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1. Introduction 

Genotoxic stress induces cell cycle arrest, DNA repair, and apoptotic cell death. The decision 
by cells either to repair DNA lesions and continue through the cell cycle or to undergo 
apoptosis is relevant to the incidence of mutagenesis and, subsequently, carcinogenesis. In this 
regard, incomplete repair of DNA damage prior to replication or mitosis can result in the 
accumulation of heritable genetic changes. Therapeutic anti-cancer treatments that use 
genotoxic agents must strike a balance between induction of repair and apoptosis in order to 
maximize the therapeutic effect. However, the nature of the cellular signaling response that 
determines cell fate such as survival or death is far from being understood. Certain insights 
have been derived from the finding that diverse isozymes of the protein kinase C (PKC) family 
are activated in response to DNA damage. PKC-mediated signaling pathway modulates 
destiny of cells following genotoxic insults (Yoshida 2007a, Yoshida 2008a). In particular, 
recent studies have shown that certain isozyme of PKC controls function of the p53 tumor 
suppressor in induction of cell cycle arrest, DNA repair, and apoptosis. In the past 10 years, 
understanding the molecular mechanisms of apoptosis mediated by PKC has advanced 
considerably, and the primary focus of this review is to provide an overview of PKC and p53, 
its mode of action and its physiological role in DNA damage-induced apoptosis.  

2. Protein kinase C 

The protein kinase C (PKC) family of serine-threonine kinases was first described as a 
calcium-activated, phospholipid-dependent serine/threonine protein kinase (Takai et al. 
1977). PKC is activated diacylglycerol (DAG) hydrolyzed from phosphatidylinositol (PI) by 
phospholipase C (PLC) under a different cell-signaling system (Nishizuka 1984, Nishizuka 
1988, Nishizuka 1992, Nishizuka 1995). It has attracted attention as an intracellular receptor 
for tumor-promotor phorbol esters, such as 12-O-tetradecanoyl-13-phorbol acetate (TPA) 
(Niedel et al. 1983). Although PKC had been recognized as a protein kinase, subsequent 
studies have revealed that it belongs to a family of serine/threonine-specific protein kinases 
and is activated by diverse stimuli and participates in various cellular processes, such as 
growth, differentiation, apoptosis, and cellular senescence (Casabona 1997, Clemens et al. 
1992, Goodnight et al. 1994, Hofmann 1997, Hug and Sarre 1993, Nishizuka 1984, Nishizuka 

1988, Nishizuka 1992, Nishizuka 1995). PKC consists of at least 11 isozymes (, I, II, , , , 
, , , / and ) with selective tissue distribution, activators, and substrates. PKC isozymes 
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have been categorized into three groups: i) the classical/conventional PKCs (cPKCs: , , 
II ), which are calcium dependent and activated by DAG; ii) the novel PKCs (nPKCs: , , 
, ), which are calcium-independent and activated by DAG; and iii) the atypical PKCs 

(aPKCs: , ), which are calcium-independent and not activated by DAG (Casabona 1997, 
Goodnight et al. 1994, Hug and Sarre 1993, Nishizuka 1988, Nishizuka 1992, Nishizuka 
1995). The cell-specific expression and subcellular localization of individual PKC isozymes 
indicate important isozyme-specific functions. To elucidate these functions, it should be 
necessary to study the individual features of each isozyme, such as expression, post-
translational modification, substrate specificity, subcellular localization and signaling cross-
talk with other proteins. Moreover, the involvement of a PKC isozyme in a signaling 
pathway resulting in a specific cellular response can be investigated by diverse distinct 
methods such as overexpression or inhibition of enzyme.  

3. PKC and apoptotic cell death upon genotoxic insults 

Novel PKC, , and  are substrates for the effector caspase-3, and proteolytic activation of 
these novel PKCs has been associated with cell death (Datta et al. 1997, Emoto et al. 1995, 
Endo et al. 2000). However, recent studies have shown that PKC acts upstream of caspases to 
regulate cell death. For example, PKC activators enhanced caspase activation, whereas an 
inhibitor of PKC prevented caspase activation in response to DNA damage (Basu et al. 2001). 

In particular, studies with PKC–/– mice suggest that PKC plays pivotal roles in the 
regulation of cell proliferation and apoptosis (Humphries et al. 2006, Leitges et al. 2001). 

PKC is activated by a variety of stimuli including ionizing radiation, anti-cancer agents, 
reactive oxygen species (ROS), ultraviolet radiation, growth factors and cytokines (Carpenter 
et al. 2002, Chen et al. 1999, Denning et al. 1996, Konishi et al. 2001, Reyland et al. 1999, 
Yoshida and Kufe 2001, Yoshida et al. 2002). Molecular mechanisms such as tyrosine 
phosphorylation and proteolytic cleavage by caspase-3 are of importance to understand the 

pro-apoptotic role for PKC activation. PKC isozymes have been implicated in the growth 

factor signal transduction pathway (Nishizuka 1992). By contrast, activation of PKC inhibits 

cell cycle progression and down-regulation of PKC is linked to tumor promotion, suggesting 

that PKC may have a negative effect on cell survival (Lu et al. 1997, Watanabe et al. 1992). In 

many cases, the growth-inhibitory effects of PKC have been linked to changes in the 

expression of factors that influence cell cycle progression. Furthermore, PKC plays a pivotal 
role in the genotoxic stress response leading to apoptosis in various cell types (Brodie and 

Blumberg 2003, Reyland 2007, Yoshida 2007a). In addition, cells derived from PKC–/– mice 
were shown to be defective in mitochondria-dependent apoptosis (Humphries et al. 2006, 
Leitges et al. 2001). These findings thus support our proposition of a pro-genotoxic role for 

PKC. PKC is activated in response to diverse cellular stimuli by various processes, 
including membrane translocation (Joseloff et al. 2002, Wang et al. 1999), protein-protein 
interaction (Benes et al. 2005), tyrosine phosphorylation (Denning et al. 1996, Kaul et al. 2005), 
and proteolytic cleavage (Emoto et al. 1995, Ghayur et al. 1996, Yoshida 2007a, Yoshida et al. 

2003). The translocation of PKC to discrete subcellular compartments and/or proteolytic 

cleavage can be induced by numerous stimuli, such as ceramide, TNF, UV irradiation, 
ionizing radiation, oxidative stress, and etoposide (DeVries et al. 2002, Majumder et al. 2000, 
Matassa et al. 2001, Reyland et al. 1999, Yamaguchi et al. 2007b, Yoshida 2007a, Yoshida et al. 
2006a, Yoshida et al. 2002, Yoshida et al. 2003, Yoshida et al. 2006b). Importantly, recent 
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studies have shown that genotoxin-induced PKC activation is in part dependent upon 
Ataxia telangiectasia mutated (ATM) (Yoshida et al. 2003). Whereas ATM activates c-Abl, and 

c-Abl activates PKC, a potential explanation is that DNA damage induces an ATMc-

AblPKC pathway (Yoshida 2007b, Yoshida and Miki 2005, Yoshida et al. 2005). 

Alternatively, ATM may directly activate PKC in the DNA damage response. In either case, 

nuclear targeting of PKC is pre-requisite for ATM-mediated full activation of PKC. 

4. Nuclear translocation of PKC in the apoptotic responses 

Translocation of PKC into the nucleus has been demonstrated in various cells (Blass et al. 

2002, DeVries et al. 2002, DeVries-Seimon et al. 2007, Eitel et al. 2003, Scheel-Toellner et al. 

1999, Yoshida et al. 2003, Yuan et al. 1998). Recent study showed that PKC translocates to 

nucleus after exposure of cells with 1--D-arabinofuranosylcytosine (ara-C) (Yoshida et al. 

2003). Moreover, pretreatment with PKC inhibitor, rottlerin, attenuates nuclear targeting of 

PKC (Yoshida et al. 2003), suggesting that its kinase activity is required for nuclear 

translocation. A putative nuclear localization signal has been identified at the C-terminus of 

the catalytic domain of PKC (DeVries et al. 2002). Numerous PKC targets and substrates, 

including the p53 tumor suppressor, are nuclear proteins that function in induction of 

apoptosis. 

5. Role for p53 in response to DNA damage 

The tumor suppressor protein p53 plays a central role in mediating stress and DNA damage-

induced cell cycle arrest and apoptosis (Vogelstein et al. 2000). The p53 protein controls normal 

responses to DNA damage and other forms of genotoxic stress and is an indispensable 

element in maintaining genomic stability (Vogelstein et al. 2000). In fact, p53 is the most 

frequently mutated gene in human cancers (Nigro et al. 1989). The level of p53 protein is 

mostly undetectable in normal cells but rapidly increases in response to a variety of stress 

stimuli. The mechanism by which the p53 protein is stabilized is not completely understood, 

but post-translational modification plays a crucial role (Shieh et al. 1997). Mutations in the p53 

gene are frequently correlated with generation of human cancers; however, the p53 pathway 

can be also derailed by diverse oncogenic molecules (Oren et al. 2002). The p53 gene knocked-

out mice develop tumors with an increased rate (Donehower et al. 1992). It is reasonable that 

many agents may inhibit the p53 pathway as part of the road toward tumor promotion. 

However, mechanisms for action of many chemical agents that promote tumor development 

have not been elucidated. With the central role of p53 in mind, agents that promote tumor 

formation might block the p53 pathway. Importantly, p53 is regulated primarily via post-

translational modifications, especially phosphorylation, and the accumulation of p53 is the 

first step following cellular stress (Oren 1999). The mdm2 gene is a transcriptional target of p53, 

and once synthesized, the MDM2 protein can bind to p53 at its NH2 terminus leading to its 

rapid degradation through the ubiquitin proteasome-mediated pathway (Kubbutat and 

Vousden 1998, Oren 1999, Ryan et al. 2001). Upon DNA damage, p53 is phosphorylated at 

multiple sites at the NH2 terminus, thereby inhibiting MDM2 binding (Burns and El-Deiry 

1999, Canman et al. 1998, Kubbutat and Vousden 1998, Oren 1999, Ryan et al. 2001, Siliciano et 

al. 1997). As a result, p53 degradation stops and p53 accumulates. p53 can also be 

phosphorylated at its COOH-terminal regulatory domain, which influences its DNA binding 
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(Meek 1998). In this context, constitutive phosphorylation of p53 by PKC at its COOH-terminal 

domain can lead to its degradation through ubiquitin proteasome-mediated pathway 

(Chernov et al. 2001). Moreover, treatment with PKC inhibitors, such as H7 or 

bisindolylmaleimide I, prohibited COOH-terminal phosphorylation of p53 and increased 

accumulation of p53 without any effect on the formation of the p53-MDM2 complex (Chernov 

et al. 2001). However, PKC inhibitors were incapable of p53 accumulation in human papilloma 

virus-positive HeLa cells (Chernov et al. 2001, Chernov et al. 1998). 

6. PKC regulation of p53 

The p53 tumor suppressor is activated following genotoxic stress. Transactivation of p53 
target genes dictates cell cycle arrest and DNA repair or apoptosis. Accumulating studies 

have demonstrated that PKC regulates p53 expression at the transcriptional and post-
translational levels. 

6.1 Control at the transcription 

Recent reports document that PKC transactivates expression of p53 at the transcriptional 
level (Abbas et al. 2004, Liu et al. 2007, Yoshida 2008a). The tumor-promoting phorbol ester 
12-O-tetradecanoylphorbol-13-acetate (TPA) hinders DNA damage-induced up-regulation 

of p53 by down-regulating PKC. TPA initiates tumor formation in a variety of mice and 
tissue culture models, and this has been correlated with the down-regulation of PKC 
(Hansen et al. 1990). TPA initially induces and then diminishes the activity of the 
diacylglycerol-dependent PKC isoforms (Fournier and Murray 1987, Hansen et al. 1990). 
Previous studies showed that the tumor-promoting activities of TPA are mediated at least in 

part by down-regulating PKC (Lu et al. 1997). Moreover, transgenic mice over-expressing 

PKC were resistant to tumor promotion by TPA (Reddig et al. 1999). In this regard, 
previous studies implied that TPA can inhibit the DNA damage-mediated induction of p53 
(Magnelli et al. 1995). Moreover, other studies with protein kinase inhibitors suggested that 

PKC regulates the p53 signalsome pathway (Ghosh et al. 1999). Regulation of p53 upon 
stress most commonly occurs by inhibiting ubiquitination and degradation of the p53 

protein. In contrast, repression of p53 by inhibiting PKC is caused by the prevention of p53 

synthesis, not augmented degradation of p53 protein. Inhibiting PKC blocks both basal 
transcription of the human p53 gene and initiation of transcription from the human p53 
promoter. The DNA damage-elicited increase in p53 accumulation is drastically inhibited by 

pre-treatment with TPA. In addition, the PKC inhibitor, rottlerin, is also able to block the 
DNA damage-mediated induction of p53. More importantly, pre-treatment of cells with TPA 
or treatment with rottlerin results in the inhibition of basal p53 transcription. In this regard, 
accumulation of p53 could not be achieved by any means, including proteasome inhibition, 
after TPA or rottlerin treatment, since p53 transcription is hindered. Thus, the tumor-

suppressing effects for PKC are mediated at least in part through activating p53 
transcription. Suppression of the p53 promoter has been implied as a mechanism for tumor 
promotion (Raman et al. 2000, Stuart et al. 1995). Damaged genes in tumor cells are 
generally the mechanistic drivers toward oncogenesis. However, abrogation of endogenous 
genes, specifically tumor suppressors, may be also a crucial regulatory mechanism for 

tumor promotion. In this context, agents that interfere with the activity of PKC may inhibit 
p53 responses. 
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Recent study also demonstrated that PKC induces the promoter activity of p53 via the p53 
core promoter element (CPE-p53) and that such induction is enhanced after DNA damage. 

Upon genotoxic insults, PKC is activated and interacts with the death-promoting 
transcription factor Btf (Bcl-2-associated transcription factor) to co-occupy CPE-p53. 

Inhibition of PKC decreases the affinity of Btf to CPE-p53, thereby reducing p53 expression. 
Concomitant with these results, abrogation of Btf-mediated p53 transcription by RNA 
interference leads to repression of p53-mediated apoptosis in response to genotoxic stress. 

These findings demonstrate that activation of p53 transcription by PKC induces p53-
dependent apoptosis following DNA damage (Liu et al. 2007). 

6.2 Control at the post-translation 

Recent study demonstrated that both PKC and IKK, but not IKK, are targeted to the 

nucleus after oxidative stress (Yamaguchi et al. 2007a, Yamaguchi et al. 2007b). PKC 

interacts with and activates IKK. Significantly, upon exposure to oxidative stress, PKC-

mediated IKK activation does not contribute to NF-B activation; rather, nuclear IKK 
controls transcription activity of p53 by phosphorylation on Ser20. These findings indicate a 

novel mechanism in which the PKCIKK signaling pathway contributes to ROS-induced 
p53 activation. Recent studies have also demonstrated that phosphorylation of p53 at Ser46 
induces p53AIP1 expression, resulting in the commitment to the apoptotic cell death 
(Matsuda et al. 2002, Oda et al. 2000, Taira et al. 2007, Yoshida 2008b). Furthermore, upon 
genotoxic stress, p53DINP1 is induced and then recruits a kinase(s) to p53, which 

specifically phosphorylate Ser46 (Okamura et al. 2001). We initially found that PKC is 
associated with Ser46 phosphorylation (Yoshida et al. 2006a). This phosphorylation was 

required for the interaction of PKC to p53. Importantly, p53DINP1 associated with PKC in 

response to anti-cancer agents. In concert with these findings, PKC potentiates p53-

dependent apoptotic cell death by Ser46 phosphorylation. Taken together, PKC controls 
p53 to induce apoptosis in the cellular response to DNA damage (Yoshida et al. 2006a). Of 
note, our subsequent studies have demonstrated that another kinase DYRK2 plays a major 
and direct role on apoptosis induction by phosphorylating p53 at Ser46 in response to DNA 

damage (Taira et al. 2007, Taira et al. 2010). We also recently found that PKC regulates 
MDM2 expression independently of p53. Given that Mdm2 mRNA change was detected in 
p53-proficient, but not deficient cells, PKCδ affected Mdm2 at the post-translational level. In 
this context, treatment of proteasome inhibitor MG132 restored Mdm2 expression to the 
steady-state level. Moreover, PKCδ inhibited Mdm2 ubiquitination in p53-deficient cells and 
loss of PKCδ resulted in an increase in Mdm2 proteasomal degradation. P300/CBP-
associated factor (PCAF), an ubiquitin ligase 3 for Mdm2, was observed to participate in 
Mdm2 ubiquitination by PKCδ inhibition and PCAF silencing rescued Mdm2 diminution. 
We thus conclude that PKCδ regulates Mdm2 expression distinctively of p53 pathway by 
affecting Mdm2 ubiquitination and maintenance of Mdm2 expression by PKCδ is important 
to ensure normal genotoxic cell death response in human cancer cells (Hew et al. 2011). 

7. Future perspective 

PKC plays a pivotal role in the control of apoptotic cell death in response to a diverse array 
of stress stimuli. Thus PKC is a pro-apoptotic kinase activated by multiple mechanisms, 

including subcellular translocation and proteolysis. The proteolytic activation of PKC is 
also important not only in activating the downstream apoptotic cascade including p53, but 
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also in amplifying upstream caspase signaling. Most of the studies mentioned above suggest 
that the role of PKC in the induction of apoptosis is tightly associated with its caspase-
dependent cleavage and the regulation of p53. However, functional regulation of p53 by 

PKC remains largely unclear. In this regard, thorough investigation coupled with PKC 
and p53 should be enhanced from multiple views. In the encounter with genotoxic insults, 
ATM controls various cellular responses, such as cell cycle arrest, transcription, DNA repair, 
and apoptosis. In this context, DNA damage-induced PKC is modulated under ATM, 

suggesting the notion that establishment of the ATMPKCp53 signaling cascade 
provides new mechanistic light on how PKC functions as the pro-apoptotic kinase in the 
nucleus (Figure 1) (Yoshida 2007a, Yoshida 2008a). While dysregulation of the PKC 
signalsome confers resistance to anticancer drugs (Meinhardt et al. 1999), there is little  
 

 

Fig. 1. A hypothetical schema for nuclear targeting of PKC in response to DNA damage. 

Following DNA damage, PKC translocates from the cytoplasm into the nucleus. In 

addition, some genotoxic stress also exerts cytoplasmic oxidative stress to activate PKC. In 

the nucleus, PKC is activated by ATM, then induces apoptosis (or DNA repair) in a p53-
dependent manner. 
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understanding of how the PKC signaling pathway is influenced when cancer cells acquire 
resistance to chemotherapeutic drugs. Considering the importance of PKC in genotoxic 
stress-induced apoptosis, a thorough understanding of how it controls apoptosis should 

benefit cancer therapeutic potentials. Finally, novel PKC-based therapy may be used in 
combination with other agents to confer synergism and prevent the development for drug 
resistance. 
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