
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



12 

Saving Water in Arid and Semi-Arid 
 Countries as a Result of Optimising 

Crop Evapotranspiration 

Salah El-Hendawy1, Mohamed Alboghdady1,  
Jun-Ichi Sakagami2 and Urs Schmidhalter3 

1Faculty of Agriculture, Suez Canal University, 41522 Ismailia, 
2Japan International Research Center for Agricultural Sciences, Tsukuba,  

3Department of Plant Sciences, Technische Universität München, 
1Egypt 
2Japan 

3Germany 

1. Introduction 

Although water covers about 71 percent of our planet surface, 98 percent of it has too high 
salt content to be used for drinking water, for irrigation, or even for most industrial 
purposes. Fresh water represents one percent of all the water on the earth and is distributed 
unevenly on the earth surface. As a result of the dramatic increase in population, in 
economic activities, and a subsequent increase in water usage, the world fresh water 
resources became scarce during the past decades (Postel et al., 1996; Hoekstra & Chapagain, 
2007). 
Shortage of water currently plagues almost every country in North Africa and the Middle 

East (MENA) to the extent that hampers economic growth and threats social stability. Most 

importantly, the scenarios for global environmental change suggest a future increase in 

aridity and in the frequency of extreme events in many areas of the earth. Economists 

believe that water problem cannot be solved until water is considered as economic good. 

There is an urgent need to develop appropriate concepts and tools to do so. 

Evapotranspiration (ET) is defined simply as the sum of the amount of water returned to the 

atmosphere through the processes of evaporation (moisture loss from the soil) and 

transpiration (biological use and release of water by vegetation). Crops are different in their 

response to water stress at a given growth stage. Therefore, estimating ET is an important 

tool to calculate the actual crop water requirements in given conditions. As a result, 

optimizing ET may contribute in solving water shortage problems at two levels, the farm 

level and the national/global level.  

Firstly, at the farm level, the process of water irrigation losses has two main components: 

one due to evapotranspiration losses, and the other including the losses resulting from the 

percolation of water beneath the root zone in excess of any required leaching for salinity 

management. Therefore, saving water on the farm level can be achieved by using deficit 
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irrigation strategy and irrigation scheduling. Deficit irrigation strategy, defined as the 

application of water below full crop-water requirement (evapotranspiration, ET), is an 

important tool to achieve the goal of increasing water use efficiency through their affecting 

on the amount of water losses by evapotranspiration (Fereres & Soriano, 2007). Irrigation 

scheduling, defined as determining when to irrigate and how much to apply, is another 

important element in improving water use efficiency through their exerting positive or 

negative effects on the amount of water percolating under the root zone (Bergez et al., 2002; 

El-Hendawy & Schmidhalter, 2010). 

Full irrigation is the amount needed to achieve maximum yield; however, when irrigation 
water is insufficient to meet crop demand, limited irrigation management strategies 
should be considered. Use of limited irrigation strategies could save large amounts of 
water and might alleviate the issue of increasing food shortages found around the world. 
However, it is difficult to plan for reducing ET without a penalty in crop production, 
because evaporation from canopies is tightly coupled with the assimilation of carbon 
(Monteith, 1990; Steduto et al., 2006). For instance, El-Hendawy et al. (2008) found that 
average maize yield decreases under drip irrigation for 0.80 and 0.60 ET relative to 1.00 
ET were 32 and 63%, respectively. Al-Kaisi & Yin (2003) also reported that average yield 
decreases for maize under sprinkler irrigation were 43% with 0.60 ET and 25% for 0.80 ET 
relative to 1.00ET. This indicates that application of water below the ET requirements 
requires further effective management strategies. These strategies should aim to achieve 
the highest possible economic return per unit of water applied. Recently, rapid and 
economically feasible approaches have been proposed to counteract yield losses and 
water use efficiency (WUE) decreases under deficit irrigation strategies. Several studies 
have emphasized that osmotic adjustment, which is achieved by exogenous application of 
osmoprotectants, is a useful approach for improving crop and water productivity under 
deficit irrigation (Agboma et al., 1997; Hussain et al., 2009). Of the different compatible 
solutes known, glycinebetaine (GB) is relatively more important as it is capable of 
promoting yields and WUE under water deficit. The reason for that may lie in the nature 
of GB as it exerts positive influence on the photosynthetic machinery (Xing & Rajashekar, 
1999), and it does not inhibit enzymes  even at high concentrations (Ashraf & Foolad, 
2007). Therefore, it can be accumulated in the cytoplasm of plant cells to contribute to the 
osmotic balance between the cytoplasm and vacuole without causing any damages. This 
unique nature of GB has led to that foliar-applied GB is widely used for crop production 
throughout the world for different purposes. Exogenous application of GB to non-
accumulators of GB has been taken as an alternative to improve the stress tolerance. For 
example, Ma et al. (2006) reported that GB-treated plants maintained a higher net 
photosynthetic rate during drought stress than non-GB treated. 
Most importantly, foliar application of GB may be a simple and cost effective methodology 

to increase the net benefit per unit of water applied under limited water application. Brand 

et al. (2007) reported that foliar application of GB can be adapted as a management strategy 

to alleviate water deficit at a cost less than a US $ 2.5 per hectare. Under furrow irrigation 

application, Hussain et al. (2009) also found that foliar application of GB reduced water 

consumption by 25%, increased cost by 6% and increased net income by about 9% when the 

sunflower plants were exposed to water stress and treated by exogenous applications of GB 

simultaneously at vegetative and flowering stages. Therefore, it is important to know the 

optimum coupling combinations between GB levels and irrigation rate, to seek maximize 
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yield and IWUE simultaneously under deficit irrigation strategy which is one of the 

objectives of  this chapter.  

Drip irrigation is the most effective method in terms of both maximizing yield and water 

conservation and also providing efficient use of limited water (Cetin & Bilgel, 2002). At the 

same time, several authors have shown that the water use efficiency and yield of drip-

irrigated crops could be improved under limited water applications by decreasing the 

amount of water that moves beneath the root zone (Bergez et al., 2002; El-Hendawy et al., 

2008). Thus, optimizing the coupling between irrigation frequency and water application 

rate could help to achieve maximum yield and water use efficiency (WUE) by exerting 

positive or negative effects on the amount of water percolating under the root zone. For 

instance, coupling very high irrigation frequency and rate will avoid stress situations, but at 

the cost of reduced drip irrigation efficiency and WUE as a result of the increased amount of 

water moving beneath the root zone because the amount of water being applied can exceed 

the amount extracted by roots. Coupling very low irrigation frequency and rate, by contrast, 

can cause water stress between successive irrigation events (especially in sandy soils) 

because the amount of water applied at each event is insufficient to meet the water 

requirement of the plants as time proceeds. Finally, coupling very low irrigation frequency 

and very high water application rate, particularly in sandy soils, may result in a decreased 

efficiency of the drip irrigation system and finally water use, because the amount of water 

applied at each irrigation event may be higher, and possibly excessively so, than the soil–

water storage capacity, thereby increasing the amount of water that moves below the root 

zone so as to reduce their availability to plants as time proceeds. Therefore, it is important to 

know the optimum coupling combinations between irrigation frequency and water 

application rate, to seek maximize yield and IWUE simultaneously for drip irrigated crops 

which is another objective of this chapter. 

Secondly, at the national/global level, while trade of real water between water-rich and 

water-poor regions is generally impossible due to the large distances and associated costs, it 

is argued that international trade moves ”virtual water” from a comparatively more 

favorable region, where there is a surplus of soil water in soil profiles, to comparatively 

disadvantaged regions such as the MENA region. The virtual water is defined as the volume 

of water used in producing a unit of commodity, or service (Allan, 1998). Agricultural trade 

is by far the largest transporter to move water virtually around the world. 

The virtual water concept has two types of practical uses (Hoekstra, 2003). Firstly, virtual 

water can be seen as an alternative source of water assisting to achieve the regional water 

security. Secondly, the virtual water content of a product tells something about the 

environmental impact of consuming this product. Raising the awareness of virtual water 

content of products thus providing an idea of which goods impact most on the water system 

and where water savings could be achieved. 

The idea of actively promoting the import of virtual water in water-scarce countries is based 
on the idea that a nation can save its domestic water resources by importing a water-
intensive product rather than produce it domestically. Import of virtual water therefore 
leads to a “national water saving” (Hoekstra & Chapagain, 2007). In a widely scope, Oki & 
Kanae (2004) argued that the virtual water trade produces “global water saving”  when the 
agricultural product a traded from a country in which the unit requirement of water to 
produce a commodity (UW)  is low to the country in which the UW is high. Conversely, the 
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global water loss occurs when the trade is from a high UW country to a low UW country for 
a particular crop.  

2. Method 

2.1 Experimental design, treatments 

Two field experiments of drip-irrigated maize were conducted to establish the optimal 
coupling combinations between ET deficit and irrigation frequency or glycinebetaine 
concentrations. Each experiment was conducted using a randomized complete block split-
plot design with three drip irrigation rates (1.00, 0.80, and 0.60 of the estimated 
evapotranspiration, ET) as the main plot and four irrigation frequencies (F1, F2, F3 and F4, 
irrigation events once every 1, 2, 3 or 4 days, respectively) in the first experiment and five 
exogenous application concentrations of GB (0, 25, 50, 75 and 100 mM) in the second 
experiment as the split plots. The drip irrigation system was divided into four main sectors 
in the first experiment and three main sectors in the second experiment with the irrigation 
frequency treatments and irrigation rates being assigned to the four sectors and three 
sectors, respectively. The water application rate treatments (1.00 ET, 0.80 ET and 0.60 ET) in 
the first experiment and GB concentrations (0, 25, 50, 75 and 100 mM) in the second 
experiment were randomly nested within each main sector as a subplot, with each subplot 
having three replicates for subplots treatments. 

2.2 Calculation of evapotranspiration   

The crop evapotranspiration ETc is given by multiplying the reference crop 
evapotranspiration ET0 with the crop coefficient Kc. 

 ETୡ = Kୡ × ET଴                (1) 

The concept of the reference evapotranspiration was introduced to study the evaporative 
demand of the atmosphere independently of crop type, crop development and management 
practices. ET0 is a climatic parameter and can be computed from weather data. ET0 expresses 
the evaporating power of the atmosphere at a specific location and time of the year and does 
not consider the crop characteristics and soil factors (Allen et al., 1998). 
With reference to Hoekstra & Hung (2002), crop evapotranspiration is calculated on the 
basis of the FAO Penman-Monteith equation: 

 ET଴ = ଴.ସ଴଼ሺୖ౤ିୋሻାஓଽ଴଴/ሺ୘ାଶ଻ଷሻ୙మሺୣ౗ିୣౚሻ∆ାஓሺଵା଴.ଷସ୙మሻ                 (2) 

where ET0 is the reference evapotranspiration (mm day-1), Rn the net radiation at the crop 
surface (MJ m-2 day-1), G the soil heat flux density (MJ m-2 day-1), T the mean daily air 
temperature at 2 m height (ºC ), uଶ the wind speed at 2 m height  (m s-1), eୱ the saturation 
vapor pressure (kPa), eୟthe actual vapor pressure (kPa), eୱ − eୟ the saturation vapor 
pressure deficit (kPa), D the slope of the saturation vapor pressure curve (kPa ºC-1), and g is 
the psychrometric constant (kPa ºC-1). 

2.3 Yield response factor (ky) 

Seasonal values of the yield response factor (ky) for different combinations, which represent 

the relationship between the relative maize yield reduction ቀͳ − ଢ଼౗ଢ଼ౣቁ	and the relative 
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evapotranspiration deficit ሺͳ − ୉୘౗୉୘ౣ	ሻ, were determined using the formula given by 

Doorenbos & Kassam (1979): 

 ቀͳ − ଢ଼౗ଢ଼ౣቁ = k୷ሺͳ − ୉୘౗୉୘ౣ	ሻ                (3) 

Where ETa and ETm are the actual and maximum seasonal crop evapotranspirations (mm), 
respectively, and Ya and Ym are the corresponding actual and maximum yields (kg ha-1).   

2.4 Water production function 

One of the more useful and widely accepted production function forms is based on the 
consumptive use, or evapotranspiration (ET). Grimes et al. (1969) and Gulati & Murty (1979) 
with wheat, barley, and sugarcane reported that the yield-evapotranspiration (Y–ET) 
relations for these crops were best described by quadratic functions. Many functions were 
tested to fit the data of the experiment. The quadratic form was the best fitting function.    
Y can be described as follows: 

 Y = Ƚ + ȾଵET + ȾଶETଶ                   (4) 

As the function is obtained from a given set of yield and ET data, it is only appropriate and 
reliable for the given range of the observations. In the case of the quadratic function, both Ƚ 
and Ⱦଶ have negative signs when the function is derived from regression analysis. The ratio 
Y to ET reflects the water use efficiency (WUE) for a given amount of seasonal ET. The first 
derivative of Y, that is, dY/dET, describes the change in Y per unit change in ET that is 
called marginal product of ET (MP). Corresponding to the microeconomic theory, the Y in 
Eq. (4) represents the total product, Y/ET the average product of the input, and dY/dET the 
marginal product of the input (Hexem & Heady, 1978).  
The elasticity in the production function (EP) is defined as the percentage changes of Y due 
to one percent change in ET.  Thus, 

 EP = ୢଢ଼ଢ଼ ÷ ౚు౐ు౐ = ୢଢ଼ ୢ୉୘ൗଢ଼ ୉୘ൗ = ୑୔୛୙୉                   (5) 

From equation (5) the EP-ET-MP-WUE relations can be described as follows: 
EP=1 if MP = WUE; that occurs at the maximum point of WUE. 
EP=0 if MP = 0; that occurs at the maximum point of Y. 
EP>1, when the increase in ET leads to increase in WUE. 
EP<1 when the increase in ET leads to decrease in WUE.  
EP<0 when the increase in ET leads to negative MP or decrease in Y. 

2.5 National water saving  

The national water saving NWS୧୨ as a result of trade of crop i in country j is: 

 NWS୧୨ = VWM୧୨ − VWX୧୨                (6) 

where VWX୧୨ and VWM୧୨ are the virtual water exported and imported, respectively, 
contained in crop i by country j. We can calculate them by multiplying the specific water 
demand of crop i with exported/imported quantities of the same crop in a given year. Both 
exported and imported virtual waters are calculated as if the mentioned crop is produced 
domestically. 
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 VWX୧୨ = SWD୧୨ × X୧୨                (7)                 

 VWM୧୨ = SWD୧୨ ×M୧୨                (8) 

where Xij refers to the exported quantities (ton) of crop i in a given year by country j, and Mij 
is the imported quantities (ton) of crop i by country j. SWD୧୨ refers to the specific water 

demand (m3 ton-1) of crop i  in country j.  
Intuitively, the virtual water exported (VWXφj) or imported (VWMφj) contained in a group 
of crops φ by country j is calculated by the summation of multiplying the specific water 
demand of each crop i in the group φ with the exported/ imported quantities of the same 
crop in a given year.  

 VWX஦୨ = ∑ ሺSWD୧୨୬୧ୀଵ 	× 	X୧୨ሻ	                (9) 

 VWM஦୨ = ∑ ሺSWD୧୨୬୧ୀଵ 	× 	M୧୨ሻ              (10) 

For crop i in country j, the specific water demand can be calculated by Hoekstra & Hung (2005) 

 SWD୧୨ = େ୛ୖ౟ౠେଢ଼౟ౠ               (11) 

CY is the crop yield (ton ha-1).  Although the values for crop evapotranspiration and crop 
water requirement are identical, crop water requirement refers to the amount of water that 
needs to be supplied, while crop evapotranspiration refers to the amount of water that is lost 
through evapotranspiration under the standard conditions (Allen et al., 1998). 
It is sensible to mention that a country may not produce a specific crop and imports all the 
needed quantities. In this case, we have no data that are required for calculating the specific 
water demand such as crop yield and some factors required for calculating the crop water 
requirements. Thus, we compensate the domestic specific water demand of crop j by the 
weighted average of the regional specific water demand of the same cereal crop. 
Crop water requirements are calculated by accumulation of data on daily crop 
evapotranspiration ETc (mm day-1) over the complete growing period as follows:   

 CWR୧୨ = ͳͲ∑ ETୡሺ୧୨ሻ୐ୢୀଵ               (12) 

where, the factor 10 is meant to convert (mm ha-1) into (m3 ha-1). The summation is done 
over the period from day 1 to the last day of the growing period (L) (Sallam and Abd El 
Nasser, 2006). 

2.6 Global water saving ۵ܒ܍,ܑ܁܅ 
The global water saving GWS୧,ୣ୨ through trade of crop i from an exporting country e to an 

importing country j is: 

 GWS୧,ୣ୨ = VWM୧୨ −	VWX୧ୣ              (13) 

Where, VWM୧୨ and VWXୣ୨ are the virtual water content of the importing and exporting 

quantities of crop i in favor of the actual specific water demand and the actual crop yield of 

the import and export countries.  

Due to the difficulties and complications of calculating specific water demand in each 
exporting country as each importing country imports from many variable sources over the 
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given period, we compensate each specific water demand of the exporting country by the 
world average specific water demand for each crop.      

2.7 Statistical analysis  

Analysis of variance (ANOVA) appropriate for a randomized complete block split plot 
design was employed to test the overall significance of the data, while the least significant 
difference test (at P = 0.05) was used to compare the differences among treatment means. 
Graphical presentation of data was carried out using Microsoft Excel program (Microsoft 
Corporation, Los Angeles, CA, USA).   

3. Results and discussion  

3.1 Yield response factor (ky) 

The response of yield to water deficit is quantified through the yield response factor (ky), 
which represents the decrease in yield caused by decreases in evapotranspiration 
(Doorenbos & Kassam, 1979). Generally, higher ky values indicate that the crop will have a 
greater yield loss when the crop evapotranspiration is not met. One important finding of 
this study was the strong response of ky values to the combination of evapotranspiration 
deficit with irrigation frequencies or glycinebetaine (GB) concentrations (Table 1). Regarding 
the combination between ET deficit and irrigation frequency, it is interesting to note that the 
lowest ky values were recorded for the combination of 0.80 ET with irrigation frequency 
once every one day (ky = 0.12) followed by 0.60 ET with the same irrigation frequency (ky = 
1.15). Both values were lower than those reported by Doorenbos & Kassam (1979; 1.25).  The 
ky value of 1.25 obtained by Doorenbos & Kassam (1979) represents water deficit's effect on 
maize crop yield for the total growing period, which means that the reduction in yield for 
both combinations was proportionately less than the reduction in ET. By contrast, the 
combination of 1.00 ET with the same irrigation frequency or 1.00, 0.80 and 0.60 ET with the 
irrigation frequency once every 4 days resulted in significant increases in ky values (Table 1). 
These results indicate that optimal coupling combinations of ET deficit with irrigation 
frequency are useful for maximizing the net income per unit of water applied. Therefore, 
under the imposed water regime we recommended to switch from irrigation every other 
day to much smaller irrigations several times. This may be explained by the application of 
water at low irrigation frequency exceeding the soil–water storage capacity leading to 
excessive water percolation under the effective root zone. Furthermore, a portion of the 
water application was not used by the plant and the remaining available water will not meet 
the long term water requirements of the plants till the next irrigation event.  
For the combination of ET deficit with GB concentrations, the maximum maize yield during 
this study was obtained from a combination between 1.00 ET and 25 mM GB. The value of 
evapotranspiration at 1.00 ET was assumed as maximum evapotranspiration, and 
evapotranspiration and grain yield at different combination of 0.80 and 0.60 ET with 
different GB concentrations were assumed as actual evapotranspiration and actual grain 
yield. According to the result in Table 1, the ky value for the combination of 0.80 ET with 25 
and 50 mM GB or 0.60 ET with 50 and 75mM GB were less than 1, which means that the 
reduction in yield for former combinations was proportionately less than the reduction in 
ET, despite the amount of water applied for 0.80 and 0.60 ET treatments was 20 and 40% 
lower than those for the 1.00 ET treatment, respectively. These results provided important 
clues to the physiological role of optimum doses of GB in possibly improving water use 
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efficiency under ET deficit. The decreases of ky value under ET deficit with the application 
of optimum dose of GB indicate that more grain yield was produced from less water use.  
 

Treatments 

Evapotranspiration deficit treatments 

0.60 ET  0.80 ET  1.00 ET 

Irrigation frequency treatments (F) 

Once in 1 day   (F1) 1.15  0.12  2.34 

Once in 2 days (F2) 1.42  1.24  0.00 

Once in 3 days (F3) 2.35  2.19  1.50 

Once in 4 days (F4) 2.33  3.01  3.74 

Glycinebetaine concentration treatments (GB) 

0 mM 1.53  1.53  nd* 

25 mM 1.32  0.87  nd 

50 mM 0.97  0.51  nd 

75 mM 0.93  1.49  nd 

100 mM 1.50  2.07  nd 

*Not determined  

Table 1. Relative yield response factors (ky) shown as the relationships between the relative 
yield decrease (1- Ya/Ym) and the corresponding relative evapotranspiration deficit (1-
ETa/ETm) for combination of evapotranspiration deficit with irrigation frequencies or 
glycinebetaine concentrations.   

This may be due to the effects of GB on transpiration rate. Agboma et al. (1997) reported that 

the transpiration rate of GB treated plants was decreased to 85% of untreated plants, 

strongly indicating an anti-transpirant effect of GB treatment. The slower transpiration rate 

allows the plant to access water for a longer period and exhibit greater photosynthesis, 

where it would contribute to improved yield and water use efficiency under ET deficit. 

3.2 The relation of irrigation water use efficiency with evapotranspiration deficit 

In recent years, several researchers have reported about “site specific management”, which 

means applying the right amount of input in the right place at the right time to get 

maximum profit from per unit input. Based on this basic definition, the profitability of 

irrigation water applied can be maximized by determining the optimal combination of ET 

treatments with irrigation frequency or GB concentrations. In this study, the irrigation water 

use efficiency (IWUE) was significantly affected by the different combination of ET 

treatments with irrigation frequency or with GB concentrations (Fig. 1). It is interesting to 

note that the combination of 0.60 ET with irrigation frequency once every one day had 

IWUE values similar to those obtained for the corresponding 0.80 or 1.00 ET with irrigation 
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frequency once every two days and was higher to those obtained for the 1.00 ET treatment 

with either irrigation frequency once every three or four days (Fig. 1). The combined effects 

of ET treatments and GB concentration on IWUE were also significant. The highest IWUE 

was obtained under an irrigation rate of 0.80 ET at 50 mM GB, but it was at par with an 

irrigation rate of 0.60 ET at 75 mM GB. By contrast, the lowest IWUE was recorded for either 

the combination of 1.00 ET with 75 and 100 mM GB, and 0.80 or 0.60 ET with 100 mM GB. 

Because of the combination effects between ET treatments and irrigation frequency on the 

amount of water that is percolated under the root zone or absorbed by the roots (Assouline, 

2002; Wang et al., 2006; Uçan et al., 2007) and the combination effects between ET treatments 

and GB concentration on the amount of water that are transported from canopy (Agboma et 

al., 1997), the optimal combinations between ET deficit and irrigation frequency or GB 

concentrations were instead often crucial for maximizing net income per unit water.  

 

 

Fig. 1. Irrigation water use efficiency (IWUE) for the combination of evapotranspiration 
deficit (ET) with irrigation frequency (F) or with glycinebetaine concentration.   

3.3 Yield-seasonal crop evapotranspiration relationship 

A linear relationship has been reported between maize grain yield and seasonal crop ET 

(Payero et al., 2006) and was also indicated here for the combination of ET treatment with 

irrigation frequency or GB concentration (Fig. 2 A and B). However, when broken down  

www.intechopen.com



 
Evapotranspiration – From Measurements to Agricultural and Environmental Applications 234 

 

Fig. 2. Relationship between seasonal crop evapotranspiration (ET) and grain yield for the 
combination of ET treatment with irrigation frequency (A) or with GB concentration (B).   

 

 

Fig. 3. Relationship between seasonal crop evapotranspiration (ET) and grain yield for 
irrigation frequency once every one day (A) and for 50 mM GB concentration (B).  
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according to the irrigation frequency treatments or GB concentration treatments, the 
relationships between grain yield and seasonal ET deviated from linear relationships to 
second order relationship for irrigation frequency once every one day or 50 mM GB 
concentrations (Fig. 3 A and B). Therefore, the regression of Fig. 2A and B shows that about 
51 and 39% of the grain yield variation is not explained by seasonal ET under the 
combinations of ET treatment with irrigation frequency or with GB concentrations, 
respectively. The second order relationship also indicates that the increase in maize grain 
yield was not proportional with the increment in the amount of irrigation water. This 
phenomenon was especially obvious when irrigation frequency once every one day or 50 
mM GB was combined with 1.00 ET because a portion of the water applied does not 
contribute to ET. At the same time, both former combinations resulted in significant 
reductions in grain yield due to the combination of 1.00 ET with the irrigation frequency 
once every one day resulting in a very humid region in the root zone and the combination of 
1.00 ET with 50 mM GB effects on stomatal conductance and transpiration rates, which in 
turn both affects the crop photosynthesis. Therefore, it is suggested that the ET treatments 
should be matched well with other variables which directly or indirectly affects on grain 
yield (Paolo & Rinaldi, 2008; Farré & Faci, 2009).  
 

 

Fig. 4. Relationship between grain yield and irrigation water use efficiency (IWUE). Power 
regression equations; ***, * indicate significances at 0.001 and 0.05 P level, respectively. 
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3.4 The relation of irrigation water use efficiency with grain yield 

Chen et al. (2003) mentioned that the relationship between WUE and grain yield is often 

used for determining the optimal irrigation strategy for arid and semiarid regions. Based on 

R2 values, the power model was found to be the best fit model to describe the IWUE-yield 

relationship of our data, with a coefficient of determination value of 0.93 and 0.41 for the 

combination of ET treatments with irrigation frequency or GB concentrations, respectively 

(Fig. 4). In the power model, the elasticity of y with respect to x is the percentage change in y 

for each percentage change in x. Based on this definition, when grain yield is increased by 

10%, the IWUE was increased by 8.0 and 3.9% in the combination of ET with irrigation 

frequency or with GB concentrations, respectively (equations in Fig 4). These equations 

indicated that high irrigation water use efficiency is obtained for high yield values. 

Therefore, it is important to know the optimum coupling combinations between ET and 

irrigation frequency or GB to seek maximize yield and IWUE simultaneously with saving 

water on the farm level.  

3.5 Marginal analysis of water production function 

The Y-ET function in a quadratic form is described as: 

 ܻ = −ͷͻʹͳ.ͻ͵ + ͵ͺ.͸ܶܧ − Ͳ.Ͳʹͺܶܧଶ	   R2 = 0.78              (14) 

The relationships for EP, WUE, MP, Y, and ET based on the function of Eq. (5) are shown in 

Fig. 5 under a limited water supply. One of two goals can be achieved by ET applications. 

The first goal is maximizing the WUE, point A. Such goal can be achieved, in terms of  the 

economic sight of the production function, at the point of which the first derivative of WUE 

is equal to zero, MP is equal to WUE, and EP is equal to one. The maximum WUE of 12.9 kg 

mm can be attained when ET was equal to 459.9 mm. The second goal is maximizing crop 

production, point B. At this point, the MP and EP are equal to zero as the first derivative of 

Y is equal to zero. ET maximizing yield is 689.3 mm at which the total yield is 7381.3 kg. 

Consequently, the WUE is with 1.07 kgm-3 less than the maximum WUE by 17.1%. It is 

sensible to mention that the EP is a reliable indication to recognize the range of desirable or 

economic production stages which fall in the range 1≥ EP≥ 0. With other words, the rational 

economic productivity must fall between the maximum WUE and maximum yield.  

3.6 Virtual water as instrument to achieve water security in North Africa 

The aim of this section is to analyze the consequences of North African international virtual 
water flows associated with cereals trade on national and global water budgets. With this 
aim, it quantifies and assesses national and global water savings and losses per cereal crop 
in the North Africa region. 
Virtual water trade has a positive direct effect on water saving for the importing countries. 
This effect has been intensively discussed in virtual water studies since the concept of 
virtual water raised by Allan in the nineties.  In this study, we examine the water saving at 
two levels. Firstly, national water saving that concentrates on the benefit gained by 
importing countries. Secondly the global water saving, the global net effect of virtual water 
trade between two nations will depend on the actual water volume that would have been 
required to produce a commodity in the importing and exporting countries. (Chapagain et 
al., 2006).  
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Figure 6 shows the notable variations among the specific water demand for the cereal crops 
production in North Africa countries and on the world average. Such highly significant 
variations derive mainly from two reasons. One reason is that in the North Africa region the 
evaporative demand is relatively high. The second reason is the low yield of the cereal crops 
in most NA countries. The water requirements to produce one ton of cereals in NA are equal 
to five times those in the world average. Highest differences were witnessed in maize and 
sorghum crops.  
 

 

Fig. 5. Relations of EP, WUE, MP, Y, and ET for a quadratic production function for maize 
during 2007 -2008 in Egypt. 

 

 

Fig. 6. Specific water demand for cereal crops in the North African and world  (m3/ton) 
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3.6.1 National water saving in NA countries through cereals trade 

Table 2 gives estimates of the national water saving of the North Africa countries 
expressed in volumes of virtual water embedded in net cereals trade.  Seeing that the 
cereals trade is varying significantly from year to year, the figure presents the annual 
average for 2003-2007. 
Furthermore all respective countries are net virtual water importers, there is a wide range of 
national water saving from 4.93 billion m3 in Egypt to 44.23 billion m3 in Algeria. The 
percentages of the national water saving through cereals net trade, to the total fresh water 
resources availability in each NA countries do extremely vary from around 9 in Egypt to 
2136 in Libya. One can intuitively explain such a wide span in these percentages due to the 
fact that Egypt and Sudan are mainly representing irrigated agriculture countries while the 
rest countries are mainly rain fed agricultures. In addition, Libya is one of the driest 
countries in the world. The annual rainfall is very low with more than 95% of the country 
receiving less than 100 mm y-1 (Wheida & Verhoeven, 2007). 
 

 
Barley Wheat Maize Rice Sorghum Others Total % 

Algeria 134.5 24205.7 19489.6 370.4 2.3 32.5 44234.9 378.1 

Egypt 1.5 2755.5 3465.0 -1307.0 NR 15.0 4930.0 8.6 

Libya 921.7 5787.0 3668.0 912.9 NR 1524.6 12814.1 2135.7 

Morocco 1361.4 5597.5 17375.9 5.5 NR 101.2 24441.4 84.3 

Sudan NR 4557.4 520.6 334.4 2160.1 15.5 7588.1 11.8 

Tunisia 1581.5 2506.6 6368.4 30.2 326.9 7.3 10820.7 235.2 

Region 4000.5 45409.6 50887.4 346.4 2489.3 1696.0 104829.2 62.5 

% is the percentage national water saving achieved by each country to the total water resources in the 
same country. 

Table 2. National water saving (106 m3) achieved by the North Africa net trade of cereals 
crops, average 2003-2007 

Figure 7 show that maize and wheat are the prominent cereal crops in terms of net virtual 
water imports. Wheat representations vary from around 23% in Tunisia to around 60% in 
Sudan. In summation, wheat represents about 44% of the national water saving in cereal net 
trade in NA region. On the other hand, maize representations vary from 7% in Sudan to 71% 
in Morocco. On the region level, maize is the highest cereal crop in terms of virtual water 
imports by around 50%. From what has been said, one can conclude that maize and wheat 
are representing around 91% of the national water saving in the North Africa region. In 
addition, all crops in the region and in each individual country attain national water saving 
except rice in Egypt. That because Egypt is a rice net exporter. 
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Fig. 7. Percentages of net virtual water trade embedded in each cereal crop, in the North 
African countries, average 2003-2007 

3.6.2 Global water saving through North Africa cereals trade. 

The international trade theory confirms that the global food import is approximately equal 

to the global food exports to achieve the global food market equilibrium over a given 

period. On the other hand, such equilibrium does not take place in the global virtual water 

trade associated with global food trade system. This imbalance is a result of the inequality of 

water used for producing a given amount of food between importing and exporting 

countries (Yang et al., 2006). Seeing that the global saving is obtained as the difference 

between the water productivities of the trading partners (Hoekstra & Chapagain, 2007), the 

positive sign on the difference, in the direction of exporting to importing countries, 

intuitively indicates global water saving. In contrast, the negative sign refers to global water 

loss.  

Table 3 shows that the global saving resulting from international cereals trade between 

NA and the world countries is 77.2 billion cubic meter per year as on average of the 

period 2003 – 2007 . Approximately half of the amount of saved water originated only 

from Algeria. In addition, more than one quarter of the referred global water saving 

originated from Morocco. Thus, about 75% of the global water saving through the 

international trade of cereals crops in NA is derived only from Algeria and Morocco. One 

can see that there is notable global water saving achieved by cereal trade in all NA 

countries except in Egypt. The global water losing achieved by Egypt reflects a relatively 

high water productivity of cereal crops (Table 4). Furthermore, Egypt is the only country 

in the NA region with complete irrigation coverage. Consequently, the 100% irrigation 

coverage, adopting modern technology, and agricultural policy reforms explain its stable 

and significant increase of cereals production (Yang & Zehnder, 2002; El-Sadek, 2009). 

Considering the crop water requirements and yield, it has been noted that Egypt showed 

the highest cereal yield (7.5 ton ha-1) among the NA countries. This yield is more than two 

times of the world average yield. On the other hand, the crop water requirements for 
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cereal production in Egypt is more than the cereals water requirements of Libya, Morocco, 

and the world average (Table 4). 

 

 

 

Barley Wheat Maize Rice Sorghum Others Total % 

Algeria 24.1 18016.2 17853.8 286.9 2.1 16.7 36223.7 47.4 

Egypt -0.8 -3461.7 296.5 29.4 NR 26.5 -4003.8 -5.2 

Libya 3360.1 707.2 NR 1251.5 10537.5 13.8 

Morocco 897.3 2597.5 16206.0 -0.9 NR 85.7 19706.3 25.8 

Sudan NR 2990.0 485.3 239.3 2033.8 12.9 5859.1 7.7 

Tunisia 913.4 975.9 5857.7 22.1 292.6 40.0 8133.2 10.6 

Region 2554.3 25520.3 44059.5 1284.0 2328.5 1433.3 76455.9 

% is the percentage of global water saving achieved by each country to this achieved by the NA region 
 

Table 3. Global water saving (106 m3) achieved by North Africa net trade of cereals crops, 
average 2003-2007 

 
 

Crop water 
requirement 

(m3/ha)

Yield 
 

(ton/ha)

Specific water demand 
(m3/ton) 

Algeria 8498 1.4 6007 

Egypt 4495 7.5 598 

Libya 3808 0.6 6123 

Morocco 6617 1.2 5611 

Sudan 3036 0.6 4775 

Tunisia 6034 1.5 4094 

World 3574 3.3 1088 

 

Table 4. Crop water requirements, crop yields and the specific water demand of cereals in 
North Africa countries and in the world. Period 2003-2007. 
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With respect to the global water saving achieved by individual cereal crop trade in NA, it is 

obvious that maize trading produces 44.1 billion m3 y-1 representing about 57.2% of the 

global water saving achieved by the region cereals trade. In the same context, wheat trading 

achieves 25.5 billion m3 y-1 representing about 33.1%. Therefore, only maize and wheat 

trading are representing 90.18% of all total global water saving. 

Although water scarcity is not the main driver of cereals trade on the global level, it plays 

an essential role in cereal trade between North Africa and the other trade partner 

countries in the world. At the national level, all North Africa countries achieve water 

saving to the extent that exceed the total fresh water resources in some cases. Trading of 

maize and wheat is the most important player of the national water saving among the 

cereal crops trade. 

At the global level, reductions in global water use occur if production by the exporter is 

more water efficient than by the importer. All countries in the North Africa region achieve 

global water saving except Egypt. The global water losing achieved by Egypt reveals a 

relatively high water productivity of cereal crops.  

4. Conclusion 

The results of this chapter contribute to a better understanding of the role of 

evapotranspiration in saving water on the farm level and on the national and global levels 

through their different applications. On the farm level, the optimal coupling combinations 

of water application rate as ET deficit with irrigation frequency or with GB concentrations 

play important roles to seek maximum yield and efficient irrigation water used 

simultaneously under deficit irrigation conditions. At the national level, all North Africa 

countries achieve water savings to the extent that exceed the total fresh water resources in 

some cases. Trading of maize and wheat is the most important player of the national 

water saving among the cereal crops trade. At the global level, reductions in global water 

use occur if production by the exporter is more water efficient than by the importer. All 

countries in the North Africa region achieve a global water saving except Egypt. The 

global water losing achieved by Egypt reveals a relatively high water productivity of 

cereal crops.     
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