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1. Introduction 

Glioblastomas (GBM) are the most malignant solid tumours (grade IV) of CNS. They are glial 
lineage neoplasias with a high proliferative and invasive capacity, reaching to occupy an entire 
lobe of the brain (Kleihues et al., 2007). According with their genesis, they can be differentiated 
between primary and secondary glioblastoma. The primary is the most common glioblastoma. 
This is a new generated tumour after a brief medical history (three months), with no evidence 
of a less malignant lesion. On the other hand, secondary glioblastoma develops from diffuse 
astrocytoma, anaplastic astrocytoma or oligodendroglioma and malignant progression. Its 
development time is about five years. It is thought that both types of glioblastomas may be 
generated from neoplastic cells with characteristic of stem cells (Ohgaki & Kleihues, 2009). In 
addition, these cancer stem cells called “glioma stem cells” (GSCs) may be the responsible for 
glioma recurrences due to chemo-and radio resistance (Bao et al., 2006; Rich, 2007). Glioma 
stem cells (GSCs) are a subpopulation of neoplastic cells identified in glioma sharing 
properties with neural stem cells (self-renewal, high proliferation rate, undifferentiating, and 
neurospheres conformation) and the capacity for leading the tumourigenesis and tumour 
malignancy. The proliferation and the invasion into adjacent normal parenchyma have been 
attributed to glioma stem cells as well. Indeed, they were related to the angiogenesis process 
needed for the growth and survival of the neoplasia.  
 The microvascular network in gliomas has to get adapt to metabolic tissue requirements 

(Folkman, 2000). When the vascular network cannot satisfy cell requirements (Oxygen 

pressure of 5-10 mm Hg) tissue hypoxia occurs. This situation triggers the synthesis of pro-

angiogenic factors as matrix metalloprotease (MMP-2), angiopoietin-1, phosphoglycerate 

kinase (PGK), erythropoietin (EPO), and vascular endothelial growth factor (VEGF)-A 

(Fong, 2008).  

Vascular endothelial growth factor (VEGF) is a major regulator of tumour angiogenesis 

(Bulnes & Lafuente, 2007; Lafuente et al., 1999; Machein & Plate, 2004; Marti et al., 2000). 
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VEGF acts as mitogen, survival, antiapoptotic and vascular permeability factor (VPF) for the 

endothelial cells (Dvorak, 2006). The increase of this pro-angiogenic factor, secreted either 

by neoplastic cells or by cells of the tumour microenvironment, induces the start of 

angiogenesis, the called “angiogenic switch” (Bergers & Benjamin, 2003). This event results 

in the transition from avascularised hyperplasia to outgrowing vascularised tumour and 

eventually to malignant progression. It has been shown in human glioma biopsies that 

VEGF overexpression correlates directly to proliferation, vascularization and degree of 

malignancy, and therefore inversely to prognosis (Ke et al., 2000; Lafuente et al., 1999; Plate, 

1999). The synthesis of VEGF is mediated by the Hypoxia-Inducible Factor (HIF-1), a critical 

step for the formation of new blood vessels and for the adaptation of microenvironment to 

the growth of gliomas (Jin et al., 2000; Marti et al., 2000; Semenza, 2003). Recent researches 

have reported that glioma stem cells play a pivotal role inducing the angiogenesis via HIF-

1/VEGF (Bao et al., 2006). By the other hand, hypoxia has been related to clones selection of 

tumour cells. These clones adapted to the tumour microenvironment have acquired the 

phenotype of tumour stem cell with increased proliferative and infiltrative capacity 

(Heddleston et al., 2009; Li et al., 2009). Invasion of adjacent normal parenchyma has been 

attributed to glioma stem cells as well.  

Due to these evidences, GSCs are currently being considered as a potential therapeutic 
target of the tumours. Recent studies have been focused on the identification of GSCs. In 
human glioblastomas they have been identified using CD133 marker (Ignatova et al., 2002). 
However, little is known about their genesis during glioma progression, especially during 
the early stages.  
Some authors have previously reported the induction of glial tumour in rats by 
transplacentary administration of the carcinogen ethylnitrosourea (ENU) as a suitable 
method for studying the natural development of glioma (Bulnes-Sesma et al., 2006; Zook et 
al., 2000). In addition to this, it has been reported that ENU glioma model is a representative 
model for human glioma due to its location and also to its similar cellular, molecular and 
genetic alterations (Kokkinakis et al., 2004). Our experience with this model has proven to be 
useful to study many aspects of tumourigenesis and neoangiogenesis. In previous 
researches we reported the progression of tumour malignancy associated with vascular 
structural alterations and blood brain barrier (BBB) disturbances (Bulnes & Lafuente, 2007; 
Bulnes et al., 2009). ENU induced glioma permitted us to identify tumour development 
stages following microvascular changes. In addition, it was possible to study the 
angiogenesis process. Recently, we have used this model to study the relationship between 
glioma stem cells and angiogenesis process during the neoplasia development. 
Many evidences corroborate the hypothesis that “glioma stem cells” have a close 
relationship with angiogenesis process, intratumour hypoxia and neoplastic microvascular 
network. In this chapter we centred to show this relationship from early to advanced stages 
of glioma using ENU-model.  

2. Endogenous glioma model 

Over the years, different methods have been employed to induce experimental tumours in 
the Central Nervous System of animals. Exposure to radiation, inoculation of carcinogenic 
virus, xenografts of tumour cell lines or tumour fragments in nude rats or mice, 
administration of chemical substances (Bulnes-Sesma et al., 2006) and genetically engineered 
mouse models have been used to replicate CNS tumours. The administration of chemical 
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substances as nitroso compounds is one of the most commonly-used methods to induce 
experimental CNS neoplasm. There is strong experimental data showing that nitrosamides 
(R1NNO-COR2), a type of N-nitroso compounds (NOC), are potent neuro-carcinogens 
when administered transplacentally. N-nitrosoureas MNU and ENU (a class of 
nitrosamides) have been demonstrated to be carcinogenic in animals, and particularly 
related to the development of CNS tumours. N-ethyl-N-nitrosourea (ENU) acts alkylating 
the O6 in the guanine (G:C---T:A transition) and the O2 in the thymine (T:A---A:T 
transversion). The accumulation of these successive DNA mutations seems to be responsible 
of the neurooncogenic effect of ENU (Bulnes-Sesma et al., 2006; O'Neill, 2000). Recently it 
has been reported that ENU exposure affects primitive neuroepithelial cells of the 
subventricular plate (SVZ) and germinative zone (VZ). ENU prenatal exposure affects the 
differentiation of these cells generating glial lineage tumours (Burger, 1988; Vaquero et al., 
1994; Yoshimura et al., 1998) and its exposure in adult affects the neurogenesis of the SVZ 
(Capilla-Gonzalez et al., 2010). In previous studies we found that gliomas induced in 
offspring were similar to the human gliomas (Kokkinakis et al., 2004). Therefore, ENU brain 
induced tumours have allowed the study of several aspects of glioma behaviour, for 
example, microvascular organization (Schlageter et al., 1999; Yoshimura et al., 1998); 
neoplastic cell dedifferentiation (Jang et al., 2004); gene mutations (Bielas & Heddle, 2000; 
O'Neil, 2000); microcirculation and angiogenesis process (Bulnes & Lafuente, 2007; Bulnes et 
al., 2009) or experimental therapeutic agents (Kish et al., 2001). 
In our model, the glioma induction was performed by prenatal exposure of Sprague Dawley 
rats to ENU. Briefly, pregnancy rats, on the 15th day of gestation, were given a single i.p. 
injection of 80 mg of ENU/kg body weight (Bulnes et al., 2009; Bulnes et al., 2010). Offspring 
rats exposed to ENU were reared in standard laboratory conditions and the study was 
performed from 5 months to one year of age. The identification of ENU-Gliomas was 
performed by T2-w and postcontrast T1-weighted NMR images and by histopathology 
diagnosis from H&E staining and immunophenotypic study as previously described (Bulnes 
& Lafuente 2007) (Figure 1, 2). Following our results, ENU-glioma starts from the fifth 
month of offspring rat age and becomes GBM at 10 months of age (Bulnes-Sesma et al., 
2006). ENU-glioma starts as cellular proliferation growing near ventricles in association with 
subcortical white matter. Over 6 months of extrauterine life, this tumour proliferation 
become nodular and rats display neurological signs (Figure 1). Around one year they grow 
as a GBM toward the contralateral hemisphere (Figure 2). Following our findings, we have 
identified three stages of ENU-glioma development: initial, intermediate and advanced. The 
advanced stage corresponds to anaplastic oligodendroglioma or glioblastoma (GBM) similar 
to the human. ENU-GBM may reach to infiltrate whole cerebral hemisphere, showing 
malignant histopathological features such as: high tissue heterogeneity, aberrant 
angioarchitecture, macro-haemorrhages, macrocysts or palisade necrosis (Klehiues et al., 
2007). Thanks to this model we could isolate early glioma stages, which is impossible to 
carry out in human brain. 

3. Stem cells and cancer stem cells 

Stem cells are functionally defined as self-renewing and multipotent cells that exhibit 
multilineage differentiation (Till & McCulloch, 2011). Nowadays they have been proposed 
to be an important tool in regenerative therapy being used to regenerate tissue in many 
diseases like heart stroke, neurodegenerative diseases, etc (Nadig, 2009). However, in 
oncology and especially in cerebral gliomas, the presence of the stem cells has been related 
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to a poor prognosis. Recent investigations in glioblastomas have reported that these cancer 
stem cells called glioma stem cells (GSCs) have tumourigenic capacities like tumour 
malignant process, peripheral tissue infiltration and angiogenesis induction (Hadjipanayis 
& Van Meir, 2009; Rich, 2007). 
 

 

Fig. 1. Coronal sections of rat brains displaying ENU-glioma showed by MRI on T2-w and 
T1-w after injection of gadolinium. a, b) Small neoplastic mass growing on the cerebral 
cortex with an homogeneous hyperintense signal on T2-w images. These neoplastic masses 
correspond to initial stage of ENU-glioma. e, f) Both masses display an isointense signal on 
T1-w. c, d) ENU-glioma tumour with nodular shape showed on T2-w hyperintense signal 
that represents intermediate stage. g, h) At this stage there is a gadolinium contrast 
enhancement observed as homogeneous soft hyperintense signal on T1-w image.  

 

 

Fig. 2. Coronal sections of rat brains with ENU-glioma of advanced stage showed by MRI on 
T2-w and T1-w after injection of gadolinium. All of these anaplastic gliomas display 
heterogeneous hyperintense signal on T2 (a-d) and on T1-w (e-h). This heterogeneity is due 
to the presence of histopathology features of malignity. c-d) ENU-GBMs high-proliferative 
covering a whole cerebral hemisphere. The T2-w images reveal an intratumour hyperintense 
signal corresponding with intratumour oedema or macrocysts. g-h). Gadolinium 
enhancement of this T1-w image adopts a rim shape bordering the neoplastic mass. This rim 
represents the microvascular proliferation with dysfunction of Blood Brain Barrier.  
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In the middle of the 60s, Altman and Das reported the first evidences about stem cells in 

adult brain. They observed stem cells in the hippocampus and olfactory bulb of rats, and it 

supposed the first sign of division of stem cells. Later on they were called Neural Stem Cells 

(NSCs). NSCs were considered the unique population of Central Nervous System cells 

characterized by self-renewal and multilineage differentiation properties (Muller et al., 

2006). They can form neurospheres (Reynolds & Weiss, 1992) and differentiate in vitro into 

the three neuroectodermal lineages astrocytes, oligodendrocytes and neurons (Alvarez-

Buylla & Garcia-Verdugo, 2002). Furthermore, when they are transplanted in vivo in the 

cerebellum, they can generate neurons and glial cells (Lee et al., 2005). Also, after 

transplantation into nude mice they can differentiate into neuroblasts (Tamaki et al., 2002). 

NSCs reside in the germinal layers of the developing brain, initially in the early 

neuroepithelium, later in the ventricular (VZ) and subventricular zone (SVZ) during 

embryogenesis (Götz & Huttner, 2005). In adult brain, three areas are supposed to harbour 

neural stem cells: dentate gyrus of hippocampus, SVZ (Doetsch et al., 1999; Eriksson et al., 

1998) and the fibbers connecting olfactory bulb to lateral ventricle (Lois & Alvarez-Buylla, 

1994; Whitman & Greer, 2009). In recent times, they were also isolated in the subcortical 

white matter (Nunes et al., 2003). 

In the 1960s, evidence emerged supporting the presence of stem cells in tumours. Bergsagel 
and Valeriote (1968) showed that only certain cells within a tumour had the capacity to 
generate a new tumour; they termed these cells “tumour stem cells”. After this, tumour stem 
cells were identified in breast tumour (Al-Hajj et al., 2003), pancreatic tumour (Esposito et 
al., 2002) etc. 
The first concept of cancer stem cell, later on also called tumour initiating cells, appeared in 
the beginning of the 90s. Bonnet and Dick (1977) describe how some cells, isolated from 
leukaemia patient´s blood, had proliferation and differentiation capacities in vivo. Fan et al. 
(2007) described cancer stem cells as the cellular subpopulation capable of tumour 
regeneration within a permissive environment. Rich and collaborators reported that cancer 
stem cells have tumourigenic, infiltration and angiogenesis properties as well as 
radio/chemo-resistance (Rich, 2007; Hadjipanayis & Van Meir, 2009).  
The relation between stem cells and cancer stem cells was studied. The results explained 

that both cellular types share the previously mentioned characteristics, as well as many cell 

signalling pathways as oncogene bcl-2, Sonic hedgehog (Shh) and Wnt signalling cascade 

(Reya et al., 2001). Both types of stem cells also share common markers like CD133, Nestin 

(Dahlstrand et al., 1992) and transcription factor Sox2 (Gangemi et al., 2009). However, there 

are differences between stem cells and cancer stem cells, such as expression of different 

markers, chromosomal alterations and tumourigenic capacity. Holland et al. (2000) 

published that cancer stem cells could develop from modified neural stem cells. They have 

been described many pathways that can lead to cancer stem cell formation like Notch 

(Takebe & Ivy 2010), Akt (Germano et al., 2010) activation or p53 pathway alteration. 

3.1 Glioma stem cells (GSCs) 
Dahlstrand et al. (1992) identified a cancer stem cells subtype inside glial lineage brain 
tumours which were called Glioma Stem Cells (GSCs). These GSCs may be responsible for 
maintenance of the entire tumour and also they have the potential, when injected in 
immunodeficient mice, to generate gliomas similar to the original tumours (Heddleston et 
al., 2009).  
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GSCs indeed of share properties of somatic or embryonic stem cells (high proliferation rate, 
undifferentiating, formation of neurospheres) are chemo-and radio resistant (Bao et al., 2006, 
Rich, 2007). Their radiotherapy resistance may be thanks to a more efficient DNA reparation 
mechanism and protein kinases phosphorilation Chk1 and Chk2 (Bao et al., 2006). The 
resistance to chemotherapeutic drugs is through membrane transporters that bomb the 
drugs outside the cell (Donnenberg & Donnenberg, 2005).  
The first GSCs identification was found in the tumour advanced stage corresponding with 

human-GBM (Ignatova et al., 2000). However, the first moment of GSCs expression remains 

unknown, as well as their role in early stages of tumour development. It is very important to 

identify and explain GSCs apparition in early glioma stages to research about future tumour 

therapy.  

The discovery of GSCs in gliomas involved the creation of a new glioma-genesis hypothesis 

called “hierarchical hypothesis”. Before GSCs discovery, glioma development was 

explained by the “stochastic theory”. Stochastic theory is based on all neoplastic cells are 

clones from a single undifferentiated cell and they have the same genetic alterations 

(Hadjipanayis & Van Meir, 2009). Nowadays the “hierarchical theory” explains that only a 

few neoplastic cells can adapt to the tumour environment and are able to start the 

tumourigenic process. Even though the low proliferation of GSCs, they guide the tumour 

growth giving raise to more mature cells with limited proliferation capacity (Shen et al., 

2008).  

After the glioma stem cells finding, the research about glioma development has been 

centred in the identification of them. So far markers as CD133/Promonin-1, presents in 

glioma stem cells (Dell'Albani, 2008), Nestin, a protein found in neural stem cells in SVZ and 

other markers of neuroepithelial stem cells (Jang et al., 2004) including Musashi-1, Sox-2, 

GFAP, Map-2, Neural-tubulin, Neurofilament O4 and Noggin were used in order to identify 

tumour stem cells. But the lack of a specific marker makes it very difficult to identify 

(Hadjipanayis & Van Meir, 2009; Li et al., 2009).  

Nestin is an intermediate filament protein typical for neural precursor cells. It has been 

extensively used as a marker for neural stem cells. It is expressed in primitive 

neuroepithelial cells of all regions of CNS during the development. In adult its expression is 

restricted to the ventricular wall (SVZ) and the central canal. In pathological conditions like 

brain trauma, CNS ischemia, neurotoxicity, neoplastic transformation and in response to 

cellular stress, the nestin over-expression was showed (Holmin et al., 1997, Jang et al., 2004). 

In primary malignant tumours of CNS high amounts of cells positive for Nestin have been 

reported. Nestin has been described as a marker of GSCs in astroglial tumours (Singh et al., 

2003), indicating undifferentiating and malignance degree (Schiffer et al., 2010), but it is not 

specific for glioma stem cells (Hadjipanayis & Van Meir, 2009). Indeed, Nestin expression 

has been described to appear since the first stages in glioma models (Jang et al., 2004).  

CD133 (prominin-1) was the first identified member of the prominin family of pentaspan 

membrane proteins which acts as a marker of hematopoietic progenitor cells. It is a cell 

surface marker used for the identification and isolation of stem/progenitor cells in several 

tissues, for instance, endothelium, brain, bone narrow, liver, prostate, pancreas and foreskin 

(Mizrak et al., 2008). CD133 was originally described as an hematopoietic stem cell marker 

and was subsequently related to number of progenitor cells including neuroepithelium 

(Corbeil et al., 2000) as well as cancer stem cells in various tumours such as prostate and 
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colon cancer (Cheng et al., 2009; Collins et al., 2005; O'Brien et al., 2007). In human 

glioblastoma, CD133 expression has been associated to GSCs and bad prognosis of the 

tumour (Germano et al., 2010).  

4. Tumour angiogenesis 

Gliomas proliferate in the brain, a privileged organ from the point of view of blood supply. 
The exchange of metabolites between blood and cerebral tissue occurs essentially in the brain 
capillaries. The diameter of brain capillaries in the adult human is between 5 and 7 microns. 
These microvessels feed to the cells that are 10-20 microns away. Although the distance 
between cells and microvessels is lesser than 20 µm, the growth and survival of the gliomas 
depend on vascular remodelling and angiogenesis (Folkman, 2006). Along the early stages of 
small gliomas the metabolic demand is supplied by the vast microvascular network but when 
the metabolic supply has been exceeded, new formation of vessels becomes necessary 
(Carmeliet & Jain, 2000; Yancopoulos et al., 2000). The genesis of the new vessels from pre-
existing ones is called angiogenesis in opposite to vasculogenesis refereed to the formation of 
vessels from hemopoietic niches (Carmeliet, 2003; Risau & Falmme 1995; Risau, 1997). 
Angiogenesis is a complex process that requires proteolytic and mitogenic activity of 

endothelial cells and interaction of these with the extracellular matrix molecules and cells of 

peri-endothelial support cells (pericytes and smooth muscle cells). Many molecules and 

pathways are involved in this process, such as VEGF, its receptors VEGFR-1 and VEGFR-2, 

the endothelial receptor tyrosine kinase tie-1 and tie-2 and the angiopoietin ligands 1 and 2. 

Many other molecules as PDGF and TGF-ǃ, integrin receptors, are very important (Millauer 

et al., 1993; Neufeld et al., 1999). 

Angiogenesis requires some angiogenic stimulus, such as hypoxia, new metabolic 
requirements or tumour growth to start. Intratumour hypoxia occurs at the time when there is 
an imbalance between supply and demand oxygen due to the irregular and chaotic blood flow 
(Jensen, 2006). The relative tissue hypoxia triggers the production of hypoxia inducible factor-
1ǂ, upregulating the expression of VEGF. In addition to this, it was reported that hypoxia 
plays a fundamental role in the induction of cell phenotype neoplastic to the undifferentiated 
state of GSCs. According to recent research, hypoxia selects tumour cell clones that have 
adapted to the tumour microenvironment and have acquired the phenotype tumour stem cell, 
with its capabilities of proliferation and infiltration (Heddleston et al., 2009; Li et al., 2009). 
Heddleston et al. (2009) observed how in cultures of human glioma neoplastic cells exposed 

to hypoxia reverted to a state of tumour stem cells. Griguer et al. (2008) related the 

appearance of CD133 + cells with oxygen stress in gliomas. On the other hand, it was 

observed a decrease in the expression of CD133 when reverted to conditions of normoxia. 

Furthermore, studies of human GBM have described the relationship between the gradient 

of intratumour oxygen and the appearance of the phenotype tumour stem cell (Pistollato et 

al., 2010). As above, only a cluster of neoplastic cells resists to the conditions of hypoxia and 

intratumoural ischemia. This group of cells may be stem cell precursors, and after adapting 

to the new microenvironment, are transformed to GSCs.  

4.1 Vascular endothelial growth factor (VEGF) 
Vascular endothelial growth factor (VEGF) is a major regulator of angiogenesis in 
development (Bengoetxea et al., 2008; Ferrara et al., 2003; Ment et al., 1997) and pathological 
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disease (Bulnes & Lafuente, 2007; Lafuente et al., 1999; Marti et al., 2000; Plate, 1992). 
However, the role of VEGF in nervous tissue is even more extensive. Previous studies 
showed that VEGF also has strong neuroprotective, neurotrophic and neurogenic properties 
(Jin et al., 2002; Ortuzar et al., 2011; Rosenstein & Krum, 2004; Storkebaum et al., 2004).  
Although the synthesis of this proangiogenic cytokine is associated to tumour cells and 
endothelial cells, it has been described in others, such as: neurons, astrocytes, pericytes, 
smooth muscle cells, macrophages, lymphoid cells, platelets and fibroblasts (Zagzag et al., 
2000). The VEGF family consists of five different homologous factors, VEGF-A, VEGF-B, 
VEGF-C, VEGF-D and placental growth factor (PIGF) (Ferrara et al., 2003). VEGF-A (VEGF) 
is the predominant form and is a hypoxia-inducible 45 KDa homodimeric glycoprotein. 
VEGF-A acts as mitogen, survival and antiapoptotic factor for the endothelial cells from 
arteries, veins and lymphatics. Faced with increased secretion of VEGF and its binding to 
receptors on the surface of endothelial cells, VEGF is a signal transduction leading to 
production of molecules including enzymes for the degradation of extracellular matrix and 
increase of vascular permeability. This will facilitate cell proliferation, survival and 
migration of endothelial cells. It is also known as the vascular permeability factor (VPF) 
(Dvorak, 2006) on the basis of its ability to induce leakage through the blood brain barrier in 
some pathological situations (Ferrara, 2001; Lafuente et al., 1999; Lafuente et al., 2002). 
Helmlinger et al. (2000) stated that in the vasodilatation process the VEGF induced the 
elongation of endothelial cells but not their proliferation. In the angiogenesis process, VEGF 
works in line with other factors such as angiopoietin and ephrins (Tonini et al., 2003). It has 
been shown in human biopsies that VEGF overexpression in gliomas correlates directly to 
proliferation, vascularization and degree of malignancy, and therefore inversely to 
prognosis (Ke et al., 2000; Lafuente et al., 1999; Plate, 1999).  

5. ENU glioma microvascular adaptation 

Along the glioma progression, there is a transition from the homogeneous capillary network 
to an anarchic angioarchitecture. Microvessels have to adapt in order to maintain blood 
perfusion and metabolic support in adverse conditions, constituting a peculiar tissular 
microenvironment in response to hypoxia (Blouw et al., 2003). Glioma microvascular 
remodelling consists in a process of vascular aberration along the neoplasia development. 
Vascular development process led to microvascular proliferations that are a 
histopathological hallmark of glioblastoma (Kleihues et al., 2007). Some authors consider the 
core of a high-grade glioma as an avascular zone, since it has scarce capillaries with wide 
lumen and a fragmented basal membrane, being rather inefficient for metabolic exchange 
(Vajkoczy & Menger, 2004).  
Tumour blood vessels have multiple abnormalities that result in a heterogeneous 
environment. They are disorganized, tortuous, sinusoidal, branchy and leaky, the diameter 
is irregular and the walls are thinner than those found in healthy brain tissue (Bigner et al., 
1998). Following our results obtained by LEA and Butyrylcholinesterase (BChE) 
histochemistry (Bulnes et al., 2009) we showed a transition from the homogeneous capillary 
network of early stages to an anarchic angioarchitecture of advanced ENU-glioma stages 
(Figure 3). It was found that the vessel density decreased and the vascular size increased in 
order to glioma malignity (Bulnes et al., 2009). The initial stage of ENU-glioma was 
constituted by microvessels similar to the brain capillaries, the intermediate stage by 
tortuous, disorganized and dilated vessels and the advanced stage by anarchic and aberrant 
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vessels such as: multilayered “glomeruloid tuft”; “garland” of proliferated vessels and huge 
dilated vessels (Klehues et al., 2007).  
One result to take in consideration was the gradient from the well-oxygenated tumour 
periphery to the central hypoxic core of ENU-glioblastoma. Dilated intratumour vessels, 
expressing VEGF (Lafuente et al., 1999) increase their lumen on account of endothelial 
elongation but not of cell proliferation (Helmlinger et al., 2000). The intratumour area displays 
irregularly branching vessels, variable intravascular spaces and large avascular areas. It is also 
worth mentioning that perivascular cells of aberrant vessels of ENU-GBM often displayed a 
high activity for BChE, depicted by a strong brown staining (Bulnes et al., 2009). BChE activity 
is strongly related to neurogenesis and cellular proliferation (Mack & Robitzki, 2000), having a 
great role in tumourigenesis. These findings have led us to postulate that these perivascular 
cells might be stem cells proliferating around intratumour vessels (Anderson et al., 2005; Brat 
et al., 2004) and migrating through the vascular extracellular matrix (Ruoslahti, 2002). This 
could corroborate the hypothesis that stem cells adapted to hypoxic stress use the vascular 
extracellular matrix for migration and invasion. In addition to this, in previous work we have 
shown that these cells co-expressed Ki-67 and VEGF (Bulnes & Lafuente, 2007).  

 

 

Fig. 3. Angioarchitecture study of gliomas shown by butyrylcholinesterase histochemistry. 
a) Angioarchitecture of the cerebral cortex of the rat brain. b) Periventricular small 
neoplastic mass (initial stage) showing some strongly-positive vessels for BChE. c) 
Intermediate ENU-glioma stage displaying a network of numerous tortuous capillaries of 
anarchic distribution. d) Malignant infiltrating macrotumour, with dilated vessels of the 
intratumour area with strongly BChE positive cells. (Scale bar of 50µm). 
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Glioma malignancy process is mediated by the vascular remodelling and the angiogenesis 
process where the blood brain barrier (BBB) function is implicated. The BBB is the set of 
mechanisms (physical and metabolic) that regulate the passage of elements from the blood 
plasma to neural tissue. This especial barrier is necessary for the cerebral homeostasis and it 
is associated with the hydrostatic and osmotic pressure gradients across the capillary 
(Hatashita & Hoff, 1986).  
In pathological conditions, the increase of vascular permeability could be due to the blood 
brain barrier dysfunction, to a structural break-down or to its immaturity. Endothelial cells 
(ECs) of tumour vessels do not form a closed barrier, and pericytes are loosely attached (Baluk, 
et al., 2005). Defective tight junctions explain the tumour vessel leakiness which leads to blood 
brain barrier (BBB) breakdown and the oedema associated with brain tumours (Hashizume et 
al., 2000; Papadopoulos et al., 2004). Brain oedema in gliomas is an epiphenomenon related to 
BBB breakdown and is another cause of tumour mortality (Ballabh et al., 2004). The BBB 
distortion and permeability increase have been related to intravital dyes extravasation 
(Lafuente et al., 1994, 2004), Gd-DTPA contrast enhancement on T1-w images (Brasch & 
Turetschek, 2000; Cha et al., 2003; Claes et al., 2007) and to changes in the expression of BBB 
markers as glucose transporter-1 (GluT-1) (Dobrogowska & Vorbrodt, 1999) and structural rat 
specific antigen of BBB (EBA) (Argandona et al., 2005; Lafuente et al., 2006; Lin & Ginsberg, 
2000; Krum et al., 2002; Sternberger et al., 1989; Zhu et al., 2001). 
In our ENU model, vascular adaptations predominate over angiogenesis (Lafuente et al., 
2000; Bian et al., 2006). Microvascular adaptations in early development stages are based on 
vasodilatation, endothelium elongation and permeability increase mediated by VEGF-A 
without BBB dysfunction. On the other hand, in malignant gliomas the microvascular 
adaptations vary according to blood flow perfusion. Permeability increase in intratumour 
vessels is not enough to supply the metabolic demand, and triggering of the angiogenesis 
process on the tumour border is necessary. When the blood flow inside and around the 
tumour becomes irregular and chaotic, partly due to the aberrant microvessels, the relative 
tissue hypoxia triggers the production of hypoxia inducible factor-1ǂ (Chen et al., 2009; Jain 
et al., 2007), upregulating the expression of VEGF-A and endothelial nitric oxide synthase 
(eNOS). VEGF-A induces the synthesis of NO by phosphorylation of endothelial NO 
synthase via PI-3K/Akt kinase (Osuka et al., 2004, Ziche & Morbidelli, 2009), thus 
promoting BBB breakdown and increasing permeability. Although, the role of eNOS and 
VEGF-A in tumour induced brain oedema is still a matter of debate. Our previous studies 
demonstrates that eNOS overexpression in the microvasculature of intermediate and 
advanced ENU-gliomas correlates with the loss of immunostaining for primary BBB 
markers GluT-1 and EBA (Bulnes et al., 2010) (Figure 4). 
Following the finding showed in human tissues, in ENU-malignant glioma astrocytic 
processes and pericytes were loosely attached to endothelial cells of tumour vessels without 
forming a continuous layer (Baluk et al., 2005) (result not published). In addition to this, 
defective tight junctions (TJs) without occludin protein expression, also lead to oedema 
associated with ENU induced brain tumours. We showed an intratumoural glioma oedema 
instead of peritumoural one by gadolinium contrast enhancement and intravital dyes 
extravasation (Bulnes et al., 2009, 2010). 

6. Glioma stem cells and angiogenesis in ENU model 

The moment named “angiogenenic switch”, when the angiogenesis starts, is showed at 
ENU-glioma intermediate stage due to the presence of overexpression of VEGF and eNOS 
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(Bulnes et al., 2010). Because stem cells have been associated with the synthesis of VEGF 
(Bao et al., 2006), we focused on the identification of GSC using antibodies against the 
antigens CD133 and Nestin. We showed three distribution patterns of these cells (Figure 5): 
1- isolated in the tumour periphery areas; 2- numerous small cells forming intratumour 
niches and 3- cells around the tortuous and aberrant vessel (intermediate-advanced stages).  

 

 
 

Fig. 4. Vascular endothelial growth factor and endothelial nitric oxide synthase expression 
during ENU-glioma development. Confocal microphotographs showing VEGF165 (a-c, red) 
and eNOS (d-f, red) in different stages of glioma. Vascular network is showed by 
immunofluorescence for tomato lectin LEA (green). (a, d) Initial stages of gliomas display 
basal stain of VEGF165 (a) and overexpression of eNOS only in dilated vessels (d, white 
arrow). (b, e) Anaplastic ENU-glioma corresponding with the intermediate tumour stage 
shows overexpression of VEGF165 in the neoangiogenic tumour border (b) and 
overexpression of eNOS (e, yellow) in dilated and tortuous vessels from intratumour area. 
(c, f) ENU-induced glioblastomas show an heterogeneous pattern of expression for both 
markers. VEGF distribution is mainly showed in the peritumour neoangiogenic area (c) 
while eNOS overexpress as patching in vascular sections of intratumour aberrant 
microvessels (f). (Bar scale of 200 µm). 

According to human astrocitomas, in ENU-glioma the number of positive cells for CD133 

and Nestin antibodies increases with malignant grades of the tumour (Ma et al., 2008). 

Nestin+ cells were found in every stage of tumour development. It corroborated that the 

expression of Nestin is linked to the glioma grade, as stated in previous researches 

(Ehrmann et al., 2005).  
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Fig. 5. Immunoexpression of Nestin antigen in 4 μm paraffin sections showed by DAB 
staining (Brown). a-b) Intratumour area of ENU-Glioma showing two kinds of isolated cells 
marked by Nestin antibody. a) Cells of big cytoplasm and nucleon distributed 
predominantly near the periphery of the tumour. They display an astrocyte shape and 
GFAP positivity. b) Small cells with scarce cytoplasm and prolongations. c-d) Two 
distribution of stem cells: Intratumour niches (c) and around the vascular endothelium of 
neoplastic microvessels (d). (Bar scale of 10µm). 

By the other hand, CD133+ cells were only present since intermediate stages corresponding 

with “angiogenenic switch”. The distribution of CD133+ cells corresponds mainly to 

overexpression of VEGF in neoangiogenic border and intratumour hypoxic areas of 

neoplasia (Bulnes & Lafuente, 2007). It has been reported that tumour stem cells over-

express VEGF factor, so this cell population could be involved in the process of 

angiogenesis. Our results agree with the staining of CD133 described in the advanced and 

medium stage of human gliomas. Therefore, CD133 expression has been related to poor 

prognosis (Zeppernick et al., 2008).  

We showed that some cells coexpress the antibodies Nestin, CD133 and VEGF165. They were 

forming niches around microvessels or into hypoxic areas (Figure 6). Only cells distributed 

in the periphery of neoplasia were stained for GFAP and displayed astrocyte morphology.  

The relationship between CD133+ cells and vessels wall was shown around the glomeruloid 

vessels, distributed in the neoangiogenic border of ENU-GBM, and delimiting huge dilated 

intratumour vessels (Figure 7). The presence of CD133+ cells near these aberrant vessels 

which display BBB disturbance may corroborate the pivotal role of stem cells in the 
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neoplasia proliferation and invasion. These cells may be use extracellular matrix of vessel 

wall to migrate and infiltrate the brain parenchyma (Borovski et al., 2009).  
 

 

Fig. 6. Relationship between stem cell markers and proangiogenic factor VEGF in 
intratumour niches of advanced ENU-glioma stage. Study performed by double 
immunofluorescence, all tumours are counterstained with Hoechst. a-c) Microphotographs 
of Nestin+ cells (a, in green) and VEGF+ cells (b, in red) and colocalization (yellow, c). 
VEGF+ cells predominate over Nestin+ cells. Some cells with big cytoplasm are Nestin-
VEGF+. Small Nestin+ cells form a cluster and lack the staining of VEGF (at the top). d-f) 
Colocalization (yellow) of glial fibrillary acidic protein (GFAP, green) and VEGF (red). All 
VEGF+ cells in this intratumour area are stained for GFAP and display the astrocyte shape. 
g-i) Relationship between the two markers of stem cells: Nestin (green) and CD133 (reed). 
This niche shows higher density of nestin+ cells (g) than CD133+ cells (h). Almost all of the 
CD133+ cells coexpress nestin antibody (i, yellow). j-l) Coexpression of GFAP (green) and 
CD133 (red). Some cells coexpress both antibodies (l, yellow). (x400 Amplification) 
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Fig. 7. Immunofluorescence confocal images of CD133 antibody (red) in ENU-glioblastoma. 
All sections are counterstained with Hoechst (blue). a) Intratumour niche displaying some 
CD133+ cells. b) Tortuous vessel of the periphery of the neoplasia with CD133+ structures 
attached to the vascular endothelium. c) Aberrant vessels sections demarcated by 
CD133+cells. d) Vessels with huge lumen display CD133+ cells around some vascular 
sections. (Scale bar of 20µm).  

Although some authors proposed that CD133+ cells were selected cells with tumorigenic 

capacity (Schiffer et al., 2010), others postulated that a fraction of CD133+ cells might be 

related to the endothelial differentiation and could generate tumour vessels (Wang et al., 

2010). Recently, Soda et al. (2011) reported that part of the vasculature of GBM was 

originated from tumour cells. Therefore, some researchers as Wang et al. (2010) and Ricci-

Vitiani et al. (2010) were centred to describe the proportion of the stem cells that contributed 

to blood vessels in glioblastoma. After their results they postulated that glioblastoma 

microvessels were originated from tumour stem like cells. 
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7. Conclusion 

Following evidences reported in the literature and our findings, the distribution of “glioma 
stem cells” close to microvascular wall during the glioma malignancy process suggests a 
synergistic role of both structures. Indeed, based on our results we corroborate the 
hypothesis that glioma stem cells may induce angiogenesis via VEGF synthesis or 
endothelial differentiation. 
This knowledge will contribute to the generation of new antitumour therapy treatment 
against glioma stem cells. ENU experimental model would be considered as an useful 
option to check a design of treatment strategies against these cells. 
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