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1. Introduction 

8-Oxoguanine (7, 8-dihydro-8-oxoguanine, abbreviated as 8-oxo-Gua), a form of oxidized 
guanine, is a mutagenic lesion formed spontaneously in the genomic DNA of aerobic 
organisms (Fig. 1) and by the actions of exogenous factors, such as ionizing radiation, 
chemical pollutants, heavy metals, food factors, and bacteria. 8-Oxo-Gua induces GC-to-TA 
transversion type point mutations [1]. Point mutations generated via oxidative DNA 
damage are involved in cancer development, because mutations are a common feature of 
human cancers. Therefore, 8-oxo-Gua is considered to be involved in carcinogenesis. In this 
context, studies of 8-oxo-Gua have significant implications for understanding the 
underlying mechanisms of mutation-associated diseases, including cancer [2]. Although 8-
oxo-Gua is not necessarily the most abundant form of oxidative DNA damage, it has been 
the most extensively studied, because it is quite easily measured by a method utilizing 
HPLC coupled with electrochemical detection in laboratories [3, 4]. The presence of 8-oxo-
Gua and 8-oxoadenine (8-oxo-Ade) in mutagenic oxidized DNA products has been 
extensively studied, and their frequencies of generation in mammalian DNA and degrees of 
mutagenicity are similar [5-8]. The relative focus-forming activity, which indicates the 
mutation inducibility, of 8-oxo-Gua and 8-oxo-Ade were reportedly ~1% [7, 8]. 
 
 
 
 
 
 
 

Fig. 1. Structure of 7, 8-dihydro-8-oxoguanine or 8-hydroxyguanine (8-OH-Gua). 8-Oxo-Gua 
is formed by hydroxylation of guanine at the C-8 position. 

Extensive efforts have been made to clone the repair enzymes for 8-oxo-Gua. The first 
information was obtained from the studies of an enzyme, formamidopyrimidine DNA 
glycosylase (Fpg or MutM), which excises 8-oxo-Gua, 2, 6-diamino-4-hydroxy-5-
formamidopyrimidine (FapyGua), and 4, 6-diamino-5-formamidopyrimidine (FapyAde) 
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from the DNA of Escherichia coli [9]. This enzyme has an activity to process the resulting 
abasic (AP) site, by cleaving both the 3’- and 5’-phosphodiester bonds by successive β- and 
δ-eliminations [10-12]. In 1996, an Fpg homologue was identified in Saccharomyces cerevisiae 
[13, 14]. This was the first report of an 8-oxoguanine DNA glycosylase 1 (OGG1). In the 
following year, mammalian (human and other mammals) homologues of OGG1 were 
identified and cloned [15-21]. 8-Oxo-Gua is efficiently removed from DNA via the short-
patch base excision repair (BER) pathway initiated by OGG1. 
Among the environmental factors that are related to human diseases, food factors have a 
large influence on human health. To understand the mechanisms of food-related 
carcinogenesis, the roles of 8-oxo-Gua have been investigated in relationship with food 
factors. In this review article, we will focus on and describe the relationship between food 
factors and 8-oxo-Gua / 8-oxo-Gua repair systems. 

2. Aminoazo dyes and 8-oxo-Gua / OGG1 

Food factors have been extensively investigated in association with oxidative DNA damage 
and its repair systems. Some food factors, such as aminoazo dyes, are known inhibitors of 
OGG1 expression.  Aminoazo dyes were previously used as artificial color additives to food. 
Some of them, such as N-methyl-4-aminoazobenzene, N, N-dimethyl-4-aminoazobenzene, 
and 3’-methyl-4-dimethylaminoazobenzene (3’-MeDAB), are hepato-carcinogenic. We 
previously analyzed the effects of 3’-MeDAB on 8-oxo-Gua repair systems in rodent livers, 
and reported that 3’-MeDAB increased 8-oxo-Gua generation and decreased OGG1 
expression, possibly by cleaving the protein [22]. These results suggested that the liver 
carcinogenicity of 3’-MeDAB was due to an increase in 8-oxo-Gua generation via 3’-MeDAB-
induced downregulation of OGG1 expression. 
The use of 3’-MeDAB as a food additive is now prohibited. However, other types of azo 
dyes are still being used. Therefore, more research is needed to define the effects of azo dyes 
on human health. 

3. Alcohol and 8-oxo-Gua / OGG1 

Alcohol consumption has been associated with a variety of human cancers for several 
centuries. Recent studies revealed that alcohol consumption is associated with an increase in 
breast cancer incidence in women [23, 24], esophageal cancer [25], and colorectal cancer [26, 
27]. On the other hand, the cancer-preventive effects of alcohol drinking have also been 
reported. It is well known that moderate consumption of wine may prevent some types of 
cancers [28-30]. These studies concerning wine consumption suggested that anti-oxidant 
agents, such as polyphenols, including catekin, quercetin and resveratrol, contributed to the 
cancer–preventive effect of wine [31]. Thus, anti-oxidant agents seem to play a key role in 
the beneficial effects of wine. It was also suggested that resveratrol could reduce the 
localized estrogen production that plays a crucial role in the development of breast cancer 
[32]. On the other hand, for alcoholic beverages other than wine, a cohort study suggested 
that alcohol (spirits and beer) consumption was associated with a decrease in the risk of 
renal cell carcinoma in male smokers [33]. A matched case-control study reported a similar 
result, in which regular, moderate alcohol (beer, wine, and spirits) consumption was 
associated with a decreased probability of leukoplakia occurrence, with respect to occasional 
or no alcohol consumption [34]. These results are not conclusive, but suggest that other 
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components of alcoholic beverages (including wine) besides polyphenols may be 
responsible for the beneficial effects on human health. 
The evidence that not only wine but also spirits and beer have cancer-preventive effects 
prompted us to investigate the molecular mechanisms of these effects of alcohol consumption 
due to factors other than polyphenols. In fact, recent evidences have suggested that the 
protective effects of red wine on cancer or cardiovascular diseases were not a consequence of 
the anti-oxidant capacity of alcohol [35, 36]. Arendt et al. reported the reduction of DNA 
damage as another mechanism of the cancer-preventive function of wine [35]. 
In this context, we analyzed the 8-oxo-Gua accumulation level in DNA and its repair ability 
(8-oxo-Gua nicking activity and mouse OGG1 (mOGG1) expression) in the livers of mice 
treated with 3’-MeDAB, a well known hepato-carcinogen as described above, and / or 
ethanol, to examine the effects of alcohol consumption on carcinogenesis (Fig. 2A) [37]. The 
method used to determine the 8-oxo-Gua nicking activity was described elsewhere [38]. In 
the study, we found that 12% ethanol reduced the 3’-MeDAB-induced 8-oxo-Gua 
accumulation (Fig. 2B). Moreover, the 8-oxo-Gua repair activity showed a decreasing 
tendency in 3’-MeDAB-treated mouse livers with 12% ethanol administration, without any 
significant differences (Fig. 2C). The decrease in the 8-oxo-Gua repair activity seems to be a 
reasonable consequence of the lower 8-oxo-Gua levels. Since we speculated that OGG1 
fragmentation was a key event for 3’-MeDAB-induced 8-oxo-Gua accumulation [22], we 
predicted that OGG1 fragmentation might be inhibited by ethanol intake, as in the inhibition 
of the increase in 8-oxo-Gua levels. However, 12% ethanol intake failed to inhibit the 3’-
MeDAB-induced fragmentation of OGG1 (groups D, E, and F in Fig. 2D). The observations 
indicated that ethanol intake reduced 8-oxo-Gua accumulation, without affecting the 
function of OGG1. However, since other enzymes besides OGG1 can reportedly repair 8-
oxo-Gua [39], we speculate that ethanol consumption might induce these 8-oxo-Gua repair 
systems to reduce the 8-oxo-Gua level. 

4. Coffee and 8-oxo-Gua / OGG1 

Coffee has been a quite popular beverage in many parts of the world for a long time. 
However, its effects on human health are not well understood. Some studies suggested that 
coffee consumption had preventive properties for metabolic diseases, such as type 2 
diabetes [40, 41], or cancers, such as hepatocellular carcinoma [42, 43] and colorectal cancer 
[44, 45], through its content of potentially antimutagenic substances [46]. These findings led 
to the hypothesis that coffee consumption lowers the risk of some types of cancers. 
On the other hand, some studies provided negative conclusions for the effects of coffee 
consumption on human health. A large cohort study in Sweden and Japan indicated that 
coffee consumption was not associated with the risk of colorectal cancer [47, 48]. 
Furthermore, another cohort study indicated that coffee consumption increased the risk of 
certain cancers, such as gastric cancer [49]. These carcinogenic actions of coffee were 
supported by evidence that coffee contained numerous substances, such as glyoxal, 
methylglyoxal, ethylglyoxal, propylglyoxal, diacetyl, and acetol, with potentially genotoxic 
and mutagenic properties [46, 49-51]. Although the polyphenols in beverages, such as green 
tea, black tea, and coffee, are antioxidant substances, a recent study indicated the production 
of hydrogen peroxide, a harmful molecule for living organisms, by polyphenol-rich 
beverages [52]. Therefore, although numerous studies have been performed, the effects of 
coffee consumption on human health have remained undefined. 
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Fig. 2. (A) The experimental protocol. A: control [ND / water] for 10 months; B: [ND / water] 
for the first 2 months and [0.06% 3’-MeDAB / water] for the last 8 months; C: [ND / alcohol] 
for 10 months; D: [ND / alcohol] for the first 2 months and [0.06% 3’-MeDAB / alcohol] for the 
last 8 months; E: [ND / alcohol] for the first 2 months, [0.06% 3’-MeDAB / alcohol] for the next 
4 months, and [0.06% 3’-MeDAB / water] for the last 4 months; F: [ND / water] for the first 2 
months, [3’-MeDAB / water] for the next 4 months, and [3’-MeDAB / alcohol] for the last 4 
months. ND: normal diet, DAB: 3’-MeDAB. (B) The levels of 8-oxo-Gua in the DNA of mouse 
livers. The 8-oxo-Gua value is expressed as the number of 8-oxo-dG per 105 deoxyguanosine. 
*1: P < 0.0005 vs. group B, P < 0.05 vs. group E, P < 0.01 vs. group F; *2: P < 0.0001 vs. group C, 
P < 0.005 vs. group D, P < 0.01 vs. group E, P < 0.05 vs. group F; *3: P < 0.05 vs. group E, P < 
0.005 vs. group F; *4: P < 0.05 vs. group F. (C) 8-Oxo-Gua nicking activity in the mouse livers. 
The activity was calculated as the ratio of the excised fragment intensity to the total substrate 
(unexcised substrate intensity plus excised fragment intensity). *: P < 0.005 vs. group A. (D) 
Western blotting of mOGG1 protein in the mouse livers. Mouse livers were removed and 
homogenized to produce crude extracts. The extracts were electrophoresed and blotted onto a 
PVDF membrane. A western blot analysis was performed using an anti-mouse OGG1 
antibody. The arrowhead indicates fragmented mOGG1. mOGG1: mouse OGG1. This figure 
was published in reference [37], Copyright Elsevier (license#: 2633951132321). 
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To address this issue, we focused on the effects of instant coffee consumption on the 
generation of 8-oxo-Gua. In our previous work, we analyzed the 8-oxo-Gua level and the 8-
oxo-Gua repair system in the livers of mice fed with / without a 0.1% instant coffee solution. 
In addition, we employed an autoclaved diet (low vitamin diet; LV diet) to maintain half of 
the mice under low vitamin conditions. We found that instant coffee consumption does not 
alter the 8-oxo-Gua generation level and OGG1 mRNA expression, although it prevents low-
vitamin diet-induced 8-oxo-Gua production [53] (Fig. 3). Our study suggested that daily 
instant coffee consumption may provide more beneficial effects than detrimental effects. 
However, we have not examined other types of DNA damage. To clarify the role of coffee 
consumption on human health, further studies should be performed. 

5. Urinary 8-oxo-Gua level and food consumption 

Urinary 8-oxo-Gua levels are often analyzed, especially as a marker of oxidation [54, 55]. 
Among the urinary biomarkers of oxidative stresses, 8-oxo-Gua is possibly the most studied. 
We previously investigated the effects of age, smoking, dietary factors, and other life style 
factors on urinary 8-oxodeoxyguanosine (8-oxo-dG) levels [56]. Urine samples were 
collected from healthy employees in a steel-manufacturing company, after obtaining 
informed consent. The mean level of urinary 8-oxo-dG (μg / g creatinine) in the 361 male 
subjects was 4.20 ± 1.47 (Table 1). The relationships between 16 categorical lifestyle factors 
and urinary 8-oxo-dG levels were analyzed by ANOVA. The results revealed that the 
urinary 8-oxo-dG level was significantly negatively related to fruit consumption (P = 0.03) 
and physical activity (P = 0.03). It is noteworthy that, in terms of fruit consumption, the 
urinary 8-oxo-dG levels of the “rarely” and “two or three times per week” groups were 
significantly higher than those of the “everyday” group (P = 0.03). The results of the 
Scheffe’s test also indicated that fruit consumption significantly reduced the urinary 8-oxo-
dG level. Besides urinary analyses, a diet rich in fruit and vegetables was also reportedly 
effective in the reduction of oxidative stresses [57]. These data indicated that fruit 
consumption and physical activity reduce oxidative stress generation. 
 

variables category n % urinary 8-oxo-dG P 

sleep deficient 
slightly deficient 
sufficient 

10 
181 
170 

2.8 
50.1 
47.1 

4.37 ± 0.25 
4.19 ± 0.12 
4.20 ± 0.11 

0.53 

holiday little or none 
once a week 
twice a week 

2 
51 
308 

0.6 
14.1 
85.3 

5.41 ± 1.20 
3.96 ± 0.21 
4.23 ± 0.08 

1.00 

fatigue always 
sometimes 
rarely 

18 
256 
87 

5.0 
70.9 
24.1 

3.66 ± 0.32 
4.17 ± 0.09 
4.39 ± 0.17 

0.86 

rhythm irregular 
mostly regular 
regular 

66 
215 
80 

18.3 
59.6 
22.2 

4.05 ± 0.19 
4.20 ± 0.10 
4.30 ± 0.16 

0.25 

refreshing difficult 
moderate 
easy 

13 
255 
93 

3.6 
70.6 
25.8 

4.40 ± 0.38 
4.13 ± 0.09 
4.33 ± 0.17 

0.48 

size of a meal full stomach every time 
no pattern 
moderation every time 

24 
198 
139 

6.6 
54.8 
38.5 

3.87 ± 0.27 
4.29 ± 0.11 
4.12 ± 0.11 

0.85 
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variables category n % urinary 8-oxo-dG P 

healthy meal 
combination 

rarely 
consider sometimes 
consider every time 

46 
187 
128 

12.7 
51.8 
35.5 

4.25 ± 0.20 
4.33 ± 0.12 
3.99 ± 0.11 

0.11 

skipping meals one meal every day 
2 or 3 meals a week 
rarely 

63 
103 
195 

17.5 
28.5 
54.0 

4.37 ± 0.20 
4.09 ± 0.15 
4.20 ± 0.10 

0.62 

light-colored vegetable rarely 
once a day 
each meal 

17 
268 
76 

4.7 
74.2 
21.1 

4.32 ± 0.42 
4.22 ± 0.09 
4.09 ± 0.14 

0.78 

green- and yellow-
colored vegetables 

rarely 
2 or 3 times a week 
everyday 

26 
244 
91 

7.2 
67.6 
25.2 

4.10 ± 0.32 
4.21 ± 0.10 
4.18 ± 0.12 

0.75 

fruit rarely 
2 or 3 times a week 
everyday 

140 
187 
34 

38.8 
51.8 
9.4 

4.24 ± 0.12 
4.28 ± 0.11 
3.57 ± 0.19 

0.03 

meat, fish, egg, etc. rarely 
twice a day 
each meal 

11 
194 
156 

3.0 
53.7 
43.2 

4.72 ± 0.49 
4.25 ± 0.11 
4.09 ± 0.11 

0.16 

milk rarely 
2 or 3 times a week 
everyday 

118 
171 
72 

32.7 
47.4 
19.9 

4.32 ± 0.16 
4.10 ± 0.10 
4.23 ± 0.15 

0.23 

oil rarely 
2 or 3 times a week 
everyday 

9 
192 
160 

2.5 
53.2 
44.3 

4.41 ± 0.58 
4.15 ± 0.12 
4.24 ± 0.10 

0.55 

seaweed rarely 
2 or 3 times a week 
everyday 

58 
266 
37 

16.1 
73.7 
10.2 

3.99 ± 0.18 
4.26 ± 0.09 
4.04 ± 0.21 

0.75 

physical activity light 
moderate 
moderately heavy 
heavy 

192 
119 
12 
38 

53.2 
33.0 
3.3 
10.5 

4.39 ± 0.11 
4.09 ± 0.12 
3.85 ± 0.48 
3.68 ± 0.19 

0.03 

P: One-way analysis of variance 
Urinary 8-oxo-dG data are expressed as μg / g creatinine ± SE 
These data are derived from a report by Tamae et al. [56] with permission from Wiley-Blackwell. 

Table 1. The characteristics of categorical lifestyle factors and urinary 8-oxo-dG levels in 361 
male subjects 
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Fig. 3. (A) The 8-oxo-dG level in mouse liver DNA. The 8-oxo-dG value is expressed as the 
number per 105 deoxyguanosine. n=3 for data of 4 and 8 months, n=4 for data of 2 months. 
(B) Ogg1 gene expression level. n=4 for LV diet + water for 8 months, n=5 for others. (C) 
MUTYH gene expression level. n=4 for LV diet + water for 8 months, n=5 for others. (D) 
MTH1 gene expression level. n=4 for LV diet + water for 8 months, n=5 for others. The 
GAPDH gene was used as an internal standard. The total value of the gene expression level 
was calculated by the ratio of the expression of each gene to GAPDH expression. The values 
are mean + SD. *P < 0.005, **P < 0.05. LV diet: low vitamin diet. MUTYH: eukaryotic 
homologue of MutY (mismatched adenine DNA glycosylase), MTH1: eukaryotic homologue 
of MutT (8-oxo-dGTPase). This figure was published in reference [53], Copyright Blackwell 
Publishing (license#: 2634430504476). 
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6. Dietary factors and OGG1 polymorphism 

Interestingly, Sørensen et al. reported that the effect of vegetable consumption was 

associated with the OGG1 Ser326Cys polymorphism [58]. A non-synonymous (associated 

with an amino acid change) genetic polymorphism at codon 326, Ser326Cys, in the OGG1 

gene is a strong candidate as a genetic factor for cancer risk [59, 60]. In fact, the OGG1 

Ser326Cys enzyme exhibited functional defects [61]. OGG1 Ser326Cys excised 8-oxo-Gua 

from duplex DNA and cleaved abasic sites at rates 2- to 6-fold lower than those of the wild-

type enzyme. Yamane et al. reported that 8-oxo-Gua-induced mutations were more 

efficiently suppressed in OGG1-Ser326 transduced cells than OGG1-Cys326 transduced 

cells, suggesting that OGG1-Cys326 has reduced ability to prevent mutagenesis by 8-oxo-

Gua than OGG1-Ser326 in vivo in human cells [62]. Sørensen et al. observed a 54% decrease 

in lung cancer risk per 50% increase in vegetable intake among homozygous Cys326Cys 

carriers, and no decrease in risk among carriers of Ser326Ser or Ser326Cys. Therefore, to 

evaluate the effect of food factors on carcinogenesis, the OGG1 polymorphism should be 

considered. 

7. Conclusions 

As described above, dietary factors influence 8-oxo-Gua generation and its repair systems in 

a variety of manners. They may contribute to human diseases, including cancer, by causing 

DNA damage and affecting DNA repair systems. The effects of food factors on the 

generation of 8-oxo-Gua and the expression of OGG1 must be further clarified, to reduce the 

risk of food factor-related diseases, such as cancer or diabetes. 

In addition, DNA double-strand break (DAB) is also a well-known DNA damage. Datta et 

al. reported that 8-oxo-formation was associated with 125I-induced double-strand break 

(DSB) formation. Therefore, analyses of food factors and DSB formation should be interested 

as a further study [63]. 
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