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1. Introduction 

At the outset, I believe that the concept of ionizing-radiation (IR) resistance needs to be 
clarified in a tangible manner for readers of this chapter. I propose the following general 
definition adopted in a previous paper (Sghaier et al., 2008): An ionizing-radiation-resistant 
prokaryotes (IRRP) is any vegetative prokaryote that can thrive after exposure to high, acute 
IR (generally, with a D10 value - the dose necessary to effect a 90% reduction in Colony 
Forming Units - greater than 1 kGy) using efficient physiological, genetic and proteic 
protection and repair mechanisms to fully amend its DNA DSBs. IR resistance has been 
observed in a broad range of prokaryotic groups (Kopylov et al., 1993), including 
hyperthermophilic Archaea (P. abyssi, P. furiosus, Thermococcus marinus, Thermococcus 
radiotolerans and Thermococcus gammatolerans) (DiRuggiero et al., 1997; Jolivet et al., 2003a; 
Jolivet et al., 2003b; Jolivet et al., 2004), halophilic Archaea (Halobacterium sp.) (Kottemann et 
al., 2005), the Deinococcus-Thermus group (many Deinococcus sp. and Truepera radiovictrix) 
(Albuquerque et al., 2005), Actinobacteria (Rubrobacter radiotolerans, Rubrobacter xylanophilus 
and Kineococcus radiotolerans) (Yoshinaka et al., 1973; Ferreira et al., 1999; Phillips et al., 2002; 
Chen et al., 2004), Proteobacteria (Methylobacterium radiotolerans and Acinetobacter radioresistens) 
(Ito and Iizuka, 1971; Nishimura et al., 1994), Cyanobacteria (Chroococcidiopsis sp.) (Billi et al., 
2000), and Sphingobacteria (Hymenobacter actinosclerus) (Collins et al., 2000). However, with the 
exception of Deinococcus and Pyrococcus, very little information is available regarding the 
mechanisms of IR resistance and comparative genomics in the above-mentioned prokaryotes. 
D. radiodurans is the current gold-medallist of IR resistance among prokaryotes with a 
completely sequenced genome (Liolios et al., 2006; Liolios et al., 2010), and can amend more 
than 100 DSBs per chromosome, induced by IR, without loss of viability (Moseley, 1983; White 
et al., 1999). After breaking of its 3.2 Mb genome into 20−30 kb pieces by a high dose of IR, D. 
radiodurans fascinatingly reassembles its genome such that 3 hr later fully restructured 
nonrearranged chromosomes are present (Galhardo and Rosenberg, 2009). Nine interrelated 
explanations for the extreme IR resistance of D. radiodurans have been proposed: (i) the binding 
of IrrI (DR0171) to genomic repeat sequences that might prevent exhaustive chromosomal 
degradation after IR exposure - irr for IR resistance - (Udupa et al., 1994), (ii) the  
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RecA(DR2340)-promoted DNA strand exchangeby quite efficient pathways (Kim and Cox, 

2002; Sghaier et al., 2010), (iii) the unusual genomic toroidal morphology (Levin-Zaidman et 

al., 2003) commented in an another paper (Battista et al., 2003), (iv) the prompt 

PprI/IrrE(DR0167)-induced DNA repair in response to IR stress - pprI for inducer of 

pleiotropic proteins promoting DNA repair - (Earl et al., 2002; Hua et al., 2003; Lu et al., 2009), 

(v) the critical role played by PprA (DRA0346) in a presumed IR-induced DNA end-joining 

repair mechanism - PprA for pleiotropic protein promoting DNA repair A - (Narumi et al., 

2004), (vi) the divergent evolutionary route of adaptation to IR resistance in comparison to IR-

sensitive prokaryotes (IRSP) (Omelchenko et al., 2005; Makarova et al., 2007; Sghaier et al., 

2008) including the acquisition of a putative radiation/desiccation response motif (RDRM) and 

regulon (RDR) (Makarova et al., 2007; Makarova and Daly, 2011), (vii) the stabilization by 

“holding proteins” of base pairing between closely opposed strand breaks (Cox and Battista, 

2005), (viii) the extended synthesis-dependent strand annealing (ESDSA) process, which 

involves PolA-accomplished DNA synthesis (completed by crossovers achieved by RecA) 

(Zahradka et al., 2006), with the participation of Pol III and RadA (Galhardo and Rosenberg, 

2009; Slade et al., 2009), and (ix) the protein-centered view of IR toxicity (Daly et al., 2007; Daly, 

2010; Daly et al., 2010) based on the Mn(II)-facilitated recovery from IR injury (Daly et al., 

2004). Yet, why D. radiodurans is an extremely IR-resistant bacterium whereas Escherichia coli is 

not is still an open question. For instance, previous literature (Daly et al., 2004; Daly et al., 2007; 

Daly, 2010; Daly et al., 2010) have suggested that protein protection from damage by oxidation 

and IR is what makes D. radiodurans IR-resistant compared to IRSP including E. coli. If so, it 

raises the question of whether E. coli might be able to amend a genome fragmented by 

restriction enzymes even though it can not amend severe damage induced by IR (Slade et al., 

2009), unless it is mutated (Harris et al., 2009).  

Interestingly, D. radiodurans and P. furiosus are able to efficiently repair DSBs in a similar 

manner (DiRuggiero et al., 1997). In addition, D. radiodurans and P. abyssi respond in a 

similar fashion to DNA damage caused by IR (Jolivet et al., 2003b). DNA replication in D. 

radiodurans is known to cease following irradiation (Dean et al., 1966; Moseley and Copland, 

1976), which is comparable to the efficient strategy utilized by P. abyssi in response to DNA 

damage that includes an uncoupling of DNA repair and DNA synthesis (Jolivet et al., 

2003b). Another shared feature in irradiated D. radiodurans and P. abyssi is the transport of 

damaged DNA that should prevent the accumulation of genetic mistakes (Jolivet et al., 

2003b). Further study will be necessary to discover mechanistic commonalities among IRRP. 

Presently, one of the most significant conclusions that investigators drew by comparing 
IRRP with IRSP was that the most resistant cells accumulated about 300 times more Mn and 
about three times less Fe than the most sensitive cells which contributes to protecting their 
enzymes and the repair functions they catalyze (Daly et al., 2004; Daly et al., 2007; Daly, 
2010; Daly et al., 2010). Interestingly, a recent survey of an Fe-rich site in Tunisia (Tamra 
mine in Nefza) showed relatively high concentrations of Fe (~9.9%) and Mn (~2242 ppm) 
with a high environmental radioactivity level (~1.5 microsieverts/hour (µSv/h)) nearby the 
site. In the United States of America (USA), the Ocean Drilling Program, under contract with 
the National Science Foundation, has recently surveyed environments representative of a 
broad range of subsurface conditions found in marine sediments (D'Hondt et al., 2004). 
Among the most striking features of deeply buried sediments (20-100 meters below the sea 
floor (mbsf)) are Mn-rich sites with high natural γ-radiation levels (see Figure F14 in 
http://www-odp.tamu.edu/publications/prelim/201_prel/201PREL.PDF and  
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http://www.ldeo.columbia.edu/BRG/ODP/ODP/LEG_SUMM/201/leg201.html#fig4) 
(Daly MJ, personal communication, 2006). In this context, anaerobic and hyperthermophilic 
Deinococcus sp. have been isolated from the subsurfaces of hydrothermal vents at depths of 
64.8 to 128.9 mbsf, where temperatures range from 76 to 91.4°C (Kimura et al., 2003). This 
finding supports the possibility of the coexistence within the same ecological niche of 
Deinococcus species and other anaerobic hyperthermophilic archaea.  
16 rDNA-based phylogenies place Deinococcus very close to hyperthermophiles and the root of 

the phylogenetic tree, with organisms exhibiting IR resistance forming a scattered group 

(Woese, 1987; Cox and Battista, 2005). In this context, Cavalier-Smith employed aspects of 

palaeontology, sequence trees, and the methods of transition analysis and congruence testing 

to demonstrate that the last universal common ancestor (LUCA) lies within eubacteria; 

specifically, among negibacteria of the superphylum Eobacteria (Hadobacteria and 

Chlorobacteria) (Cavalier-Smith, 2006). Several important characters indicate that 

Hadobacteria, including the genus Deinococcus, are more primitive than other phyla, with the 

exception of Chlorobacteria (Cavalier-Smith, 2006). As far as the dispersed phylogenetic clades 

of IRRP are concerned, the idea of Cox and Battista (Cox and Battista, 2005) concerning 

convergent evolution remains possible, but it needs further explanation as to how IR-resistant 

lineages became similar to each other. An immediate question is whether horizontal gene 

transfer was involved in the convergent evolution of some pivotal genes essential for IR 

resistance in IRRP. If so, several different evolutionary scenarios are possible: either the genetic 

gain consisted of a few relatively large DNA fragments, or the genetic gain included 

individual genes one-by-one. Additionally, the theory of convergent evolution requires that 

IRRP responded in a similar fashion to DNA damage caused by IR (DSBs) through adaptation 

to identical environments under the same driving forces. More interestingly, Cox and Battista 

raised the possibility that IR resistance could be a vestige of DNA repair systems that were 

present in ancestral species, and has been retained in those organisms that continue to require 

this phenotype (Cox and Battista, 2005). Their explanation asserts that most descendents “lost” 

the ancestor’s ability to cope with DNA damage and predicts that the molecular mechanisms 

of IR resistance should be similar among IR-resistant species. Given new insights from 

pertinent organisms, novel comparative analytical tools, and extensive phylogenetic 

endeavours, it should soon be possible to test current and future hypotheses concerning the 

origin of IRRP (see (Omelchenko et al., 2005; Makarova et al., 2007; Sghaier et al., 2007; 

Makarova and Daly, 2011) and references therein). 

Presently, besides many genome projects of IRRP in progress (e.g. Acinetobacter radioresistens), 

many completely sequenced IR-resistant genomes are available on public genome databases 

(e.g. Deinococcus proteolyticus MRP (Liolios et al., 2010)) or were published very recently (e.g. 

Deinococcus maricopensis DSM21211 (Pukall et al., 2011)). However, completely sequenced IR-

resistant genomes (Liolios et al., 2010), with published information regarding their IR 

resistance, are relatively limited in number and restricted in genera: Deinococcus deserti 

VCD115 (de Groot et al., 2005; de Groot et al., 2009; Baudet et al., 2010), Deinococcus geothermalis 

DSM 11300 (Makarova et al., 2007), D. radiodurans R1 (White et al., 1999), two species of 

Halobacterium (H. salinarum R1 (Pfeiffer et al., 2008) and Halobacterium sp. NRC-1 (Ng et al., 

2000)) (Ng et al., 2008), Kineococcus radiotolerans SRS30216 (Bagwell et al., 2008), Rubrobacter 

xylanophilus DSM 9941, Methylobacterium radiotolerans JCM 2831 (Liolios et al., 2010), three 

species of Pyrococcus (P. abyssi GE5 (Cohen et al., 2003), P. furiosus DSM 3638 (Maeder et al., 

1999), and P. horikoshii OT3 (Kawarabayasi et al., 1998)), Thermococcus gammatolerans EJ3 
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(Jolivet et al., 2003a; Liolios et al., 2010), and Truepera radiovictrix DSM 17093 (Ivanova et al., 

2011). In concordance with previous literature (Koonin, 2003), genes shared by the above-

mentioned members of prokaryotic IR-resistant taxa based on TaxPlot available through the 

NCBI database (Sayers et al., 2011) suggest that the hypothesis of a common ancestor is 

quantitatively tenable. Qualitatively (Ouzounis et al., 2006), and in contrast to other 

phenotypes such as those characterized by (hyper)thermophily or pathogenecity, IR resistance 

does not have characteristic large genetic traits (mutagenesis cassettes, genomic islets ( 10 

kilobase pairs (kb)) or fitness islands ( 10 kb), etc.) that are either correlated to IR resistance, 

specific to IRRP, or absent in IRSP. Hallmark genes correlated to IR resistance could be 

classified into four major evolutionary families on the basis of their mode of contribution to 

DNA repair (directly through interactions with DNA or indirectly by interactions without 

DNA) and their prokaryotic distribution: 

 Family 1: Composed of genes assuming fundamental and direct functions related to 
DNA replication and repair (e.g. polA, recA) (Kim and Cox, 2002; Zahradka et al., 2006). 
Members of this family, or their orthologs, are present in all previously studied IRRP 
(Ouzounis et al., 2006; Sghaier et al., 2008). For instance, RecA protein is quintessential 
for the fidelity of repair of IR-induced DNA breaks and, consequently, for genome 
stability in D. radiodurans (Repar et al., 2010). In addition, the RecA mutant is among the 
most IR-sensitive mutants found in D. radiodurans (Moseley and Copland, 1975). 

 Family 2: Containing genes that contribute directly to IR resistance (e.g. DNA 
nonhomologous end-joining complex) (Weller et al., 2002). Genes of this family are 
present in several IR-resistant lineages (Aravind and Koonin, 2001). 

 Family 3: Comprising genes that contribute indirectly to IR resistance (e.g. superoxide 
dismutase, catalase) (Markillie et al., 1999). These genes are shared by some IRRP (Klotz 
and Loewen, 2003). 

 Family 4: Containing genus- or species-specific genes that contribute directly or 
indirectly to IR resistance (e.g. pprI and pprA in Deinococcus) (Hua et al., 2003; Narumi et 
al., 2004). Interestingly, genes of this family enhance DNA repair abilities (Narumi et al., 
2004) and regulation mechanisms through check points (Hua et al., 2003). 

Previous work by Zahradka et al. revealed the relevant two-stage DNA repair process 
involving PolA and RecA DNA repair enzymes during recovery of D. radiodurans from IR 
(Zahradka et al., 2006). Moreover, the key steps and enzymes involved in ESDSA were 
identified (Galhardo and Rosenberg, 2009; Slade et al., 2009). Particularly, polA and recA 

homologs, belonging to Family 1 (see above), are found among all IRRP. Therefore, the 
proposal of an ancestral ESDSA repair process (Zahradka et al., 2006) is plausible from a 
comparative genomics perspective. Since ancestral proteins are reconstructable (Thornton, 
2004), the above data suggest that ESDSA might shed light through complementation assays 
on the IR sensitivity or IR resistance of any node in a phylogenetic tree of PolA or RecA. For 
instance, a resurrected ancestral PolA protein might be used to complement IR-sensitive 
cells that are deficient in PolA and for which the wild-type is IR-resistant. The PolA-RecA-
mediated repair process possesses the following important characteristics: 
1. Functionally, its proteins (PolA and RecA) are important for IR resistance (DiRuggiero 

et al., 1997; Cox and Battista, 2005; Zahradka et al., 2006; Galhardo and Rosenberg, 2009; 
Slade et al., 2009; Repar et al., 2010). 

2. Phylogenetically, it is a ubiquitous repair mechanism, and it is traced back to LUCA 
(DiRuggiero et al., 1999; Koonin, 2003; Ouzounis et al., 2006).  
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3. Evolutionarily, its informational proteins have not been subject to lateral gene transfer 
(Jain et al., 1999; Koonin, 2003; Ouzounis et al., 2006; Cohen et al., 2011). 

The first stage of the two-stage DNA repair process involves a PolA-dependent ESDSA 
mechanism (Zahradka et al., 2006). This stage mainly requires a functional PolA enzyme 
and at least two genome copies that are broken at different positions. Knowing that IR-
sensitive D. radiodurans polA mutants are fully complemented by expression of the polA gene 
from the relatively IR-sensitive E. coli (Gutman et al., 1994), and that many IRSP are 
polyploid (Daly and Minton, 1995), it is legitimate to propose that the first stage of the two-
stage DNA repair process could be functional in IRSP. However, the possibility that some 
deinococcal hypothetical protein(s) or orphan(s) facilitates DNA synthesis by ‘any’ 
functional PolA must be seriously considered. This preparation of chromosomal fragments 
by hypothetical protein(s), albeit not demonstrated, might explain the delay of 1.5 hours in 
DNA synthesis in the wild-type (Zahradka et al., 2006) and is consistent with the presence of 
many species-specific proteins in D. radiodurans. 
The second stage of the two-stage DNA repair process involves RecA-dependent crossovers 
in D. radiodurans (Zahradka et al., 2006), belonging to Mn-accumulating bacteria (Daly et al., 
2004). In general, (1) ionic strength affects RecA binding preferential affinity to DNA in 
relation to single-stranded DNA or double-stranded DNA (Cazenave et al., 1983), and (2) 
Mn ions have possible effects on DNA structure (stabilization of the helix, neutralization of 
the negative charge of the phosphate backbone, prevention of DNA renaturation, etc.) 
(Polyanichko et al., 2004). Thus, it is legitimate at this point to assume that the in vivo affinity 
for DNA of ‘any’ RecA within D. radiodurans will differ from its in vivo affinity for DNA 
within an IR-sensitive cell like E. coli. Until more research is done, investigators presently 
agree that repair of DNA DSBs mediated by recA-like genes is an extremely active and 
distinct repair mechanism in Deinococcus and Pyrococcus (DiRuggiero et al., 1997; Kim and 
Cox, 2002; Zahradka et al., 2006; Sghaier et al., 2010). 
Experimental support for the theory of an ancestral ESDSA repair process is needed. Having 
been discovered in D. radiodurans (Zahradka et al., 2006), an essential attribute of ESDSA is 
that its presence should also be testable experimentally in IR-resistant archaea.  
A consideration of the evolution of IRRP in terms of phenotypic consequences representing 
genetic change would provide answers on how these organisms evolved. For example, 
comparative genomic surveys revealed that the radiation-desiccation resistance phenotype 
of D. radiodurans might have gradually evolved via cross-species gene transfer (Omelchenko 
et al., 2005). One aspect of this theory does seem correct: in contrast to Pyrococcus, 
Deinococcus clearly escaped with other Terrabacteria from a state of genetic shrinkage to 
“genetic gamble” in response to stress during land colonization (Battistuzzi et al., 2004). In 
this context, the “desiccation adaptation hypothesis” (Mattimore and Battista, 1996) suggests 
that the IR resistance of D. radiodurans is a consequence of its adaptation to desiccation. 
However, there is no genome-wide data or any experimental data to suggest that 
desiccation tolerance is antecedent to IR resistance. If this hypothesis is wrong, evolution of 
IRRP can be misinterpreted profoundly in numerous ways. Briefly, the data presented by 
Mattimore and Battista (Mattimore and Battista, 1996) only implied a strong positive 
correlation between these two phenotypes. In fact, a co-author of the “desiccation 
adaptation hypothesis” showed that inactivation of DRB0118, a constitutively expressed 
protein, greatly sensitizes D. radiodurans to desiccation, but not to IR (Battista et al., 2001). In 
addition, the ill-founded “desiccation adaptation hypothesis” (Mattimore and Battista, 1996) 
fails to explain the extreme IR resistance observed in several members of the domain 
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Archaea (e.g. Pyrococcus, Thermococcus). A recent in vitro investigation (Beblo et al., 2011) led 
to a definitive refutation of the “desiccation adaptation hypothesis” (Mattimore and Battista, 
1996) and to an implicit vindication of the “radiation adaptation hypothesis” (Sghaier et al., 
2007). In brief, it was demonstrated that desiccation-tolerant as well as desiccation-intolerant 
(hyper-) thermophilic archaea survived comparably high doses of IR (Beblo et al., 2011). In 
so far as other mechanisms of IR resistance are concerned, it is not surprising that the 
Deinococcus lineage does not share with Pyrococcus its five transcripts (DR0423, ddrA; 
DR0070, ddrB; DR0003, ddrC; DR0326, ddrD; DRA0346, pprA), most likely evolving in 
response to IR and desiccation (Tanaka et al., 2004). This network of five transcripts is 
Deinococcus lineage-specific. Similarly, a putative DNA-repair gene cluster of five conserved 
hypothetical genes in P. furiosus (PF0639, PF0640, PF0641, PF0642, PF0643), specifically 
induced by exposure to IR and probably involved in translesion synthesis, seems to be 
unique to thermophilic archaea and bacteria (Williams et al., 2007). Does this mean that this 
putative cluster is important for thermophily? The answer is probably no. One could 
highlight the fact that the mechanism that protects the DNA against thermal degradation 
does not prevent the formation of DNA breaks during irradiation (Gerard et al., 2001).  
A corollary to all these analyses is the notion that there is a multiplicity of evolutionary and 
functional processes associated with IR resistance (Omelchenko et al., 2005; Makarova et al., 
2007; Sghaier et al., 2007; Daly, 2010; Makarova and Daly, 2011; Slade and Radman, 2011). 
However, this integrative appraisal does not exclude the possibility of common processes 
among IRRP. Future analyses might consider more experimental and genomic data from a 
variety of IRRP in order to determine whether they possess a set of genes that would refute 
either the concept of convergent evolution or the idea of a common ancestor. 
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