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1. Introduction 

Northern Thailand, which experiences rainy and dry seasons under an Asia monsoon 

climate, is characterized by hilly and mountainous landscapes. The rainfall tends to increase 

with altitude (Kuraji et al., 2001; Dairaku et al., 2004). Forests in northern Thailand at 1000 m 

above sea level (a.s.l.) are classified as lower montane rain forests (Santisuk, 1988). These 

areas receive high amounts of precipitation and provide a stable supply of high-quality 

water that is crucial for irrigation and drinking water (Bruijnzeel et al., 2011). Generally, 

water resources or stream flow are estimated by the difference between precipitation and 

evapotranspiration (i.e., the sum of canopy interception, soil evaporation, and 

transpiration). Thus, it is important to examine how forests consume rainwater as 

evapotranspiration, in conjunction with hydrological and meteorological variables. Such 

modeling is also essential for water resource management. 

This study is a continuation of previous studies of transpiration peaks in an evergreen forest 

in northern Thailand (18o48’N, 98o54’E, 1265–1450 m a.s.l.) in the late dry season (Tanaka et 

al., 2003, 2004). Tanaka et al. (2003) concluded that transpiration in evergreen forests peaked 

in the late dry season. They suggested that reduced canopy wetness lowered evaporation; 

however, stomatal conductance declined only slightly, even under the driest conditions and 

highest net radiation. These results counter previous reports of an evapotranspiration 

decline in Thailand’s dry season in evergreen forests (Pinker et al., 1980) and other 

vegetation (Toda et al., 2002). Tanaka et al. (2004) examined the impact of rooting depth and 

soil hydraulic properties on forest transpiration using a newly developed soil–plant–air 

(SPAC) multilayer model. They found that a rooting depth of 4–5 m was needed to 

effectively simulate heat-pulse velocity variations corresponding to dry-season transpiration 

and annual discharge or stream flow. Moreover, a penetration test showed that the soil 
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became harder at depths of 4–5 m, supporting the estimated rooting depths. Numerical 

simulations indicated that a late dry season transpiration peak is theoretically possible on 

the basis of rooting depth limitations on soil water use because the rooting depth was within 

the reported maximum for trees. Canadell et al. (2006) reviewed numerous reports of 

maximum rooting depth and calculated the average and standard deviation as 7.0 ± 1.2 m. 

Although these studies emphasized the late-dry-season transpiration peak and its 

mechanism, using combinations of modeling and observation for 2–3 years periods, the 

impact of interannual variation in rainfall or dry season period length on the peak was not 

sufficiently examined. 

Our objective was to clarify the interannual variation in the late-dry-season transpiration 

peak in a hill evergreen forest in northern Thailand. A numerical simulation of the seasonal 

variation in evapotranspiration was performed using a SPAC multilayer model with 

hydrometeorological variables for the period 1999–2005. The heat pulse velocity 

corresponding to water use by individual trees was monitored and evapotranspiration was 

estimated from the water budget (i.e., the difference between rainfall and stream flow) for 

the 7-year period. These values were compared with the simulated temporal transpiration 

and annual evapotranspiration. 

2. Materials and methods 

2.1 Site 

Since February 1997, the hydrological and meteorological parameters of a sub-watershed 

of the Kog-Ma Experimental Watershed have been measured. The sub-watershed has an 

area of 8.63 ha and is situated 1265–1420 m a.s.l. on Mount Pui (18°48’ N, 98°54’ E) near 

Chiang Mai (18°47’ N, 98°58’ E, 310 m absl.) in northern Thailand. A 50-m meteorological 

tower was built in the sub-watershed and equipped with instruments for measuring 

meteorological parameters, such as radiation, wind velocity, and air temperature. 

Evergreen forest covers the hills of the experimental watershed. Fagaceae dominates, with 

species including Lithocarpus, Quercus, and Castanopsis (Bhumibhamon & Wasuwanich, 

1970). Northern Thailand is characterized by hilly and mountainous landscapes, and 

rainfall tends to increase with altitude (Kuraji, 2001). Dairaku et al. (2004) reported that 

the larger amount of high-altitude rainfall was due to duration and frequency rather than 

intensity, which implies that the appearance of clouds is more frequent at higher 

altitudes. The forest is lower montane rain forest according to the classification of 

Santisuk (1988). This area receives more rainfall than areas at lower altitudes such as 

Chiang Mai, with annual precipitation of 1183 mm for 1960–1990 (Thai Meteorological 

Department, 2011). It is cloudier, particularly in the rainy season, and occasionally 

experiences fog (N. Tanaka et al., 2011). Average annual rainfall and air temperature for a 

7-year period (1999–2005) were 1881 mm and 19.8°C, respectively. The leaf area index 

(LAI) is approximately 4.5, with a seasonal range from 3.5 to 5.5 (Tanaka et al., 2003). 

Forest floor soils derive from granitic materials and are classified as Reddish Brown 

Lateritic (Tangtham, 1974).  

Stream flow in the sub-watershed was measured at a concrete weir with a 90 triangular 
notch. Data were missing for 164 days in 2002, 2004, and 2005, representing 6.41% of the 
total days in the period 1999–2005. Stream flow on these days was estimated by data 
assimilation with a river flow model (Fukushima, 1988). The rainfall data and measured 
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stream flow were used as input and output data, respectively, and the data for 10 (Sep. in 
2001–Jun. in 2002), 3 (Oct.–Dec. in 2002), 8 (Jan.–Aug. in 2004), and 12 months (Jan.–Dec. in 
2005) around the missing data were used to assimilate the stream flow data. 
The heat pulse velocity corresponding to water use by an individual tree was monitored in 

three tree trunks (No. 1: Phoebe paniculata. Nos. 2 and 3: Lithocarpus elegans). The height and 

diameter of the three trees at 1.2 m were 28.0 m and 0.51 m, 23.0 m and 0.29 m, and 15.5 m 

and 0.20 m, respectively, in 1999–2005 (Tanaka et al., 2003). The observation of heat pulse 

velocity near a ridge, where no water table seemed to form, showed that the water use (or 

sap flow) of individual trees had a seasonal trend similar to those of the three trees (Tanaka 

et al., 2004). These trees belonged to the uppermost or second story. Therefore, the water use 

by these trees should reflect the transpiration over the forest as a whole (e.g., Kelliher et al., 

1992; Tanaka et al., 2003) because transpiration from the upper layers is thought to 

contribute most of the total transpiration. Here, measured seasonal and interannual changes 

were used to validate the simulated transpiration. 

2.2 A one-dimensional SPAC multilayer model for evapotranspiration 

We used a one-dimensional SPAC multilayer model (Tanaka & Hashimoto, 2006) consisting 

of a soil multilayer model (Kondo & Xu, 1997) and a canopy multilayer model (Tanaka et al., 

2003; Fig. 1). The soil multilayer model considers the variation in albedo and evaporation 

efficiency with changes in soil moisture at the top of the soil column (Kondo & Xu, 1997). 

The canopy multilayer model (Tanaka et al., 2003) for sensible and latent heat and CO2 gas 

exchange consists of a second-order closure model for atmospheric diffusion coupled with a 

radiation transfer model (Tanaka, 2002), a rainfall interception model (Tanaka, 2002), a 

Farquhar-type photosynthesis model (Farquhar et al., 1980), and a stomatal conductance 

model (Ball, 1988). The rainfall interception model assumes that rainfall does not wet the 

lower sides of leaves with stomata, only the upper sides without stomata, while 

condensation wets both sides. In the photosynthesis model, the maximum potential rate of 

electron transport and dark respiration at 25°C (JMAX25 and Rd25) were scaled to VcMAX at 

25°C (VcMAX25); that is, JMAX25 = 2.14 VcMAX25 after Tanaka et al. (2002) and Rd25 = 0.015 VcMAX25 

after Collatz et al (1991). The assumptions, functions, and procedures in the calculations of 

the gross CO2 assimilation rate A, dark respiration Rd, and stomatal conductance gs were 

described by Tanaka et al. (2002). 

Combined, the two multilayer models by Kondo and Xu (1997) and Tanaka et al. (2003) 

consider the loss of soil moisture by water uptake (or transpiration) and the effect of soil 

water content on stomatal closure (Tanaka et al., 2004). The water uptake at depth z was 

assumed to be proportional to the ratio of the extractable to the entire extractable 

soilwater content (We; Tanaka et al., 2006). The sum of the water uptakes corresponds to 

the temporal canopy transpiration. When canopy transpiration can be supplied by the 

entire extractable soilwater content at 0–1m depths (see Case A in Fig. 1), where the major 

plant nutrients C, N, P, and K appear to be concentrated (Jackson et al., 2000), We is 

calculated between the depths of 0–1m from which the water uptake is supplied. In the 

other case, We is calculated as the extractable soilwater content between 1m and the 

maximum rooting depth ZROOT (here, = 4 m) (see Case B in Fig. 1), and the water uptake is 

supplied from soil layers at 1m to ZROOT. The water uptake at depth z, regardless of the 

vertical root distribution, is expressed as 
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Fig. 1. A one-dimensional soil–plant–air continuum multilayer model for evapotranspiration 
(i.e., the sum of canopy transpiration Et, canopy interception Ei, and soil evaporation Es). 
Discharge D was calculated as the downward water flux passing through the rooting depth 
(4 m), and volumetric soil moisture at the bottom of the soil layer (9 m) was set to the 
saturated volumetric soil moisture θs. Eu and θMIN are the water uptake by roots and soil 
moisture, respectively, at the lower limit of soil water potential ψLL (–100 m), where trees 
cannot take up water. Case A shows water uptake when canopy transpiration can be 
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supplied by the entire extractable soilwater content at 0–1m depths, while Case B shows 
water uptake in the other case. Eu at depth z was assumed to be proportional to the ratio of 
the extractable soil water content (i.e., θ(z) - θMIN) to the entire extractable soil water content 
We at 0–1m depths (Case A) or from 1m to the maximum rooting depth ZRoot (= 4 m) (Case B) 
(Tanaka et al., 2006). The canopy height was set to 30 m (Tanaka et al., 2003). 

 
( ( ) )

( )
MIN

u t
e

z
E z E

W

  
  (1) 

Here θ MIN is the volumetric soil water content at which trees cannot take up water. This 
corresponds to the value at the upper limit of the soil water potential (ψUL = –100 m). We in 
Case A or B is expressed as 

 
1

0
( ( ) )e MINW z dz    , or 

1
( ( ) )

ROOTZ
e MINW z dz     (2) 

This assumption of water uptake is simple compared to another frequently used weighting 

scheme (e.g., Dickinson et al., 1993; Desborough, 1997) based on the assumption that the 

root length density distribution is proportional to water extraction throughout the profile. 

Radersma and Ong (2004) did not find a clear relationship between root length density and 

water extraction. Other researchers have questioned the various proposed relationships 

between root length density and water uptake (Dardanelli et al., 2004). These findings 

suggest that the process of water uptake by roots is not entirely clear. Therefore, we used a 

simpler assumption. 

Stomatal conductance was assumed to decrease with the ratio RWe of integrated extractable 

water content We from the surface to the rooting depth (i.e., 
0

( ( ) )
ROOTZ

e MINW z dz    ) to 

the integrated extractable water content at saturation from the surface to the rooting depth 

( )es s MIN ROOTW Z    , given as 

 ( )s We sWg f R g   (3) 

where gsW is the stomatal conductance in well-watered soil and f(RWe) is a function of the 
ratio RWe = We/Wes ranging from 0 to 1. The function f(RWe) was calculated as 

  ( ) min 1.6 0.2;1We Wef R R   at RWe > 0 (4) 

 ( ) 0Wef R  at RWe = 0 (5) 

Equation (4), including the values of the slope and intercept, is close to the relationship 
between the extractable water content and stomatal conductance shown by Gollan et al. 
(1985). 
In the canopy multilayer model, the evapotranspiration depends on the LAI, the slope m in 

Ball’s stomatal conductance model (Ball, 1988), and Vcmax at 25oC (Vcmax25) in a Farquhar-type 

photosynthesis model (Farquhar et al., 1980). These parameters are based on the estimated 

LAI and determined by referring to the measured net photosynthesis rate and stomatal 

conductance for single leaves (Tanaka et al., 2003). The values were set at 4.5, 10, and 25 

μmol m-2 s-1, respectively. The vertical profile of the LAI is also a required parameter. It was 
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assumed to obey a beta distribution, with the greatest leaf area density at 0.7 times the 

canopy height (B-type canopy; see Figure 6 of Tanaka et al. 2003). Tanaka et al. (2003) 

investigated the impact of each parameter on evapotranspiration. Kondo and Xu (1997) 

verified the method by comparing observed and calculated results for four soil textures (i.e., 

volcanic ash, clay loam, silty sand, and sand). Silty sand was selected as the sub-watershed 

soil texture, whose observed relationship between volumetric soil water content θ and soil 

water potential ψ was close to that in the model (Tanaka et al., 2004). The soil and rooting 

depth were set at 9 and 4 m, respectively (Tanaka et al., 2004). Kondo and Xu (1997) and 

Tanaka et al. (2003) detailed the other parameter values used in the simulation. 

The canopy (height = 30 m) was divided into 50 layers. Each soil layer was 0.1 m thick. The 

time interval was set at 3 min in the soil multilayer model because of the thin soil layers (0.1 

m), but it was set at 15 min in the canopy multilayer model. The model simulated soil 

evaporation Es, canopy interception (i.e., evaporation from a wet canopy) Ei, transpiration 

Et, discharge D, and soil moisture. The profiles of all the meteorological elements were 

calculated repeatedly among all sub-models until the differences between the previous and 

new values of leaf temperature, air temperature, humidity, ambient CO2 concentration, 

downward and upward longwave radiation, and water storage on both upper and lower 

sides of the leaves were within 1% (Tanaka, 2002). The maximum number of repetitions was 

set at 100 (Tanaka, 2002). Here, D was calculated as the downward water flux passing 

through the rooting depth (Fig. 1). The initial soil moisture condition at the beginning of 

1998 calculated by Tanaka et al. (2004) was used here. The initial soil moisture condition was 

calculated repeatedly until it corresponded to the value at the end of 2000 in the study by 

Tanaka et al. (2004). This implies that the total rainfall was used as Et, Ei, and Es, and 

discharged without changing into stored soil water between the beginning and end of the 3-

year period (1998–2000). Soil moisture at the bottom of the soil layer (= 9 m; Fig. 1) was set 

to the saturated soil moisture θs. This initial condition did not consider the impact of the 

decrease in rainfall in the rainy season in 1997 caused by the 1997–1998 El Niño (Wang & 

Weisberg, 2000). The initial soil moisture appeared greater because of the impact of more 

rainfall in 2001. Heat pulse velocity was not monitored in the late dry season in 1998. 

Therefore, simulation results for 1999–2005 are shown here. The initial soil moisture at the 

beginning of 1999 was calculated using hydrometeorological variables in 1998. 

3. Results 

Figure 2 shows seasonal and interannual temporal variations in hydrometeorological 
variables in 1999–2005. The study area has three seasons in terms of air temperature and 
rainfall changes: a rainy season and early and late dry seasons (Tanaka et al., 2003). The light 
gray, gray, and black bars in Fig. 2a indicate the point 30 days before the day when the 
rainfall amount exceeded 150 mm (i.e., the wet period; WP) (Fig. 2b), the days excluding 
those in the WP whose following 5 days had mean air temperatures below 21ºC (i.e., the 
cool dry period; CDP), and the days excluding those in the WP whose following 5 days had 
average values of air temperature over 21ºC (i.e., hot dry period; HDP), respectively. The 
horizontal bars in Fig. 2b show the points at which the 90 previous days had less than 50 
mm of total rainfall (i.e., a drought condition; DC). The CDP was concentrated in the early 
dry season, while the HDP was concentrated in the late dry season. The HDP occasionally 
appeared in the early dry seasons, in much shorter periods than in the late dry seasons. The 
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Fig. 2. (a) Hydrometeorological periods in 1999–2005. Light gray, gray, and black bars show 
the days on which the amount of rainfall 30 days previously was over 150 mm (i.e., the wet 
period; WP), the days excluding those in the WP for which the following 5 days had average 
air temperature values below 21ºC (i.e., the cool dry period; CDP), and the days excluding 
those in the WP for which the following 5 days had average air temperature values over 
21ºC (i.e., the hot dry period; HDP), respectively. Seasonal changes in air temperature and 
rainfall P (b), vapor pressure deficit and downward solar radiation S (c), volumetric soil 
moisture θ at depths of 0.1 and 0.5 m (d), and stream flow (e) are shown for 1999–2005. The 
horizontal bars in (b) show the days for which the previous 90 days had less than 50 mm of 
total rainfall (i.e., drought conditions; DC). The horizontal bars in (e) show the days without 
measurements of stream flow. During the days with missing data, stream flows were 
estimated by data assimilation using a river flow model (Fukushima, 1988). The shaded 
areas in (e) correspond to the data assimilation periods. 

lengths of both the CDP and HDP changed interannually, being longest in 2004–2005 and 

shortest in 2002–2003. In the longest dry season, the DC period was longest. The DC period 

did not appear in the 2001–2002 and 2002–2003 dry seasons. The annual amount of rainfall 

was smallest in 2003 (= 1504 mm) and largest in 2002 (= 2458 mm). The vapor pressure 

deficit (VPD) and downward solar radiation S peaked in the HDP (Fig. 2c), indicating the 

strongest atmospheric evaporative demand. These quantities were lower in the WP. The 

VPD peak was the lowest in the HDP of 2003 because the shortest dry season was in 2002–

2003. The solar elevation at noon and the day length were higher and longer, respectively, in 

the rainy season, but the frequent appearance of clouds modified the less intense solar 

radiation. The volumetric soil moisture values at 0.1 and 0.5 m were also lowest in the late 

dry season (Fig. 2d). The duration of the driest conditions increased with the DC period, 
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particularly in 2004. The stream flow was never interrupted, even in the late dry season (Fig. 

2e). This implies that the deeper soil portion was still moist even though the soil surface 

layer at depths of 0.1–0.5 m was dry. The peak stream flow appeared in the late rainy season 

or at the end of WP (e.g., September–November). The peak value was the largest in 2002 due 

to the rainfall amount. The horizontal bars in Fig. 2e show the days without stream flow 

measurements. For days with missing data, stream flows were complemented by data 

assimilation with a model for river flow (Fukushima, 1988). The shaded areas in Fig. 2e 

correspond to the data assimilation periods. The total measured and modeled stream flows 

were 3025 mm and 3040 mm, respectively, for 835 days during the periods with measured 

stream flow. The total amount of complemented stream flow was 498 mm for the 164 days 

with missing data, and the estimated error was extremely small (several millimeters). 

 

 

Fig. 3. (a) Simulation of the seasonal variation in evapotranspiration (i.e., the sum of soil 
evaporation Es, canopy interception or evaporation from the wet canopy Ei, and 
transpiration Et) in 1999–2005. (b) The cumulative result. Light gray (wet period; WP), gray 
(cool dry period; CDP), and black bars (hot dry period; HDP) in (a) correspond to those in 
Fig. 2a. The shorter black bar (drought condition; DC) also corresponds to that in Fig. 2b. 

Figure 3a shows the simulation results of evapotranspiration ET (i.e., the sum of soil 

evaporation Es, canopy interception Ei, and transpiration Et) in 1999–2005. The Ei appeared 

to increase with rainfall in the rainy seasons. In particular, the ratio of Ei to ET was close to 

half of the ET in 2002, the year with the largest rainfall. The Et peaked in the HDP in 1999–

2003, particularly in 2002 and 2003, but the Et in the HDP almost equaled that in the WP in 

2004 and 2005. The simulated ET maintained large values during the HDP and WP in 1993–

2003, although the ET was smaller in the HDP in 2004 and 2005. The simulated ET values 

were smaller in the CDP due to weaker atmospheric conditions (lower temperature, lower 

VPD, and less intensive solar radiation due to the decline in solar elevation), even though 

the soil was wetter. The simulated Es was small under humid conditions within a canopy 

due to both the lower VPD and the wetter soil, while Es increased in the HDP and/or the 
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DC. Figure 3b shows the cumulative results from Fig. 3a. The annual amounts of simulated 

ET, Es, Ei, and Et were 707, 49, 151, and 507 mm yr-1, respectively, for the 7-year period. The 

closed canopy reduced Es, and almost all Ei disappeared outside the rainy season. Thus, the 

percentages of Es, Ei, and Et within ET were 7, 21, and 72% in the 7-year period, respectively. 

Assuming a negligible difference in the storage of soil moisture between the beginning of 

1999 and the end of 2005, the annual ET was 694 mm yr-1, the difference between rainfall 

(1881 mm yr-1) and stream flow (1187 mm yr-1). The ET value from the water budget was 

very close to the simulated ET. The error in stream flow estimated by data assimilation 

appeared to be negligible (several millimeters over 7 years), as the above-mentioned.  

 

 

Fig. 4. (a) Continuous period of measurement of heat pulse velocity of three trees (number 1, 

Phoebe paniculata; numbers 2 and 3, Lithocarpus elegans) using the same sensor. The values in 

the figure correspond to the heat pulse velocity (m 5ds-1) at 18 mm per 5 days of 

transpiration. (b) Simulation of the seasonal variation in transpiration Et and heat pulse 

velocity of the three trees in 1999–2005. Light gray (wet period; WP), gray (cool dry period; 

CDP), and black bars (hot dry period; HDP) in (b) correspond to those in Fig. 2a. The shorter 

black bar (drought condition; DC) also corresponds to that in Fig. 2b. 

Figure 4 shows seasonal and interannual variations in the simulated Et and heat pulse 

velocity of the three trees (number 1, Phoebe paniculata; numbers 2 and 3, Lithocarpus elegans). 

The horizontal bars in Fig. 4a indicate the duration of the measurement of heat pulse 

velocity for each tree with the same sensor and position. The values above the bars 

correspond to the heat pulse velocity (m s-1) at 18 mm per 5 days of transpiration. These 

changes depended on where and how deep the probe and sensor were placed in the trunks 

(Phillips et al., 1996; Takizawa et al., 1996; James et al., 2002). Probes and sensors were 

inserted in the trunks. The simulated Et captured the variation in heat pulse velocity. Both Et 

and the heat pulse velocities exhibited late-dry-season transpiration peaks in 1999, 2000, and 

particularly 2002. However, the peaks were smaller in 2003 and 2004 and almost the same as 

Et in the rainy season. 

Figure 5 shows the simulated mean±1 standard deviation values of daily transpiration 

during the HDP (see Fig. 4b) in the dry season from 1999–2000 to 2004–2005. The gray, 
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black, and narrower black bars denote the number of days in the CDP, HDP, and DC, 

respectively, in the dry season from 1999–2000 to 2004–2005. Daily transpiration in the HDP 

was the smallest and second smallest in the 2003–2004 and 2004–2005 periods, respectively. 

These periods had longer dry seasons; in particular, the longest CDP and HDP were in 

2004–2005. There were also 54 and 78 days of DC in the 2003–2004 and 2004–2005 periods, 

respectively. The longer period of atmospheric strong evaporative demand and insufficient 

soil moisture decreased the transpiration in the HDP. The transpiration in the HDP in 2004–

2005 was larger than that in 2003–2004, although both the HDP and DC were longer in 2004–

2005 than in 2003–2004. In the shortest dry season without DC (for which the sum of CDP 

and HDP was 118 days; 2002–2003), the daily transpiration was the largest. 

 

 

Fig. 5. Simulated mean±1 standard deviation values of daily transpiration Et during the hot 
dry period (HDP, see Fig. 4b) in the dry season from 1999–2000 to 2004–2005. Gray, black, 
and narrow black bars show the number of days of cool dry period (CDP), HDP, and 
drought condition (DC), respectively, in the dry season from 1999–2000 to 2004–2005. 

4. Discussion 

The SPAC multilayer model (Tanaka & Hashimoto, 2006) was used to simulate the 

interannual variation in ET at a hill evergreen forest in northern Thailand between 1999 and 

2005. The simulated annual ET was close to the difference between rainfall and stream flow 

(i.e., the ET from the water budget) during the 7-year period. The simulated transpiration Et 

captured the measured heat pulse velocity corresponding to water use by an individual tree, 

particularly the decrease in the late-dry-season Et in 2004 and 2005. The assumption that the 

decrease in extractable soil moisture had reduced impact on stomatal closure (i.e., equation 

4) thus appeared to be appropriate for the estimation of transpiration at the forest canopy 
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level. To confirm this assumption, the model should be applied to data for different 

vegetation under drought conditions. Tanaka et al. (2009) found that this assumption was 

reasonable for modeling deciduous teak plantations with shallower rooting depth under 

drought conditions in northern Thailand. Although the simulated canopy interception Ei 

was not validated here, Tanaka et al. (2003) simulated the Ei of the forest in 1998–1999 using 

a canopy multilayer model (Tanaka, 2002) but no soil multilayer model (Kondo & Xu, 1997). 

They compared the simulated Ei with that estimated from the difference between rainfall 

and the sum of throughfall and stemflow and found that the annual values were close. 

Although the simulated soil evaporation Es was also not validated, Es likely occupied a 

small portion of the ET due to the decline in downward solar radiation and wind velocity 

because of the closed canopy, as in the simulation (Fig. 3; the ratio of Ei to ET is annually 

7%). Thus, this study is the first to reveal features of the interannual variation in ET (i.e., the 

sum of Es, Ei, and Et). 

The simulated annual ET (= 707 mm yr-1) was smaller than that estimated from the water 

budget (= 694 mm yr-1) by 13 mm. The smaller LAI decreased Et and Ei and increased Es 

(Tanaka et al., 2009). Smaller values of VcMAX25 or shallower rooting decreased Et and 

changed little both Ei and Es within the model (Tanaka et al., 2004, 2009). These impacts on 

ET were larger in the late dry season and the HDP, when atmospheric evaporation 

demand was stronger than in the rainy season because of the higher temperatures and 

VPD and the intensive solar radiation (Tanaka et al., 2003, 2004). Therefore smaller values 

of VcMAX25 or shallower rooting depths are required for simulated ET to become closer to 

that estimated from measurements. Then the seasonal and interannual variation in ET 

would show slightly smaller Et values in the HDP, and neither Es nor Ei would change 

significantly. In tuning with smaller LAI values, the decrease in Ei and Et and increase in 

Es must be considered. 

The simulated Et and monitored heat pulse velocity showed that the late-dry season Et peak 

was lower in 2004 and 2005 (Fig. 4). The rooting depth was set at 4 m. This is deeper than the 

1 m depth often used in land surface models within general circulation models (Kleidon & 

Heimann, 1998). Tanaka et al. (2004) noted that, during dry periods, rainwater remaining 

from the previous rainy season may be sufficient for trees with greater water use capacities. 

The longest DC periods, however, as well as the longest dry season lengths in 2003–2004 

and 2004–2005, largely limited Et in the late dry season beyond this larger water use 

capacity. Kume et al. (2007) compared heat pulse velocities (or sap flow) among two large 

trees corresponding to Nos. 1 and 2 in this study (Fig. 4b) and two smaller trees (4.8 m and 

1.4 m height) in the study forest in 2003 and 2004. They found that the reduced impact of 

soil drought on sap flow was clearer in the smaller trees in the late dry season in 2004, likely 

due to their shallower rooting depths. They suggested that the larger trees might avoid 

water uptake limitations with their deeper roots. Furthermore, transpiration over the whole 

forest canopy could also have been limited in the late dry season in 2004 and 2005 (Figs. 4b 

and 5). 

The annual ET (= 694 mm) was small compared with values reported for other tropical and 

sub-tropical forests (e.g., Doley 1981); in the latter, values often exceed 1000 mm, with 

maxima of 1750 mm, and the ratio of annual discharge to annual rainfall exceeds that of the 

annual ET. Air temperature decreases with altitude, while rainfall tends to increase with 

altitude (Kuraji, 2001; Dairaku et al., 2004) in northern Thailand, and the downward solar 
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radiation decreases due to the frequent appearance of clouds during the rainy season (Fig. 

2c). Under the weaker evaporative demand in the rainy season, most rainwater probably 

infiltrates the soil layers with relatively smaller ET values. This rainwater is likely used by 

evergreen trees with deeper roots, even in the following dry season. Such trees can 

continuously transpire, control their leaf temperature, and assimilate carbon, although late-

dry-season transpiration peaks likely decreased in 2004 and 2005. Hence the trees can 

maintain leaves all year round. The population of deciduous trees increases as altitude 

decreases below 1000 m a.s.l. in northern Thailand (Santisuk, 1998). Tanaka et al. (2009) 

numerically simulated canopy net assimilation An, ET, and soil moisture in a deciduous teak 

plantation with shallow rooting depth (< 1 m) in a dry tropical climate in northern Thailand 

(18˚25’N, 99˚43’; 380 m a.s.l.) using the SPAC multilayer model. That site had annual rainfall 

of 1361 mm for 2001–2008 and higher annual temperature of 25.4°C (K. Tanaka et al., 2011). 

The first experiment in that study involved seasonally varying LAI estimates based on time-

series of radiative transmittance through the canopy, and the second experiment applied an 

annually constant LAI. The first simulation captured the measured seasonal changes in soil 

surface moisture; the simulated transpiration agreed with seasonal changes in heat pulse 

velocity, corresponding to the water use of individual trees. The simulated An almost always 

became positive during leafy seasons. The simulated annual ET was ~900–1200 mm. 

However, in the second simulation in the dry season, An and Et became negative and small, 

respectively, because the decline in stomatal conductance due to severe soil drought limited 

the assimilation. The simultaneous increase in leaf temperature increased dark respiration. 

These experiments revealed that leaflessness in the dry season is reasonable for carbon gain, 

and trees cannot maintain leaves year round at the site. Therefore, it may be more difficult 

(easier) for trees to maintain leaves in the late dry season as altitudes decrease (increase) in 

northern Thailand. 

5. Conclusion 

The Et simulated with the SPAC multilayer model and heat pulse velocities indicated that 

the late-dry-season transpiration peak weakened in 2004 and 2005, even with an assumed 

rooting depth of 4 m. The 2003–2004 and 2004–2005 dry seasons were relatively longer, and 

they had the second longest (= 67 days) and longest (= 108 days) DC days. The soil moisture 

likely became insufficient beyond the rooting depth limitations on soil water use because of 

the duration of drought conditions along with the stronger atmospheric evaporative 

demand. 
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