sensor drifts for single shaft CCGT unit 
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Fig. 5. SPE test for sensor drift in single shaft CCGT unit 
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Fig. 6. T-square test for sensor drift in single shaft CCGT unit 
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Fig. 7. SVI for sensor drift in single shaft CCGT unit 

Following the detection of sensor fault condition, the source of the problem must be 
identified. Calculation of the sensor validity index (SVI), described in section 5.3, the 
variations in the SVI for each sensor are illustrated in Figure 7. According to the defined 
threshold of 0.7, the SVI chart clear identified the faulted sensor at 5:40 am, with the 
associated index of this signal falling into the range 0.7 to 0.2. Also, system transients and 
measurement noise can lead to oscillations into the SVI and there is a clearly example of SVI 
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oscillations caused by system transient during 8:00 am to 9:00 am. It should be noted that 
when the HP main steam temperature signal drifts, the associated indices for the remaining 
sensors rise toward unity, accentuating identification of the biased sensor. As the fault is 
with the sensor, not the process, the PCA model can undertake reconstruction of the failed 
sensor as shown in Figure 4.   

6.4 PLS model performance 

Having validated the observed sensor data with PCA processor, optimisation of power 

plant performance should now be addressed. In order to maximize the power generation 

and simultaneously minimize the fuel consumed and pollution emissions, the performance 

variables must be able to monitor online and the internal relationship between the 

performance variables and associated operating parameters should be able to examine 

through offline analysis. 

However, recover some performance variables is a multi-dimensional problem, such as the 

thermal efficiency, which depends on power demand, supplied fuel type, even the ambient 

conditions. Due to the expense and complexity of performance variables monitoring, 

development of online performance monitoring, capable of determine power plant 

performance from a variety of process variables, is often desirable. Validated and archived 

plant data can be employed to develop models which are capable of predicting the quality 

of process operation while providing an insight into the relationship between quality and 

associated process conditions.  
PLS as a suitable technique for plant monitoring and shall be implemented here to 
demonstrate how system data can be applied to obtain a model of normal plant operation, 
with respect to a variety of quality variable measures, such as power plant efficiency, 
emissions and so on. 
As with PCA, monitoring of individual fault conditions is not necessary and problems are 
instead detected as deviations from normal operation. With load cycling of generation plant 
increasingly common, a wide range of operating conditions are detailed in archived plant 
data and potentially contain indicators of operating conditions which lead to optimal power 
plant performance. The availability of operator logs makes it possible to indentify period of 
generation regarded by operators to be representative of fault-free power plant 
performance.  

6.4.1 Variance explanation contribution 

A benefit from the PLS model is that it has the ability to examine the effect of each input 
variable on the quality variables. Since the PLS model determines the variance explanation 
contribution of each variable by examining the correlation to the output variables, the PLS 
model is not only able to find those variables which have the greatest effect on output, but 
also can find the variables have indirect effect on the quality variables. This function can be 
applied to research the effect of any variable we interested, such as air temperature, sea 
water temperature, humidity and so on.  
For instance, the variable contributions to the variance explanation of efficiency are charted 

in Figure 8 for a normal CCGT plant. Since the input variables are selected for highly related 

to the efficiency, most of them have comparatively high value of variance explanation, and 

these can be considered to be important variables to be monitored and/or adjusted when 

attempting to achieve enhanced operating goals. The most important variables are varying 
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similar in both single shaft and multi shaft unit. For example, it can be observed that the 

No.1 and 2 are outstanding with 87.2% and 86.8% variance explained in the single shaft 

model, and they pointed to the signals of power output and gas flue flow respectively. 

Contrasts to multi-shaft model, above variables are identified as parameter No.1 with 85.0% 

explanation for power output and No.6 with 83% explanation for gas flue flow. Also, a 

group of sensors measuring the high pressure steam parameters are significant, which is the 

No.19-21 in the single shaft model with around 85% contributions and No. 27-29, 60-62 for 

both gas turbines in the multi-shaft model with around 80% contributions.  

In addition, variations in ambient conditions is also interested, the last 4 variables in both 

models represent the effects of humidity, air temperature, barometric pressure and sea 

water temperature, respectively. It is significant that the sea water temperature has an 

extremely high effect on the power plant efficiency. The reason is considered of the 

condensing with sea water. The cooler sea water increases heat transfer from the condensing 

steam, and hence increase the thermal efficiency. 

 

 

Fig. 8. Variance explanation for CCGT efficiency in multi-shaft unit 

6.4.2 Relationship curve 

From previous section, the PLS variance explanation suggest that sea water temperature is 

the most significant ambient condition for thermal efficiency. In order to better appreciate 

the impact of these environmental variables on the model, we introduce a new technique to 

study the relationship between input and output variables. It is of interest to lock all model 

inputs at a normal operating point, e.g. the power output is 90 MW, IGV position is 77% and 

etc., except the ambient variable being considered. For the simpler structure and closer 

variables relationship, the instance is chosen to use the single shaft unit, and consequently, 

Figure 9 illustrate the relative impact of these input parameters on the associated quality 

output measure for the CCGT plant. 

It can be seen that increasing sea water temperature can significantly reduce the efficiency, 

the linear curve shows that about 50% increase in sea water temperature can cause 8% 

decrease in efficiency. Observably, the nonlinear curve shows that the relationship between 
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ambient conditions and efficiency is more complicated and non-monotonic. As shown in the 

red line in Figure 9, the effects of ambient air and sea water temperature on the plant 

efficiency are represented as two tendency directions. One is the temperature upon the 12 

degree, the efficiency is decreased following the increase in the environment temperature, 

and the reason is well known as we discussed in section 6.1 that the reduced cooling water 

temperature can enhance the steam cycle efficiency. Another direction present an interesting 

result where the temperature is lower than 12 degree, the efficiency enhancement seems to 

be more difficult when the temperature goes down. The reason is considered that the air and 

fuels inlet temperature will be excessively decreased during chill period and causes the 

decrease in gas combustion temperature and consequently reduced the gas turbine 

efficiency; it tends to counteract the effects of decrease in cooling water temperature on 

efficiency enhancement. 

 

 

Fig. 9. Relation curve for single-shaft unit: efficiency vs. sea water temperature 

7. Conclusion 

Distributed control systems provide many advantages in terms of improvements in 

productivity and plant manoeuvrability when introduced into power plants and other 

industrial processes. However, the ease of access to a range of plant-wide signals potentially 

introduces vast problems of scale, since the meaningful information contained within the 

collected data may be somewhat less than the volume suggests. The task remains, therefore, 

to identify normal operating regions and relationships within the historical data, and 

subsequently to apply the collated rules, reference cases, etc. Principal component analysis 

has received considerable interest as a method of reducing the effective measurement space, 

and has been considered here for process monitoring of a combined cycle gas turbine. 

Traditionally, operator practice has been reactive, whereby actions are taken following the 

triggering of process alarms, often set over-responsive and mode insensitive – PCA methods 

enable a more proactive role for the operator, providing early warning of plant 

irregularities, and identification of instrumentation errors and process faults. The PCA 
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model is identified under normal operating conditions, and subsequently unusual 

deviations are highlighted and identified.  

On the other hand, The PLS model has received considerable interest as a method of 

analyzing process data and in this instance it has been used for analyzing a combined cycle 

gas turbine. Analysis of the models variance demonstrates that CCGT performance is 

affected by changes in ambient conditions. Also a relation curve method can be utilized here 

to study the impact of these external parameters, from the environment, have on the gas 

turbine performance. 

Future work could extent the quality measurements (efficiency and emissions) to include 

other important requirements such as plant life, unit flexibility or cost of generation. Where 

the objective is to optimize power plant quality measurements and consequently enhance 

plant performance.  

Furthermore, it is considered to integrate the physical or empirical mathematical models 

with the statistical model. Since the statistical models are limited by training range, it is 

unreliable to be employed under untrained conditions. Compared to physical model, a 

trained statistical model is difficult to tune in case of power plant renovation or update, due 

to it requests the input variables remaining a designed internal relationship.  

On the other hand, developing the pure physical model can be a time-consuming exercise 

and requires the designer to have extensive knowledge of the application. Especially for the 

large scale system, the relationship between each variable is highly correlated and tangled, it 

is impossible to build a physical model which can provide a detailed and accurate 

representation of the operation. Therefore, utilizing the statistical model to substitute the 

complex components in a physical model could be good solution for reduce modeling 

calculation. Similarly, the adjustability and flexibility of statistical model can be increased by 

integrating some physical control loop or simulation into the statistical model.  
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