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1. Introduction 

The aftermath of the Human Genome Project has generated new revolutionary techniques 
and equipment such as high throughput measurement tools for collecting biological 
information. One notable tool is a microarray that can be used to genotype hundreds of 
thousands of single nucleotide polymorphisms (SNPs) in one run. This highthroughput SNP 
genotypes along with phenotypic measurements can be used in fine quantitative trait loci 
(QTL) mapping or genome-wide association studies (GWAS). The result of fine QTL 
mapping or GWAS is a set of statistically significant QTL regions or genetic markers such as 
SNPs. See Box 1 for SNP, QTL and GWAS explanation. The significant QTLs or SNPs from 
QTL mapping or GWAS are used subsequently in QTL or SNP – based selection of elite 
animals or plants for breeding in agriculture or used to predict disease risks in humans and 
animals (e.g. Burton et al. 2007, Mackay et al. 2009). GWAS relies on a natural phenomenon 
of linkage disequilibrium (LD) between genetic (SNP) markers and causal variants or 
quantitative trait nucleotide (QTN). For GWAS to be applied successfully there is a need to 
understand the extent and distribution of linkage disequilibrium (LD) across the entire 
genome in a population. In particular, we need to know how LD varies from one region (or 
population) to another. This need to know how LD (and haplotype diversity) varies from 
one region or population to another provided the motivation to develop SNPpattern, a 
generic bioinformatic tool for finding SNP allele patterns in populations.  

1.1 The principles of linkage disequilibrium (LD) and haplotypes 

We are currently in a bioinformatics era. The emergence of bioinformatics is the result of 
two converging forces. One relates to the exponential increase in computer processing 
power, digital storage capacity, and digital communication. The other force is the 
exponential increase in biological data (Larranaga et al., 2006). Prior to the 1990s biologists 
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could be stereotyped as being isolated in their experimental laboratories doing their poorly 
funded projects and recording their findings in a paper format. The Human Genome Project 
completely changed all of this (Collins et al., 2003). Notwithstanding the staggering $3 
billion cost for the project, the scientific findings and the new revolutionary techniques and 
equipment have spurred on many other projects to generate an avalanche of advances in 
gene technologies, genomics, and molecular biology. Some of the notable developments are 
the high throughput measurement tools for collecting biological information; tools such as 
microarrays, high speed DNA sequencers, and mass spectrometers. The main outcome from 
all this new technology is enormous amounts of disseminated biological data in different 
digital formats.  One of the main challenges in bioinformatics is to transform the 
exponentially growing biological data into useful information. What constitutes useful 
information is of course debatable; nevertheless, information is the critical starting 
component to solving biological problems. Living cells are extremely complicated systems, 
even so, the new high throughput measurement tools have revolutionised the way we can 
collect biological data about these systems and begin to unravel the complexity. In the light 
of these advances in genomics, the bioinformatics aspiration is to provide the relevant tools 
to make sense of multiple sources of omics datasets or at the very least, enable the 
researcher to make valuable inferences, connections and predictions from the information. 
Kadarmideen & Reverter (2007) provided a good review of some integrative analytical 
framework combining multiple -omics data types specifically for livestock populations but 
they discuss generic issues for most species where genome sequences are being made 
available. For instance, Kadarmideen et al., (2006), Kadarmideen and Janss (2007) and 
Kadarmideen (2008), apply an integrative systems genetics approaches to map genetic 
variants and unravel underlying genetic networks of diabetes, stress, and reproduction, 
respectively in recombinant inbred strains of mouse genotyped for over 2 million SNP 
genetic markers and microarray expression profiled for over 20000 transcripts in various 
tissues. Without the relevant bioinformatics tools, it would not have been possible to 
integrate such large datasets and apply sophisticated statistical genetic algorithms and 
models. 
Systematic studies of common genetic variants have shown that some combinations of 
polymorphisms at different loci occur more or less frequently in a population such that the 
alleles of these polymorphisms are associated more often than if they were unlinked. That is, 
there is a statistically significant difference between observed and expected allelic 
frequencies (expected, in this instance, refers to allelic frequencies as result of independent 
segregation). 
This non-random and non-Mendelian association between alleles at two or more loci is 
referred to as linkage disequilibrium (LD) and is a departure from the Hardy-Weinberg 
equilibrium. SNPs (Box 1) are the most common polymorphism and are extremely dense 
throughout the genome which allows for an effective study of common haplotypes. For the 
remaining of this section, SNPs will be used when referring to variants/polymorphism in 
the context of LD. 
Prior to the year 2004 there was little published research on LD in humans, yet from 2004 
onwards an exponential release of publications commenced1 (for instance, see patterns of 
human LD in Ardlie et al. 2002). It is argued that this increase in interest is mainly because 
of the increased applications of LD as a tool. For example, LD is the essential tool of genetic 
 

                                                                 
1 Based on ISI Web of KnowledgeSM searches 

www.intechopen.com



SNPpattern: A Genetic Tool to Derive Haplotype Blocks  
and Measure Genomic Diversity in Populations Using SNP Genotypes 427 

 
 

association studies. In genome-wide association studies (Hirschhorn et al. 2002, Pearson and 
Manolio 2008, Kruglyak 2008), the premise is to test for associations between the variation in 
a complex trait and causal mutations, however, for the most part we instead test for 
association between the trait and a SNP in high LD with the causal mutation. Knowledge of 
LD patterns has been shown to increase the power and decrease the amount of genotyping 
required for association studies. For example, we can use information about LD and allele 
frequencies across the genome to make informed decisions as to which SNPs (known as tag 
SNPs) should be selected for the genotyping array. That is, the number of SNPs required in 
GWAS can be reduced without a reduction in power if LD is extensive (Carlson et al., 2001). 
Linkage disequilibrium is also used in the studies of a species genetic history and origins, 
the detection of natural selection, and the biology of recombination from inferring the 
distribution of crossover events from patterns of LD Pritchard (2001). In particular for 
animal production, working out LD is important within breeds to determine the SNP 

BOX 1 
 
SNP: A single-nucleotide polymorphism  is a DNA 
sequence variation occurring when a single nucleotide 
— A, T, C, or G — in the genome (or other shared 
sequence) differs between members of a biological 
species or paired chromosomes in an individual. For 
example, two sequenced DNA fragments from 
different individuals, AAGCCTA to AAGCTTA, 
contain a difference in a single nucleotide. In this case 
we say that there are two alleles: C and T. Almost all 
common SNPs have only two alleles. (Source: 
http://en.wikipedia.org/wiki/Main_Pag) 
 
QTL mapping: Quantitative trait locus (QTL) mapping 
means identifying genes that affects a complex 
phenotype like disease or explains significant 
proportion of genetic variation of a quantitative trait 
observed in mapping population. It uncovers the 
genetic basis of quantitative variation in a trait.  
 
GWAS: A genome-wide association study (GWAS) is 
an approach that involves rapidly scanning genetic 
(SNP) markers across genome in hundreds of 
individuals to find and quantify genetic variations in a 
particular disease or trait associated with each SNP 
screened. It uses highly dense SNP marker genotype 
data (nearing 1 million in some animal species) to 
detect association with phenotypes. These study 
require larger sample sizes than QTL mapping and 
requires validations in other independent populations. 
GWAS techniques result in a panel of predictive 
markers that can predict a future phenotype of an 
individual. How good will be a  prediction by a set of 
markers depends on whether or not they are linked to 
and/or in linkage disequilibrium with causal loci. 
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density for GWAS, and across breeds to check whether LD based predictions are expected to 
persist between breeds. 
To quantify the amount of LD, a variety of different statistical measures have been 
proposed: D, D´ and r2. D is the basic measure for LD and the formula is D = PAB – PA * PB 
(where PA and PB are the marginal allele frequencies at two loci on a chromosome; and PAB 
is the probability of the observed haplotype). D equates to 0 if and only if the two loci are 
independent. A disadvantage of D is that the range of possible values depends on the 
marginal allele frequencies and therefore, as there is no standardisation, it is difficult to 
compare D values.  D´ is the standardisation of D and its formula is shown in Equation 
 

max

0
D

D when D
D

    Where Dmax = the smaller of PAb and PaB 

min

0
D

D when D
D

    Where Dmin = larger of –PAB and –Pab  

Equation 1. Measuring LD using D´ for 2 loci A and B with 2 alleles. 

The most widely used measure for LD is a correlation between pairs of biallelic SNPs 
denoted by r2 (refer Equation 2). Some of the properties of r2: a value of 0 implies 
independence between the SNP alleles (perfect equilibrium); a value of 1 implies perfect LD. 
Most pairs of SNP alleles have an r2 greater than 0 or less than 1 indicating the strength of 
the association between their alleles. An r2 of 0.7 or 0.8 is considered strong LD between 
SNPs. For the most part, the strength of the correlation between SNPs decreases as the 
genetic distance between the SNP increases. The r2 measure also has another useful 
property; it is claimed to be related to the power of association mapping and can 
consequently be used to estimate how large the sample size needs to be to capture 
association (n2 = n1 / r2   where n1 is the number of cases and n2 is the number of controls). 
Currently for human genotyping arrays, tag SNPs are selected based on an r2 concept of LD 
structure for their pairwise ability to predict the genotype of untyped SNPs. For species with 
limited knowledge of LD, the SNPs are selected evenly distributed. 

2
2

* * *A B a b

D
r

P P P P
  

Equation 2. Given haplotypes for 2 loci A and B with 2 alleles. Where P = allele frequencies, 

and D is a basic measure of LD e.g. *AB A BD P P P  . 

Population genetic factors that affect LD among specific groups of SNPs are numerous, 
complex, and not clearly understood. Some of the acknowledged factors are mutation, 
historical recombination, natural selection, founder effects, migration, population growth, 
random drift, gene conversion, and population admixture. Only recombination is discussed 
further in this chapter. It has been argued that recombination is one of the main factors 
affecting LD (Ardlie et al., 2002). The rate of LD decay depends on the rate of recombination 
and for the most part, decay in LD is affected by how close the alleles are together. Little is 
known about the actual molecular mechanism of recombination and why some regions of 
the chromosome experience more recombination than others. What we do know is that there 
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is variation in recombination rates, and regions of recombination appear and disappear over 
evolutionary time. By studying the patterns of LD we can at least infer the distribution of 
recombination events.  
In the literature LD is intertwined with the term haplotype. There are many definitions of 
the term haplotype in the literature, herein haplotype is used as being half of a genotype, 
that is, a set of ordered SNP alleles on a single chromosome that are transmitted as one unit 
from a parent to an offspring (Ardlie et al., 2002). Theoretically a haplotype, one unit, could 
comprise any number of SNPs from only 2 SNPs to every single SNP on the chromosome. In 
reality, however, recombination events result in haplotype blocks comprised of varying 
numbers of SNPs.  
Early studies of pairwise LD (i.e. using 2-locus haplotypes) observed complex patterns of 
LD implying a random nature. It is now becoming clear that despite many generations of 
segregation from a common ancestral chromosome, certain combinations of neighbouring 
SNP alleles (haplotype units) have remained unchanged. In other words, there are stretches 
of DNA that are almost never divided during meiosis (Gibbs et al., 2003).   Although we do 
not fully understand the biological processes that give rise to recombination in some regions 
of the chromosome and not in others, there still appears to be some non-random 
underpinning mechanism. More recently the International Hapmap Project (Gibbs et al., 
2003) has shown that the underlying structure of LD in a genome could be divided into 
discrete haplotype blocks. Using evidence from their LD measures, a haplotype block 
represents a region with a few haplotypes (2-4 per block) in a population separated by a 
region with many haplotypes in the population. Their proposed haplotype block model of 
LD, from a recombination perspective, is a region of high LD separated by recombination 
hotspots. There are two popular methods for block definition: 1) using pair-wise 
disequilibrium to define regions of high LD separated by recombination hotspots, and 2) 
defining regions with high or low haplotype diversity. 

1.2 Phasing SNP genotypes for deriving paternal and maternal haplotypes 

We currently have the technology to observe genotypes but not haplotypes. That is, we do 
not observe individual alleles on the chromosome. This immediately presents a problem for 
haplotype analysis since the phase is not known when SNPs are heterozygous. For example, 
given the genotype of 2 SNPs with homozygous alleles at 2 different loci, “11” and “22” 
respectively; the haplotype on both the paternal and maternal chromosome is conclusively 
“12”. However, given the genotype of 2 SNPs with heterozygous alleles, “12” and “12”; we 
do not know which allele is inherited from which parent. The possible haplotypes are 
shown in Figure 1. 
We cannot say for certain which alleles on a haplotype go together when using genotype 
data with heterozygous SNP alleles. Consequently we need to determine or infer the phase 
from other methods. There are 3 possible methods available to the researcher: 1) use 
pedigree information; 2) use molecular methods to single out individual chromosomes to do 
genotyping (currently only possible on small regions; and 3) statistical methods to infer the 
haplotype given genotype data. From literature, there are several algorithms and programs 
for inferring haplotypes. Two of the most popular programs are called PHASE, which uses 
algorithms based on Bayesian coalescent models Stephens et al. (2001) and fastPHASE, 
which uses an EM algorithm and cluster model Scheet et al. (2006). The default PHASE and 
fastPHASE output format has been adopted as the format required for the input data to 
SNPpattern. 
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Fig. 1. Possible haplotype when 2 SNPs have heterozygous alleles. 

PHASE is a statistical method inspired from coalescent theory. The coalescent theory in 
essence is the tracing of alleles, shared in a sample of individuals from a population, back to 
the most recent common ancestor Fu et al. (1999). This theory can predict the expected 
patterns of haplotypes in natural populations. The PHASE method is Bayesian and uses the 
a priori expectation of haplotypes to inform haplotype reconstruction (see Equation 3). The 
phase reconstruction procedure is to evaluate the conditional distribution of the unknown 
haplotypes corresponding to the genotypes for the individuals from a population sample. 
PHASE uses Gibbs sampling (Kim, 2001) to obtain an approximate sample from the 
posterior distribution of unknown haplotype pairs given genotype data (e.g. Pr (H | G) is 
the posterior probability that the reconstruction of the haplotype pairs is correct, given the 
genotypes and knowledge of previous haplotype reconstruction states). In the most 
simplistic terms, the algorithm begins by estimating the haplotypes for a randomly chosen 
individual on the assumption all other haplotypes are reconstructed correctly. The 
algorithm reiterates the process enough times to result in an approximate haplotype 
reconstruction from the posterior probability. Stephens[38] claims that PHASE, “is 
sufficiently accurate that reconstructing haplotypes experimentally, or by genotyping 
additional family members, may be an inefficient use of resources”. 

 Pr( | ) Pr( )
Pr |

Pr( )

G H H
H G

G
  

Equation 3. Bayes theorem. 

where, 
Pr(H|G) is the conditional probability that the reconstruction of the haplotype pairs is 
correct given the genotypes. 
Pr(H) is the prior (unconditional) probability the reconstruction of the haplotype pairs is 
correct irrespective of genotype data. 
P(G) is the total probability of observed genotypes across all possible haplotypes (acts as a 
normalising constant). 

 

Where P = chromosome inherited from father; M = chromosome inherited from mother; Genotype 
for SNPs = 12) 
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Pr(G|H) is the conditional probability of obtaining the genotypes given the haplotypes. 
The fastPHASE software package is a statistical model that captures patterns of LD. The 
variation in the patterns can be applied to estimate missing genotypes and to infer 
haplotype phase in samples of unrelated individuals from natural populations from 
unphased genotype data. The fastPHASE statistical model uses an “approximate coalescent 
with recombination” prior manifested from the fact that over short genomic regions 
haplotypes in a population have been observed to cluster into groups of similar haplotypes 
because of recombination (Stephens et al., 2005). The model also considers each cluster of 
observed haplotypes to represent a common haplotype and each haplotype is assumed to 
have evolved from a single cluster. The membership of each cluster is allowed to change 
along the chromosome in accordance with a hidden Markov model (Scheet et al., 2006). An 
expectation-maximization (EM) algorithm (Dempster et al., 1997) is used to estimate the 
model parameters.  
The paper presents the development of SNPpattern as a simple bioinformatic tool to 
rapidly screen the genome for haplotype structure, perform some basic descriptive 
genome statistics and link interesting haplotypes to functional information. We have 
tested our software SNP pattern on Ovine 60k SNPchip data (Goodswen et al., 2010). One 
impetus for the development of SNPpattern was to understand the degree of diversity in 
LD architecture between different livestock breeds (McKay et al. 2007). It was thought that 
with our increased understanding we could potentially predict effect of genome selection 
across breeds, which is based on SNPs being in LD with causal variants for the trait of 
interest. In addition, we expect SNPpattern be used in the comparison of LD structure in 
detecting and localizing genomic regions where selective sweeps2 have occurred (Smith et 
al., 1974).  

2. Development of SNPpattern 

A commonly used software package for computing LD statistics and haplotype patterns for 
populations from genotype data is Haploview (Barrett et al., 2005). One of the interesting 
features of Haploview, is its ability to generate haplotype blocks. Haploview has a number 
of methods to partition the genome into blocks: 1) block definitions are based on D' 
confidence bounds e.g. SNP pairs are defined to be either “strong LD” (.i.e. no evidence of 
historical recombination) or “strong recombination”. The algorithm is taken from Gabriel et 
al. (2002); 2) the block definition is based on a four gamete test of Hudson & Kaplan (1985) 
proposed by Wang et al (2002). In brief, for each SNP pair, the population frequencies of the 
4 possible two-SNP haplotypes are computed (e.g. SNP 1 = A/a and SNP 2 = B/b. The 4 
haplotypes are AB, Ab, aB, and ab). If all 4 haplotypes are observed with a frequency >= 
0.01 (a user definable threshold), a recombination is assumed to have occurred. If only 3 
haplotypes are observed no recombination is assumed. A block is formed when there has 
been no recombination for successive SNP pairs.  
HaploBlock is a software package, which has as one of its capabilities the inference of 
haplotype block models from phased or unphased data. It primarily uses a Markov chain 
and can account for recombination hotspots, bottlenecks, genetic drift and mutations 
(Greenspan & Geiger, 2004). HapBlock (a different program to the similarly named 

                                                                 
2
 A selective sweep can be caused when there is a strong directional selection for a favourable new allele 

that increases its frequency.  Alleles in close proximity to the new allele are “swept” to fixation. 
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HaploBlock program) provides both a parametric dynamic programming algorithm for 
block partitioning with a fixed genome coverage using the minimum number of tag SNPs, 
and a discrete dynamic programming algorithm for block partitioning with a fixed number 
of tag SNPs that can cover maximum length of genome (Zhang, 2005). Finally, GERBIL is 
another software package that implements an algorithm for simultaneously phasing 
genotypes into haplotypes and block partitioning. It considers the phasing and the block 
partitioning as a maximum likelihood problem and uses the EM algorithm to solve it 
(Kimmel & Shamir, 2005). Table 1 shows a brief summary of the publicly available programs 
that provide functionality to define haplotype blocks from genotype data. 
 

Program Primary LD metric Visualisation of LD 
PHASE/ 

fastPHASE 
import$$ 

Implemen- 
tation 

OS 

Haploview D´ and r2 Yes No Java Linux 
Windows 

HapBlock 
 

D´ No No C++ Linux 

HaploBlock 
 

** No No Ansi C Linux 

Gerbil ++ Yes No Java/C++ Linux 
Windows 

SNPpattern Pattern 
frequency in block 

No Yes Perl Linux 
Windows 

Table 1. Freely available programs providing “haplotype block definition from genotype 
data” functionality. 

LD = Linkage disequilibrium: OS = Operating System platform: ** A Bayesian Network 
statistical model and Markov chain at its core: ++ Uses an expectation-maximization (EM) 
algorithm: $$ imports genotype data in a PHASE/fastPHASE format without modification 
In studies on human populations it has been shown that the human genome can be divided 
into haplotype blocks (Gabriel et al., 2005). A haplotype block is an ancestrally conserved 
region of varying size containing only a few common haplotypes in the population. The 
haplotype blocks have discrete boundaries defined by recombination hotspots (Wall et al., 
2003) and Phillips et al., 2003) [51, 74]. SNPpattern implements a haplotype-block model as 
an empirical approach to best describe the linkage disequilibrium (LD) patterns. From a 
SNPpattern programming perspective, a haplotype block within a population is inferred 
from a region on the chromosome where there is a low SNP allele pattern count for a 
particular block size, separated by a region with a large SNP allele pattern count. It is 
proposed that the block with a large count relative to other counts along the chromosome is 
a region where more historical recombination events have occurred.  
Whist the importance of pairwise measures of LD is acknowledged it may not always be the 
most appropriate measure of how strong LD is across an entire region that contains many 
SNPs. In particular, identifying precise haplotype-block boundaries may be difficult when 
using r2. The r2 measure produces for each pair of SNPs an LD strength estimate 
fundamentally based on probability.  There is no practical evidence to explain a difference in 
the values of r2 between other paired SNPs in adjacent and further away regions. Pairwise 
measures of LD differ from SNP to SNP and defining haplotype blocks is especially open to 
interpretation when r2 values range between 0 and 1. There exists an uncertainty as to how 
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one LD estimate in one region relates to an LD estimate in another region because SNP pairs 
are not necessarily independent (i.e. one region may functionally affect another region) and 
consequently this diminishes the certainty of which SNPs belong to which haplotype block. 
For example, there are cases where 2 SNPs exhibit strong pairwise LD but show different r2 
to a SNP in between, and a low strength pairwise LD is not necessarily indicative of high 
ancestral recombination. In other words, SNPs in close proximity are not always in pairwise 
LD and by contrast, SNPs far apart can be in pairwise LD (Phillips et al., 2003). We can also 
expect the haplotype block boundaries to be different depending on the sample size and 
SNP density used. Another limitation of r2, particularly for marker-assisted selection in 
livestock, is that the r2 can be the same between a SNP marker and a potential causal variant 
in different populations, and yet the phase may be different (Roos et al., 2008). Deriving 
clear information about the joint inheritance of alleles in a chromosome segment is also 
expected not to be easy from r2 measures. It is argued instead that we can infer the joint 
inheritance of alleles from inferring which haplotype blocks were inherited, if we know 
which haplotype blocks exist in a particular population i.e. we can make inference about 
identity by descent (IBD) of alleles in particular regions. In light of some of these 
shortcomings discussed, a multiple SNP allele block approach in preference to r2 was 
implemented through SNPpattern. 
The required input data for SNPpattern is phased genotype data from either a single group 
or multiple groups of individuals (e.g. from different animal breeds or subpopulations). The 
premise for the multiple SNP allele block approach is to count the frequency of SNP allele 
blocks, of different sizes, found in the genomes of the group members. For example, a block 
of 5 SNPs spanning a few thousand base pairs could potentially comprise 32 different SNP 
allele patterns if the SNPs were totally independent and the population was of infinite size 
(the number of possible SNP allele patterns is 2n where n is the number of SNPs in the 
block).  The general process of the program is that it counts the frequency of the various 
SNP allele patterns found in the same chromosomal location (the same SNP allele block 
region) across each individual in the group sample; then repeats the process for the next 
SNP allele block region along the genome, and so on. From the counts we can infer the 
haplotype blocks after taking into account the population structure and allelic frequencies (a 
user of SNPpattern also needs to be aware that there are numerous other population genetic 
factors that affect LD and determine haplotypes). The inferred haplotype block represents a 
region with a few distinct SNP allele patterns (indicating small amount of haplotype 
variation) in a population separated by a region with many SNP allele patterns (indicating 
an excessive amount of haplotype variation) in the population. In a typical short 
chromosome segment, we can expect only a few distinct SNP allele patterns. Hence the 
larger the SNP allele block size the less likely the distinct SNP allele patterns appear by 
chance because of the increased probability of recombination over larger distances. It is 
argued that the comparison of SNP allele pattern counts can be used as a measure of genetic 
distance and this comparison forms the basis for a haplotype diversity analysis within and 
between groups.  
In addition to implementing the core components for the multiple SNP allele block 
approach, SNPpattern also implements similarity scoring between individuals. We can 
expect that the more the SNP allele patterns between two individuals are similar the more 
likely they will have a similar haplotype structure. Taking this one step further, if two 
individuals share the same extended SNP allele patterns over the same genomic region, the 
chance that they carry the same causal variant allele relationship by descent is much higher. 
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Linkage disequilibrium mapping to identify the chromosomal region (the haplotype block) 
containing a QTL has proven to be a powerful tool Barrett et al., (2005) and Hayes et al., 
(2006). However, once the haplotype block has been identified, LD provides no further 
information to help localize the actual variants within the block (Rioux, 2001). It has been 
proposed that advantageous mutations through directional selection are more likely to 
occur in a region of low recombination (Wall et al., 2003). Conversely, there is evidence that 
there are alleles in recombination hotspots that are more likely to initiate the double-strand 
break associated with recombination (Jeffreys & Neumann, 2002). One of the outputs from 
SNPpattern is a list of chromosomal start and end locations of SNP allele blocks identified to 
have low and/or high haplotype diversity.  In the program testing section of this chapter, 
how this output list could be used to link these identified regions to genomic annotation is 
demonstrated. We used the FunctSNP R package that we have developed earlier (Goodswen 
et al., 2010) .To recover the biology role of genomic regions with low haplotype diversity, a 
systems genetics or system biology approaches would be needed, as demonstrated in 
Kadarmideen et al., (2006) and Kadarmideen (2008). 

3. Implementation of SNPpattern 

SNPpattern was written in the Perl programming language.  The following sections describe 
the methods and rationale that have shaped the development. We have tested SNP pattern 
on Ovine 60k SNPchip data and these results are based on our earlier work (Goodswen et 
al., 2010). 

3.1 Input data 

The default PHASE and fastPHASE output format has been adopted as the format required 
for the initial input data to SNPpattern. Figure 2 shows the format and is described here as it 
governs how the data are processed and is an aid to understanding the methods to be 
described later. 
The genotype data for each individual is represented by 3 rows. On the first row is a unique 
identification of the individual. The second and third rows are the genotypes of the 
individual. For each consecutive locus, one allele is entered on the second row, and one on 
the third. SNPpattern expects that genotypes are phased such that the entire second row is 
inherited from one parent and the third row from the other parent. It is also expected that 
the alleles appear in the sequential order that they occur on the chromosome. 
 

 

Fig. 2. Data input format for SNPpattern. 

BEGIN GENOTYPES 
# id 1 

1 2 1 2 2 2 1 2 1 2 1 2 1 2 2 2 1 1 2 1 
1 1 2 2 1 2 1 2 2 2 1 2 1 1 2 2 1 2 1 2 

# id 2 
2 2 1 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 2 
1 2 1 2 2 2 1 2 1 2 1 2 1 2 2 2 1 1 2 1 

# id 3 
2 2 1 1 1 2 2 1 2 1 2 2 2 1 2 1 2 1 2 2 
1 2 2 1 1 2 2 1 2 1 2 2 2 1 1 1 2 2 2 1 

END GENOTYPES 
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3.2 Grouping data 
In its simplest form, SNPpattern will accept an input, such as the one shown in Figure 2, and 
treat all individuals as members of the same group. The output will consequently be results 
for haplotype diversity within a group. The results will also be for the entire genome 
without any reference to the chromosomal location of the haplotypes. In spite of this, it is 
expected (although not mandatory) that an additional file be provided as input, which 
contains phenotypic information about the individual. Table 2 shows as an example the first 
9 lines of a fictitious phenotype file and in this instance one specific to livestock species.  
Grouping data is obviously an essential part of the evaluation of haplotype diversity between 
groups. It is also a hugely critical part to account for the count biases that may be introduced 
due to population structure.  For example, if in a particular sire breed group the number of 
progeny from each sire is disproportionate then the SNP allele pattern count will be biased 
in favour of the progeny with the largest number of siblings. Grouping an equal number of 
progeny from each sire should prevent the bias. SNPpattern includes the functionality to 
group the genotype data of individuals according to user-defined criteria specific to 
information held in columns in a phenotypic file. Theoretically the program can create a 
group based on any combination of columns when using the “AND” Boolean logic. For 
example, group all individuals according to sire breed AND year of birth. Separate output 
files for each group criteria are generated containing the genotype data of the group 
members. The output format is the same as that shown in Figure 2. The program also allows 
the user to use comparison operators (=, >=, <=, >, <) on any combination of column criteria. 
For example, if we want to group all the female progeny in area 03 born after the year 1972 
having a particular parent ID, the equivalent pseudo code is sex = F AND Area = 03 AND 
Year of Birth > 1975 AND parent ID = 433. The grouping of the data is of course at the 
discretion of the researcher to create genetically meaningful groups. Summary information 
about the groups can also be generated. SNPpattern provides the flexibility of the grouping 
through a configuration file in an INI file format.  
Another optional file that can be provided as input is a SNP mapping file. Such a file allows 
the contents of a group file to be divided further into separate chromosome files. This 
division of the genotypes for the entire genome into their respective chromosome locations 
allows for the comparison of haplotype diversity of a particular chromosome in one group 
with the same chromosome number in another group. The fact that selective sweeps act 
differently in different chromosomes is one example as to why a study of haplotype 
diversity may be needed on a chromosome basis (Montpetit & Chagnon, 2006). It is 
mandatory that the SNP mapping file contains the SNP location and the chromosome 
number on which it resides. SNPpattern expects the SNPs in the file to be in the order that 
they are located on the chromosome.  It is also an expectation that the SNP mapping file is 
most likely obtained from another source and will contain redundant information to 
SNPpattern. Therefore another configuration file, specific to dividing the genome into 
chromosomes, allows extraction of only the required SNP location and the chromosome 
number without the need for the researcher to modify the SNP mapping file. It may be 
arguable as to why a separate file is created for each group and/or each chromosome sub-
group. From a programming perspective separate files are created for 3 reasons: 1) the 
output file format used is the same as PHASE and fastPHASE. It is envisaged that the 
SNPpattern group files could be imported into other programs that use this same format; 2) 
the separate files are a permanent record of the grouping that can be reused, as opposed to 
temporary grouping only at runtime; and 3) the data files can be extremely large and slower 
to parse the content if all groups are recorded separately but in the one file. 
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Human ID Parent ID Region Sex Parent ethnicity Year of birth Body Weight (kg) 

1 330 01 F American 1978 74.6 
2 330 01 M American 1971 99.0 
3 405 02 F African 1970 77.4 
4 405 02 M African 1975 63.6 
5 433 03 M Asian 1972 79.0 
6 433 03 M Asian 1971 67.0 
7 433 04 F Asian 1979 73.0 
8 405 05 F European 1974 97.4 
9 405 05 M European 1976 94.0 

Table 2. Example contents of a phenotypic file. 

3.3 Multiple SNP allele block approach 

This section describes the multiple SNP allele block approach implemented through 
SNPpattern. We have tested SNP pattern on Ovine 60k SNPchip data and tables 3-6 are based 
on our already published work (Goodswen et al., 2010). With reference to Figure 2 the 2 
rows of biallelic SNPs contained within the phased genotype file are extracted (in this 
instance, a single 1 or 2 constitutes a SNP allele). One row represents the SNP alleles 
inherited from one parent, and the second row represents the SNP alleles inherited from the 
other parent. So in effect, we have a representation of paternal and maternal chromosomes 
composed of a long serial SNP allele pattern of 1s and 2s. Without prior knowledge, the user 
will not know which row represents which parental chromosome. However, when the SNP 
allele pattern analysis progresses the identity of the row representation may become 
apparent as will be demonstrated in the program testing section.  
The underlying unit of the multiple SNP allele block approach is of course the SNP allele 
block. The serial SNP allele pattern from one row (e.g. representing the chromosome 
inherited from the paternal side) is divided into block sizes of any specified number of SNP 
alleles at the discretion of the researcher e.g. 3, 5, 10 or 100 (or larger) SNP alleles per block. 
Then if required, the SNP allele pattern from the other row is divided into blocks of the 
same specified size. Figure 3 shows the first 40 numbers of a SNP allele pattern of 1s and 2s 
that represents either a paternal or maternal chromosome for one individual. In this 
example, the entire SNP allele pattern is divided into blocks of 3 e.g. the first 3 blocks are 
“112”, “212”, and “211”. For a n SNP allele block there are 2n possible SNP allele pattern 
combinations of 1 and 2. Therefore, a 3 SNP allele block has 23   possible patterns (111, 112, 
121, 122, 211, 212, 221, and 222). 
For each SNP allele block along the row that represents either the paternal or maternal 
chromosome, we count how many individuals in the group have the same SNP allele 
pattern. For example, at block location 1 (Figure 3) we count, for each of the 8 possible SNP 
allele combinations, how many individuals have the SNP allele pattern “111”, then “112” 
etc. Table 3 shows an example of the SNP allele pattern count at the first 3-SNP allele block 
along a paternal chromosome. We could expect an equal chance of observing any one of the 
8 possible SNP allele combinations (assuming the SNP allele frequencies were equal) if there 
was no underlying association between the 3 SNPs in the block. In reality however, we have 
a SNP allele pattern count profile which is a result of many generations of random and non-
random SNP inheritance from a common ancestor. A challenge is to determine which of the 
8 possible SNP allele combinations exist because the 3 SNPs were inherited by descent from 
a common ancestor and which SNP allele combinations exist by chance alone. For long SNP 
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Fig. 3. Consecutive 3-SNP allele blocks along 1 row representing either a paternal or 
maternal chromosome. 

allele patterns (e.g. 10 or more SNP alleles per block)3 that can be inferred to be a haplotype 
block, identity is more likely by descent. For short SNP allele patterns (e.g. 3 SNP alleles per 
block) inferred to be a haplotype block, it is more likely identical by chance.  Nevertheless, 
we can statistically test whether the observed count distribution has arisen from 
independently segregating SNPs. On the other hand, it is debatable whether the test will 
achieve the desired results. If SNPs are very close then we would expect SNPs not to segregate 
independently, and the observed counts arise more from genetic drift (i.e. some SNP allele 
patterns are more frequent due to limited population size and the large effect of the 
contribution of only some ancestors to the current population). Despite the latter concern, in an 
attempt to meet this challenge, expected and observed counts are still tested for statistical 
significance. To determine the expected SNP allele pattern count, SNPpattern computes the 
SNP allele frequencies (Table 3). For example, the expected proportion for SNP allele pattern 
“111” based on the allelic frequencies of each of the 3 SNPs and assuming independence is 
0.072 ( Pr(SNP 1 allele 1) *  Pr(SNP 2 allele 1) *  Pr(SNP 3 allele 1)). The expected count for SNP 
allele pattern “111” is therefore 72 (proportion expected * number of individuals). 
Based on the allele frequencies, the null hypothesis is that we expect the observed and 
expected count to be the same, and as a consequence the SNPs to be independent (i.e. SNPs are 
segregating independently). A Fisher's Exact Test4 for count data is applied as a statistical 
significance test for each SNP allele pattern. Table 5 shows an example of how the data for 
SNP allele pattern “111” from Table 4 is used in a 2 * 2 contingency table to compute the exact 
probability of observing a table with this result (Equation 4). The p-values are obtained 
directly using the hypergeometric distribution. The p-values (examples shown in Table 3) are 
used as the conditional criteria to determine which SNP allele patterns were most likely to 
have occurred by chance.  In this example, the low p-value for pattern “111” indicates that the 
hypothesis is unlikely to be true and therefore the SNPs within the pattern are not 
independent. The success as to whether the challenge was met of distinguishing SNPs in a 
haplotype block from SNPs in a random pattern is reviewed in the discussion section. 
From a SNPpattern implementation perspective, some difficulty was encountered in 
programming Fisher's Exact Test. A Perl module (Text::NSP::Measures::2D::Fisher2) 
downloaded from CPAN5 is currently being investigated for its suitability. As an interim 
 

                                                                 
3 Dependent on the chromosomal distance between SNPs 
4 Used in preference to Chi-Square test since expected counts may be less than 5 
5 The Comprehensive Perl Archive Network 

    

112212211111111211211211222121212
2111222 … continued 

1 2 3 4 5 SNP allele 
blocks 
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SNP allele 
pattern 

Observed SNP 
allele pattern 

count 

Expected SNP 
allele pattern 

count 

Proportion 
Observed 

Proportion 
expected 

p-value$$ 

111 14 72 0.014 0.072 6.07e-11 
112 32 27 0.032 0.027 0.598 
121 699 652 0.697 0.650 0.097 
122 241 242 0.240 0.241 1.000 
211 0 1 0 0.001 - 
212 0 0 0 0.000 - 
221 17 7 0.017 0.007 0.062 
222 0 2 0 0.002 - 

Total 1003++ 1003++ 1.000 1.000  

++ Number of individuals in group 
$$ p-values are obtained directly using the hypergeometric distribution following a Fisher's Exact Test 

Table 3. Example of SNP allele pattern counts at the first 3-SNP allele block along a paternal 
chromosome based on Goodswen et al., (2010) 

measure, the statistical programming language R (http://www.r-project.org/) was used. 
SNPpattern can output a file containing a list of the observed SNP allele pattern counts per 
block in the first column and the expected SNP allele pattern counts per block (computed 
from the individual SNP allele frequencies) in the second column. The output file can be 
read directly into R and used as input to the function fisher.test () to conduct the Fisher's 
Exact Test for count data. 
 

 SNP 1 SNP 2 SNP 3 
 Count  Count  Count  

Allele Row 2++ Row 3 Freq.$$ Row 2 Row 3 Freq. Row 2 Row 3 Freq. 

1 986 993 0.99 46 161 0.10 730 733 0.73 
2 17 10 0.01 957 842 0.90 273 270 0.27 

Total 1003 1003 1.00 1003 1003 1.00 1003 1003 1.00 

++ Row 2 and Row 3 are the rows that represent the genotype data for each individual (refer Figure 4-1).  
For genotype at SNP #1, 986 out of a total of 1003 individuals have a ‘1’ on row 2, and 17 out of 1003 
have a ‘2’ a row 2 
$$ Freq. = Allelic Frequency. For example, the population frequency of ‘1’ at the SNP 1 location is (986 + 
993) /2006 = 0.99. Likewise the population frequency of ‘2’ at the SNP 1 location is (17 + 10)/ 2006 = 0.01 

Table 4. Example of allele frequencies for 3 sequential SNPs. 

 

Observed Expected Row totals

Pattern found 14a 72b 86a+b

Pattern not found 989c 931d 1920c+d

Column totals 1003a+c 1003b+d 2006n

Table 5. A 2 * 2 contingency table for SNP allele pattern "111". 

( ) !( )!( )!( )!
Pr( , , , )

! ! ! ! !

a b c d a c b d
a b c d

n a b c d

   
  

Equation 4. Fisher’s formula for exact probability of observing the data in a contingency 
table. 
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Table 4 shows the SNP allele pattern count for the first 6 consecutive blocks for a 10-SNP 
allele block size for a paternal chromosome. From the counts we can infer haplotype blocks. 
As per the SNPpattern premise for a haplotype block previously described in the 
introduction, it is a region with a low SNP allele pattern count separated by a region with a 
large SNP allele pattern count. In other words, it is expected that if a block has a large SNP 
allele pattern count relative to the counts within other blocks along the chromosome, it is 
likely to be a recombination hotspot. For each paternal or maternal chromosome, SNPpattern 
computes descriptive statistics such as the average number and standard deviation of 
patterns found per block.  A user definable count threshold can be applied to filter large 
SNP allele patterns counts to infer the haplotype blocks. By default SNPpattern flags SNP 
allele patterns with counts greater than 1 standard deviation above average. Of course, the 
relevant count threshold to use and the interpretation of inferred haplotype blocks requires 
thorough knowledge of group population structure. It is therefore critically important that 
judicious grouping of genotypes takes place prior to the SNP allele pattern counts (refer 
previous section – Grouping data). Another point to note is that the chromosomal distance 
between SNPs is not equal and therefore the physical size of the each block of SNPs is not 
equal. Although SNPpattern computes and reports the physical block sizes, it does not adjust 
the SNP allele pattern counts to compensate for unequal sizes. 
 

 SNP ALLELE BLOCKS 

 1 2 3 4 5 6 

Pattern count 70 69 115 76 57 20 

H/L flag ++ L L H L L L 

Physical block size 619948 520686 437805 394152 398511 538789 

++ H indicates block with SNP allele pattern count greater than user defined threshold; L indicates block 
with SNP allele pattern count less than threshold 

Table 6. SNP allele pattern counts per 10-SNP allele block along paternal chromosome. 

In summary, for this section on the multiple SNP allele block approach, using SNP allele 
pattern frequency counts as a measure, we can make comparisons between individuals, 
groups of individuals, and groups. These comparisons then allow us to make informed 
decisions about the general haplotype diversity. It is also expected that processing the same 
genotype data several times using different block sizes, we can fine-tune the distribution of 
the haplotype blocks. Finding similarity between individuals. 
The method presented in this section was inspired from publications [80-83] on genetic 
distance and similarity matrices.  Two genetically identical individuals (i.e. identical DNA 
sequences throughout the genome) will have identical haplotype structures. It therefore 
could be argued that the more genetically similar two individuals are to each other, the 
more likely they will have the same haplotype structure. In other words, the closer two 
individuals are related the more the DNA sequences are expected to be in common. The 
genotyped SNPs are of course not as accurate a unit of comparison as genome wide 
nucleotide sequences. However, it is not unreasonable to assume that comparing the SNP 
allele patterns between two individuals will provide a guideline as to the similarity of 
haplotype structure. So, although this method does not show the actual haplotype structure, 
the overall similarity in SNP allele patterns between individuals or groups of individuals 
will give an indication of similarity in haplotype structure. As a simple example we take 3 
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Fig. 4. Method for scoring SNPs. It shows scoring of paternal chromosome (row 1) for only 2 
out of 4 individuals. 

ethnic groups (EG) called A, B and C. We then compare the SNP allele patterns for the full 
length of the genome for each animal within each EG. From the comparisons we then 
determine that EG A and B share the most similar SNP allele patterns. Therefore it is 
proposed that there is a greater chance that EG A and EG B carry the same causal variant 
allele relationship by descent than EGs A and C, or B and C. The comparisons are based on 
similarity matrices whereby a score is incremented by 1 when a SNP allele of an individual 
matches that in another individual (Figure 4). Each individual is processed in turn. In the 
example only the paternal chromosome (row 1 in this case) is scored. The user can choose to 
score either row 1 or row 2, or row 1 and row 2 of the phased genotypes contained in the 
group input file(s). 
 

ID A B C D Total 

A 5 2 3 5 16 

B 2 5 2 2 11 

C 3 2 5 3 14 

D 5 2 3 5 15 

Table 7. Example similarity matrix. Shows a simple matrix constructed from made-up data 
in Figure 4. Here we can see that individuals from ethnic groups A and  D share the most 
similarity; and individuals from ethnic groups A and B, and individuals from ethnic groups 
B and C share the least similarity.  An individuals’ overall similarity to all other individuals 
in the group can be ranked according to its total similarity score. In this example, 
individuals in A is considered the most similar and individuals in B the least. In practice the 
similarity matrix is constructed from thousands of SNP allele pattern comparisons for 
hundreds of individuals. 

ID:  Individual SNP allele pattern 
A 1 1 2 1 2  
 
ID:  SNP allele patterns to compare: 
 Score 
B  1 1 1 2 1  2 
C 2 1 1 1 2   3 
D 1 1 2 1 2   5 
 
ID:  Individual SNP allele pattern 
B  1 1 1 2 1   
 
ID:  SNP allele patterns to compare: 
 Score 
A 1 1 2 1 2   2 
C 2 1 1 1 2   2 
D 1 1 2 1 2   2 
 
etc 

www.intechopen.com



SNPpattern: A Genetic Tool to Derive Haplotype Blocks  
and Measure Genomic Diversity in Populations Using SNP Genotypes 441 

3.4 Linking SNP allele block regions to genomic annotation 

One of the output files from a SNPpattern Perl script is a file that contains all SNP allele 

blocks where the number of distinct SNP allele patterns is low or high. The script allows 

for a user-definable upper or lower pattern frequency threshold. For example, if a user 

enters a threshold of  “<3” then only SNP allele blocks with a distinct SNP allele pattern 

frequency of less than 3 will be output. Likewise, if the user enters “>99” only SNP allele 

blocks with a distinct SNP allele pattern frequency of greater than 99 will be output.  

Figure 4-4 shows an example of the output file. The output consists of a list with 4 

columns: Chromosome number of the chromosome containing the SNP allele block (the 

genomic region of interest); start and end genomic location of SNP allele block; the 

number of distinct SNP allele patterns found within the SNP allele block for a group of 

individuals (only lists the genomic regions where the number of patterns is below or 

above a user-defined threshold), and the average number of patterns per block. The 

intended use of the output file is to act as a starting point for a researcher to find 

biological meaning in regions identified to have low or high haplotype diversity. 

Biological meaning may help in the understanding of why in some regions and not others 

there is a conservation of the same alleles from generation to generation. In other words, 

why is there only 1 or 2 distinct SNP allele patterns existing in the same genomic region 

for all individuals in a group? Conversely, some regions have a large number of different 

SNP allele patterns implying a hotspot region for recombination. Finding the underlying 

biology within the hotspot region may provide clues to the mechanism of recombination. 

The expectation is that the output list can be used for further downstream analysis such as 

searching for annotation of the chromosome region within which the SNP allele block is 

located. 

 

 

Fig. 5. Example output file showing genomic regions with low SNP allele pattern counts. 

As an example, we could find the genes within the genomic region. In the FunctSNP R 

package (5) there is a function called “getGenesByRange” which returns the Gene ID for all 

genes located between a user-specified start and end location. 

3.5 Implementation summary 

In summary, three sets of Perl scripts comprise SNPpattern: 1) grouping data scripts – to 

create separate data files for further downstream comparison analysis; 2) SNP allele block 

scripts – to find, count, and compare the SNP allele block patterns between any group of 

individuals; and 3) similarity scripts - to score the similarity between individuals based on 

an individual’s entire SNP allele pattern. Table 8 encapsulates the primary function and 

rationale of each script. 

# Input file used: sire_31_match_10.txt 
# Pattern Size: 10 
# Haplotype row: paternal 
# Chromosome No: Start of pattern: End of pattern: No. of Patterns: 
Average No. per block 
4 3000848  3170609  2 6.58 
13 67400889 67687804 2 4.09 
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Perl Script 
Name (.pl) 

Primary function Rationale 

Scripts for grouping and summarising genotype data 

Group Genotype data is separated into files 
according to a grouping criterion. For 
example, the genotype of animals can 
be grouped according to their sire 
breed, or flock ID, or birth years.  

Main purpose of dividing the data into 
groups is to account for population 
structure, facilitate the SNP-block 
pattern counting within a group and 
the comparison of the SNP-block 
pattern count between groups. 

divide Divide the bi-allelic SNPs in any group 
input file (e.g. flock, breed, and sire 
groups) into separate chromosome files. 
 

Used as the main input for the SNP 
allele pattern analysis scripts and in 
particular for the multiple SNP allele 
block approach  

Scripts for finding, counting, and comparing SNP allele block patterns 

derive_pattern Derive all SNP allele patterns of a 
specified block size (e.g. 3, 100, 1000, 2000 
etc.) that exist in the maternal and/or 
paternal chromosomes for any group file 
(e.g. either flock, breed, or sire)  

Compiles all the unique SNP allele 
patterns found in a group into 1 file. 
Used as input to subsequent scripts to 
find and count the frequency of these 
unique patterns.  

match Find and count the number of matching 
SNP allele patterns found within a 
specified block size along a paternal 
and/or maternal chromosome for every 
individual in a specified group.  

An essential requirement for the 
multiple SNP allele block approach 

order_match Similar to “match.pl” except the output 
is in a different format. Also creates a 
group consensus file containing a 
concatenation of the most common SNP 
allele pattern found at each block. In 
effect it creates a paternal or maternal 
chromosome comprising the most 
common SNP allele patterns in a group. 

Enables a researcher to view and 
compare, one block at a time, the SNP 
allele patterns found within each block. 
The group consensus chromosome can 
be compared to the chromosomes of 
individuals within the group and the 
difference can be used as measure of 
dissimilarity between individuals.  

score Output the most frequent SNP allele 
block pattern found at each block 
location along the chromosome and 
provide additional information such as 
the percentage of animals with the 
pattern, and chromosomal start and 
end location of the block. 

The most frequent SNP allele block 
pattern is deemed to be the most likely 
to be a haplotype. The statistics 
provided may enable the researcher to 
decide if the SNP allele pattern is a true 
haplotype or one occurring by chance. 
 

Scripts used to find similarity between animals based on SNP allele patterns 

Sim For each animal in turn, list all other 
animals in the same group in order of 
SNP allele pattern similarity. The entire 
chromosome is compared and 
individuals are scored as to how many 
SNP markers are the same.  

Similarity matrices for  individuals 
within flocks, breeds, or sires can be 
computed 
 

Rank Similar to “sim.pl” except rank the 
animals’ similarity to all other animals 
in the group based on the summation 
of the scores from the similarity 
matrices. 

Scores can be used as a measure of 
genetic similarity between individuals 
or groups. It is expected that similar 
individuals will have similar LD 
patterns. 
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Perl Script 
Name (.pl) 

Primary function Rationale 

Miscellaneous scripts 

SNP_map Count the number of SNPs per 
chromosome and determine the 
distance between each genotyped SNP. 

Knowledge of the distribution and 
distance between the genotyped SNPs 
is important for interpreting haplotype 
block boundaries.  

pattern Generate a file listing all the possible 
combinations of 1s and 2s given a 
pattern size 

Created as a general pattern generator 
tool.  

Table 8. The suite of Perl scripts collectively called SNPpattern. 

4. Discussion 

The SNPpattern program is a first version and is still in its development phase and the 
program testing was a first attempt to analyse the haplotype structure within and across 
populations. Nonetheless, SNPpattern in its current form will easily generate, with little user 
required effort, output files that provide a researcher with information about LD and IBD 
which can be used in population diversity and association studies. SNPpattern still has some 
shortcomings that need to be addressed in future releases. Accounting for the population 
structure of a group is currently at the discretion of the user by grouping genotypes 
appropriately. During the grouping of genotypes SNPpattern allows specified animal IDs to 
be excluded from the group e.g. if in a particular breed group the number of progeny from 
each sire is disproportionate, animal IDs can be excluded to balance the proportions. It is 
anticipated that knowing which animals to exclude may be difficult and the exclusions may 
inadvertently introduce biases. Therefore a weighted SNP allele pattern count in accordance 
to animal proportions may be a possible solution. Pritchard et al. propose a model-based 
clustering method for using genotype data to infer population structure Pritchard et al., 
(2000). With this method it might be possible to assign individuals to appropriate groups 
automatically. Another important omission that needs to be addressed is to take into 
account, when interpreting haplotype block locations, the varying physical distance 
between the SNPs within the blocks.  Some SNPs are closer together in some regions and 
further apart in others. Also, a sliding block window would improve accuracy and needs to 
be implemented. For example, if we have a 3-SNP allele block the program currently uses a 
window of SNPs from 1 to 3, 4 to 6, 7 to 9 etc. A sliding window would encompass SNPs 
from 1 to 3, 2 to 4, 3 to 5 etc. 
During the development of SNPpattern several statistical methods (in addition to Fisher’s 
Exact Test for Count Data) were used in an attempt to determine which SNP allele pattern 
has occurred because there is a correlation between the SNP alleles (possible members of a 
haplotype block) and which SNP allele pattern occurred by chance. Despite taking allele 
frequencies into account, no statistical test was found to reliably prove that SNPs were 
inherited by descent. For example, let us suppose we have 3 SNP alleles in relative close 
proximity to each other on a particular chromosome in a distant ancestor. Many generations 
of progeny later, we have exactly the same 3 SNP alleles (the same haplotype block) in some 
of the progeny. The challenge is to prove that these 3 SNP alleles where inherited from the 
distant ancestor. The expectation is that these 3 SNP alleles have remained together on the 
haplotype block because they reside in a genomic region which is involved in important 
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biological processes. That is, positive selection has ensured the survivable of the haplotype 
block. Consequently it is expected that in a population of descendents from the distant 
ancestor, the frequency of the haplotype block housing the 3 SNP alleles will be high within 
the population. The increased frequency of the 3 SNP alleles might be explained by the 
process of selective sweeps (Montpetit & Chagnon, 2006, Chevin & Hospital, 2008). A strong 
selective sweep can result in only 1 or 2 haplotypes existing in the same region of the 
genome for a population (Chevin & Hospital, 2008). Therefore, although further evidence is 
required, it is argued that in some instances SNP allele patterns, which are overrepresented 
in the population, indicate non-random SNP inheritance and could be considered a part of a 
haplotype block. For example, there are cases where in a particular genomic region there is 
only 1 out of 8 possible SNP allele patterns present in the population (i.e. 100% of 
individuals have the same pattern). Many of the results from the Fisher’s Exact Test dispute 
this argument. For example, in regions on the genome where nearly all individuals have the 
same SNP allele pattern block and SNP allele frequencies on the block are high, Fisher’s p-
values indicate that the SNPs are independent. 
Like all programs, the worth and accuracy of the output data from SNPpattern is totally 
dependent on the data input. For example in the program testing on sheep breeds (Goodswen 
et al. 2009), the frequency of SNP allele block patterns were counted and the similarity 
between animals scored based on only 5,494 SNPs, which were genotyped for chromosome #1. 
In other words, the interpretation of the LD patterns for chromosome #1 was based on the 
state of 5,494 nucleotides. Chromosome #1 in fact is comprised of over 299,636,549 nucleotides 
and, as in the case for sheep; there is an unknown number of SNPs.  It is expected that as the 
number of SNPs increase and the distance between the SNPs decrease the more the SNPpattern 
outputs will be informative. Also it is important to know what selection criterion was used for 
selecting the SNPs to be genotyped before interpreting the results obtained from SNPpattern. 
For example, were the SNPs selected for even distribution across the genome and/or were the 
SNPs selected as tags owing to prior knowledge of the LD structure. If the purpose of using 
SNPpattern is to define haplotype blocks then it is expected that the results may be distorted if 
the genotyped SNPs are tag SNPs.  
This chapter solely focused on SNP haplotypes in the context of LD or selective sweeps due 
to directional selection (natural or artificial) acting on the genetic variants affecting complex 
traits measured / observed on the individuals. However, the consequences of this would 
have been at the underlying biological level, namely the SNP haplotype diversity affecting 
gene expression levels or protein abundance in cells and tissues of relevance to the complex 
trait. This emphasises that future genetic studies on global gene expression patterns 
(Kadarmideen et al., 2006 and Kadarmideen 2008) should be targeted at effects of LD / 
expression-related SNP haplotype patterns. In fact, such studies could contribute to 
prediction of transcription factor binding sites, using combined SNP and gene expression 
datasets (Vonrohr et al., 2007). Further, identification of unique co-expression gene networks 
and functional gene modules distinguishing different phenotypic extremes or case/controls 
(e.g. Kadarmideen et al., 2011) could be speculated as being result of formation of distinct 
SNP haplotypes after selective sweeps.  
It is expected that in the very near future SNPs will, for the most part, be superseded by 
entire DNA sequences due to the advent of low cost next generation sequencing (Hayden, 
2009). With little modification, SNPpattern will handle DNA sequences in much the same 
way as it currently does for SNP allele sequences (although the computer 
performance/capability is an unknown entity). It is envisaged that varying block sizes of 
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DNA sequences will be compared and counted between individuals to determine the 
structure and distribution of LD. Also, comparing entire DNA sequences between 
individuals is perfect for determining genetic similarity. 
Although the motivation for developing SNPpattern was to find patterns of LD, it is 
suggested that common SNP allele patterns could be used in association studies (Botstein & 
Risch, 2007).  Common SNP allele patterns is only an interim suggestion, as it is expected 
that using common DNA sequences in association studies will prove to generate the most 
reliable results in the future.  

5. Conclusions 

We described the development of SNPpattern, which is the collective name for a suite of Perl 
scripts essentially designed to group, count, and compare SNP allele patterns of various 
block sizes. Differences in SNP allele block frequency are used as a measure of haplotype 
diversity within and between groups. A SNP allele pattern represents SNPs inherited from 
one parent and is a product from phased genotype data. The SNP allele pattern from a 
programming point of view is simply a line of either 2 characters (0 or 1, 1 or 2, A or B) 
representing 2 different states. The main factor that drove the development of SNPpattern 
was the premise that studying SNP allele patterns can reveal useful information to help 
understand the genetics of individuals within groups and across groups. The use of 
SNPpattern has been illustrated on sheep breeds (Goodswen et al., 2009) but it is indeed 
generic software meant for all species. SNPpattern allows researchers, given any phased 
genotype data in a PHASE or fastPHASE format, to analyse SNP allele patterns within any 
user-defined SNP allele block size. These SNP allele patterns can be compared between 
user-defined groups. The primary objective of the tool is to provide a researcher with useful 
information on SNP allele block patterns and as a major example of its usage, the 
information can be used to quantify haplotype diversity within and between groups. While 
there are similar bioinformatics tools that have a primary focus on haplotype inference 
and/or analysis tools (such as Haploview, HapBlock, HaploBlock, and GERBIL) we have 
found no tool that provides a smooth interface between a PHASE or fastPHASE output and 
haplotype diversity/analysis.  
Two main approaches for studying the SNP allele patterns have been implemented within 
SNPpattern: a multiple SNP allele block and a pattern similarity scoring approach. For both 
approaches, SNPpattern generates various descriptive statistics of the SNP allele patterns in 
plaintext output files. It is not the author’s intention to stipulate how a researcher should 
interpret or use the information. Nevertheless, in this chapter suggestions were made as to 
how SNPpattern might be used by a researcher. In particular, SNPpattern was proposed as a 
generic tool for finding the patterns of LD using a multiple SNP allele block model. We have 
demonstrated in another published paper how SNPpattern can be used to examine the 
patterns and extent of LD within and between 4 Australian sheep breeds (Goodswen et al., 
2009). The results show that SNPpattern could be used to effectively evaluate overall 
haplotype diversity within and between groups of individuals. 
In closing, SNPpattern is a simple pre-screening tool to rapidly screen genome for haplotype 
structure and provide insights on highly conserved biologically important haplotypes. 
SNPpattern is implemented in Perl and supported on Linux and MS Windows. We have 
tested SNP pattern on Ovine 60k SNPchip data (Goodswen et al., 2010). All scripts are  
freely available from: http://web4ftp.it.csiro.au/ftp4goo17a/SNPpattern/SNPpattern.zip. 
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SNPpattern will be made available to the public via http://systemsgenetics.dk/pages/ 
resources.php in the future. 
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