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1. Introduction 

In the landmark review by Hanahan and Weinberg1, the authors distilled the essence of 
cancer into six distinct phenotypes, including evasion of apoptosis, self-sufficiency in 
growth signals, insensitivity to anti-growth signals, tissue invasion and metastasis, limitless 
replicative potentials, and sustained angiogenesis. The widely accepted paradigm suggests 
that cancer arises as a result of mutations or epigenetic events, which alter function of genes 
critical for attaining these phenotypes. These gene functions are intimately linked to the 
regulation of developmental processes2, their aberrant function in tumor inevitably lead to 
cell states that resemble stages during normal development. These cell states can be 
captured using genomic technologies to define distinct molecular subtypes. With the advent 
of The Genome Cancer Atlas project for glioblastoma3,4, we now have a glimpse of the 
genetic events underlying glioblastoma pathogenesis as well as distinct molecular subtypes. 
In this review, the genomic profiles of glioblastoma will be reviewed in the context of the 
properties described by Hanahan and Weinberg. Molecular subtypes of glioblastoma will be 
discussed in the context of developmental biology and the cell of origin. 

2. Glioblastoma 

Glioblastoma is the most common form of primary brain tumor, with dismal prognosis. The 
incidence of this tumor is fairly low, with 2-3 cases per 100,000 people in Europe and North 
America. Despite its rarity, overall mortality related to glioblastoma is comparable to the 
more prevalent tumors5. This is, in large part, due to the near uniform fatality of the afflicted 
patients. Indeed, glioblastoma is one of the most aggressive of the malignant tumors. 
Without treatment, the median survival is approximately 3 months6. The current standard of 
treatment involves maximal surgical resection followed by concurrent radiation therapy and 
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chemotherapy with the DNA alkylating agent, temozolomide7. With this regimen, the 
median survival is approximately 14 months. For nearly all affected, the treatments 
available remain palliative. 
Studies carried out over the past three decades suggest that glioblastomas, like other 
cancers, arise secondary to the accumulation of genetic alterations. These alterations can 
take the form of epigenetic modifications, point mutations, translocations, amplifications, or 
deletions, and modify gene function in ways that deregulate cellular signaling pathways 
leading to the cancer phenotype1. The exact number and nature of genetic alterations and 
deregulated signaling pathways required for tumorogenesis remains an issue of debate8, 
although it is now clear that CNS carcinogenesis requires multiple disruptions to the normal 
cellular circuitry3, 4.  

3. The Cancer Genome Atlas (TCGA) project 

The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to catalogue 
the genetic and epigenetic changes in the cancer genome, with goals of identifying those 
responsible for carcinogenesis. The project constitutes a joint effort of the National Human 
Genome Research Institute (NHGRI), National Cancer Institute (NCI), and the U.S. 
Department of Health and Human Services, and collects tumor specimen from major cancer 
centers spanning across the continental U.S. The project aims to provide the genomic profile 
of 500 specimens of various cancer types using state-of-the-art platforms for sequencing, 
microRNA, mRNA, single-nucleotide polymorphisms, and methylation profiling. 
TCGA started as a pilot project in 2006 with focus on glioblastoma as the first cancer type for 
study. With the success of the pilot project, TCGA plans to expand its efforts to aggressively 
pursue 20 or more additional cancers. This article will review the major insights derived 
from the TCGA in the context of the cancer phenotypes proposed by Hanahan and 
Weinberg1. 

4. The cancer phenotype 

The aggregate of cancer research investigation spanning the past three decades suggest that 

cancer is a genetic disease characterized by mutations or epigenetic events that abrogate or 

compromise regulatory circuitry governing cell proliferation and homeostasis8. In the 

landmark review by Hanahan and Weinberg1, the authors distilled the essence of these 

regulatory circuits into six distinct phenotypes, including evading apoptosis, self-sufficiency 

in growth signals, insensitivity to anti-growth signals, tissue invasion and metastasis, 

limitless replicative potentials, and sustained angiogenesis. The following section will 

review the TCGA findings pertinent to these phenotypes. 

4.1 Self-sufficiency in growth signals – The Receptor Tyrosine Kinase 
(RTK)/PhosphoInosital 3 Kinase (PI3K) signaling cascade 
Active cellular proliferation in normal cells requires signals from its environment. These 
signals typically involve the binding of a transmembrane receptor to growth factors, 
extracellular matrix components, or cell surface components. This mitogenic signaling process 
is under stringent regulation in normal cells. Typically, multiple ligand-receptor interactions in 
a permissive cellular state are required before cellular proliferation can take place. This 
regulation minimizes the probability of dysregulated, autonomous cell growth1,9. The 
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importance of growth factors in biology was recognized by a Nobel Prize in Physiology or 
Medicine to Stanley Cohen and Rita Levi-Montalcini in 1986. Subsequent identification that 
many oncogenes participate in cellular signaling related to growth factor function was also 
awarded a Nobel Prize in Physiology or Medicine (to Michael Bishop and Harold Varmus in 
1989). 
To abridge this stringent growth regulation, tumors often mutate the transmembrane 
receptors or their downstream effectors in ways that constitutively activate the pathway. 
The pathway most commonly mutated to achieve this end in glioblastoma involves the 
RTK-PI3K pathway9,10. RTKs are cell surface receptors that are normally activated only in 
response to growth factor binding9. Results from the TCGA revealed that nearly all 
glioblastomas harbor activating mutations or amplifications in genes required for this 
signaling cascade3,4,11,12. Epidermal Growth Factor Receptor (EGFR) and Platelet Derived 
Growth Factor Receptor (PDGFR) are two prototypical members of RTK3, 4, 12.  
For EGFR and PDGFR, binding of the growth factor to the ligand leads to homo- or hetero- 

dimerization of the receptor. This dimerization facilitates autophosphorylation of the 

cytoplasmic domains of the dimerized receptor at select tyrosine residues9. The 

phosphorylated tyrosine residue, in turn, recruits and binds to other signaling proteins to 

the cell membrane. In some cases, the phospho-tyrosine bound proteins serve as a platform 

for the recruitment of other effector proteins. In other cases, the bound protein undergoes a 

conformational change upon binding to the RTK and becomes activated in the process9.  

One of the critical cellular kinases that become activated upon binding to RTK is PI3K13. 
PI3Ks catalyze the phosphorylation of a critical component of the cell surface, 
phosphatidylinositol-4,5-isphosphate (PI(4,5)P2). This phosphorylation generates 
phosphatidylinositol-1,4,5-isphosphate (PI(1,4,5)P3), which in turn serves as a docking site 
for pro-proliferative down-stream effector proteins 10. Thus, RTK activation transforms the 
cell membrane into a catalytic surface populated with a high density of pro-mitotic signaling 
molecules, ultimately leading to cell proliferation. 
Expectedly, gene functions that inhibit the generation of this pro-proliferative “catalytic 

surface” function as tumor suppressors. For instance, the hydrolysis of (PI(1,4,5)P3) into 

(PI(4,5)P2) is catalyzed by a phosphatase termed Phosphatase and Tensin Homology 

(PTEN). PTEN inactivating mutations have been identified in up to 50% of tumor specimens 
14. Similarly, one of the effector proteins recruited to a phosphorylated RTK is Ras. Ras 

encodes a monomeric G-protein that cycles between an active form bound to GTP and an 

inactive form that binds to GDP15. It functions as a critical component of the pro-

proliferative “catalytic surface”. Through a series of protein-protein interactions, RTK 

activation catalyzes the exchange of GDP for GTP in Ras, initiating signals required for 

cellular proliferation. The protein encoded by neurofibromatosis 1 (NF1) functions to 

catalyze the exchange of GTP for GDP in Ras, consequently preventing cell proliferation. In 

this context, it is not surprising that NF1 patients are predisposed to gliomagenesis 16. The 

TCGA results showed that approximately 20% of glioblastomas harbor loss of function 

mutations in NF13,4. TCGA additionally revealed gain of function mutations in K-ras have 

also been identified in glioblastoma specimens 3. 

4.2 Insensitivity to anti-growth signals – The RB axis 
In addition to receiving pro-growth signals from their environment, cells also receive 
multiple anti-proliferative signals to prevent cell growth. These anti-growth signals, like 
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their pro-mitotic counterparts, are sensed by the binding of transmembrane receptors to 
soluble factors, extracellular matrix components, or cell surface components. 
Most of these anti-proliferative signals operate at the G1 phase of the cell cycle to trigger 
either 1) entry into a transient quiescent (G0) state or 2) entry into a post-mitotic, 
differentiated state. The importance of cell cycle regulation in biology was recognized by a 
Nobel Prize in Physiology or Medicine to Leland Hartwell, Tim Hunt, and Sir Paul Nurse in 
2001. 
At the molecular level, nearly all of these signals converge at the retinoblastoma protein 
(RB) 1. In quiescent cells, the RB protein is hyper-phosphorylated. This form of RB binds and 
sequesters the E2F family of transcription factors17. The genes transcribed by these 
transcription factors are essential for the G1-S transition of the cell cycle18. Phosphorylation 
of RB releases the sequestered E2F transcription factors and allows for cell growth. During 
normal cell cycle progression, induction of cyclin D1 and its associated cyclin-dependent 
kinases, CDK4 and CDK6, at the G1-S transition is responsible for the phosphorylation of 
RB. The kinase activity of the CDK4/6-cyclin D complex is under complex regulation, 
including the critical negative regulators CDKN2A (p16Ink4a), CDKN2B, and CDKN2C. 
TCGA results showed that mutations and gene amplifications disrupting RB function are 
found in approximately 80% of glioblastomas, suggesting the critical importance of escaping 
anti-growth signals3,4. Additionally, single nucleotide polymorphisms in the CDKN2A and 
CDKN2B have been identified as risk factors for glioma development19,20. 

4.3 Evading apoptosis – The p53 axis  
Apoptotic programs are inherent in all normal cells. These programs are activated by a 
number of physiologic signals during development and/or in response to cellular stress. 
Since the tumor state is associated with cellular stress capable of activating apoptosis (e.g. 
increased oxidative stress, increased DNA damage accumulation), inactivation of these 
programs constitute a critical step during carcinogenesis. The importance of apoptosis as a 
fundamental biologic process was recognized by a Nobel Prize in Physiology or Medicine 
awarded to Sydney Brenner, Robert Horvitz, and John Sulston in 2002. 
The regulation of apoptotic pathways is highly complex21. Broadly speaking, there are two 
pathways of apoptosis that converge on the activation of effector proteases (termed 
caspases), which ultimately trigger the pathognomonic DNA fragmentation, cell shrinkage, 
and membrane blebbing. The intrinsic cell death pathway (often termed the mitochondrial 
apoptotic pathway) involves the release of cytochrome c from the mitochondrial membrane 
space22. Binding of cytochrome c to a protein termed apoptosis protease-activating factor 1 
(APAF-1), in turn, initiates the caspase cascade. In contrast, the extrinsic apoptotic pathway 
operates independently of mitochondria and is activated by direct signaling from cell 
surface receptors to the effector caspase23.  
Both intrinsic and extrinsic apoptotic programs are profoundly influenced by the p53 tumor 
suppressor protein24. TP53 encodes a transcription factor that regulates gene sets critical for 
cell cycle progression and apoptosis. Under normal conditions, p53 is a short-lived protein25. 
In response to cellular stress (for instance, DNA damage or oncogene expression), p53 
undergoes post-translational modifications and protein-protein interactions that enhance its 
stability and transcriptional activity25. Key among the transcripts regulated by p53 are pro-
apoptotic genes (including BAX and Puma) that facilitate both the intrinsic and extrinsic 
pathway24. Additionally, p53 interact with a number of anti-apoptotic proteins to inhibit 
their function24.  
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There are several lines of evidence that point to the importance of the p53 axis in 
glioblastoma pathogenesis. In the TCGA database, mutations that inactivate this axis are 
found in greater than 70% of glioblastoma specimens3,4. Patients harboring germ-line 
mutations in TP53 are afflicted with cancer predisposition including increased risk for 
glioblastoma26. Finally, inactivation of p53 is required for glioma formation in genetically 
defined murine models27. 

4.4 Replicative potential 
The definition of cancer as a continuous growing entity implies that normal cells exhibit a 

limited capacity for proliferation. Indeed, estimates based on tissue culture work suggest 

that most normal cells have the capacity for 50 doublings 28. Studies over the past three 

decades suggest that the main reason for this limited life span involve progressive 

shortening of chromosomes due to loss of telomeres. Telomeres consist of thousands of six 

base pair sequence element of repeats that are located at the ends of every chromosome. 

Because of the inability of DNA polymerases to replicate the 3’ ends of chromosomal DNA, 

approximately 60 base pairs of the telomeric sequence is lost with each replicative cycle29. 

With progressive erosion of the telomeric sequence, the unprotected chromosomal ends 

participate in aberrant fusion events that inevitably result in cell death30. 

To overcome this inherent limitation, most cancer cells activate an enzyme called 

telomerase. Telomerase is a reverse transcriptase capable of elongating telomeres31. Various 

mechanisms are employed by tumors to activate telomerase in order to sustain continued 

cell growth. Elizabeth Balckburn, Carol Greider, and Jack Szostak were awarded the Nobel 

Prize in Physiology or Medicine in 2009 for their discovery of telomerase.  

With regards to glioblastomas, single nucleotide polymorphisms in two genes encoding 
components of the telomerase (RTEL1 and TERT) have been identified as risk factors for 
glioma development19, 20. Additionally, elevated expression level of TERT in glioblastoma is 
associated with decreased patient survival 32. These studies suggest a critical importance of 
telomeric biology in glioblastoma growth and survival.  
Angiogenesis. The intense proliferation of cancer cells require continued supply of oxygen 

and nutrients. Due to inherent limitations on the distance that oxygen and macromolecules 

can travel, virtually all cells in a tissue reside with 100 um of a capillary. In xenograft model 

systems, solid tumors can only proliferate up to a size of 1-2 mm without development of 

new blood supply33. Thus, angiogenesis necessarily constitutes a pre-requisite during solid 

tumor progression.  

One way by which cancer cells signal angiogenesis is by secretion of soluble factors that 
bind to receptors present on the surface endothelial cells. A key soluble factor that functions 
in such capacity is the Vascular Endothelial Growth Factor (VEGF). VEGF binds to RTKs on 
the surface of endothelial cells to facilitate their proliferation – leading to angiogenesis34. In 
normal cells, transcription of VEGF and other pro-angiogenic signaling factors are under 
strict regulation. The induction of Hypoxia Inducible Factor I (HIF1) is a pivotal element in 
this regulatory network35. HIF1 encodes a dimeric transcription factor consisting of two 

subunits: HIF1 and HIF1. HIF1 is constitutively expressed irrespective of oxygen 

concentration, whereas HIF1 levels increase dramatically in response to hypoxia. The 

underlying mechanism for this regulation is that HIF1is hydroxylated by HIF Prolyl-4-

Hydroxylase (HPH) in the presence of di-oxygen (O2), iron, and -ketoglutarate. The 

hydroxylated HIF1is targeted for proteasome degradation. Without molecular oxygen, 
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HIF1is not hydroxylated and is free to dimerize with HIF1to activate the transcription of 
downstream pro-angiogenetic factors. 
Integrated analysis of genomic data in glioblastoma revealed recurrent mutations in the 
R132 residue of isocitrate dehydrogenase 1 (IDH1)4, a gene largely responsible for the 

production of -ketoglutarate. The TCGA data revealed that the IDH1 mutation is 
predominantly found in one particular molecular subtype of glioblastoma12, 36 (see following 
section on molecular subtypes). The wildtype IDH1 normally functions as a homodimer 

that converts isocitrate to -ketoglutarate37. Biochemical characterization of the R132 
mutated IDH1 revealed that it functions in a dominantly negative fashion to inhibit the 
process. Expectedly, glioblastoma harboring the R132 IDH1 mutation harbor decreased 

levels of  -ketoglutarate. Given the importance of  -ketoglutarate in HIF1degradation, 

one would anticipate increased HIF1 accumulation and increased VEGF secretion in 
glioblastoma harboring the IDH1 mutation. These observations were confirmed in a panel of 
primary glioblastoma specimens38. Thus, the IDH1 mutation constitutes an example of how 
glioblastoma subverts the endogenous molecular circuit to facilitate angiogenesis. It should 
be noted that the effect of the IDH1 mutation appears pleiotropic. Another study revealed 
that the R132 mutant IDH1 proteins exhibits a gain-of-function phenotype by generating  
R(-)-2-hydroxyglutarate, a carcinogenic metabolite39.  
In glioblastomas without IDH1 mutation, alternate mechanisms are utilized to facilitate 

angiogenesis. It is somewhat intuitive that during normal development, periods of cellular 

proliferation must be coordinated with angioogenesis. Indeed, a large body of work 

suggests that gene functions that facilitate cell-autonomous growth or insensitivity to 

growth inhibition and apoptosis also tend to facilitate angiogenesis40, 41. It is likely that most 

glioblastoma cells attain angiogenesis by aberrant activation of such coordinated 

developmental programs. For instance, EGFR activation has been shown to up-regulate 

VEGF in both HIF dependent and independent manner42. Inactivation of Rb increases VEGF 

expression and angiogenesis in vivo40. Similarly, p53 normally up-regulates thrombospondin 

1, an inhibitor of angiogenesis43; inactivation of p53 can facilitate angiogenesis by ablation of 

this up-regulation. 

4.5 Invasion and metastasis  
The ability to invade and metastasize constitutes the fundamental distinction between 

benign and malignant tumors. It is important to note that invasion refers not just to 

distortion of normal tissue secondary to tumor growth. Instead, it refers to a coordinated set 

of cellular activities to destroy and migrate into the surrounding normal tissue. Metastasis 

refers to the capacity to travel via circulation to a distant tissue site33. Glioblastoma is unique 

in that while it is one of the most invasive of cancers, it rarely metastasizes outside of the 

central nervous system.  

It is a truism that cancer cells generally retain some general properties of the cell of origin. 

Since glioblastoma originates from astrocytes, which normally possess significant migratory 

capacity, the invasive nature of glioblastoma would be anticipated. During normal 

development, astrocytes migrate in a centripetal manner to establish a scaffold for 

neuroblasts44. Additionally, in response to injury, astrocytes migrate to the affected region to 

form a gliotic scar45. This migratory capacity is the phenotypic expression of carefully 

orchestrated interactions between cellular cytoskeletal proteins, cell adhesion molecules, 

and extracellular matrix33.  
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To date, the TCGA has not uncovered gain of function mutations in these proteins. 
However, enhanced invasive properties have been associated with mutations establishing 
autonomous growth or suppressing apoptosis. For instance, aberrant EGFR activation 
results in increased expression and phosphorylation of cell adhesion molecules that 
ultimately lead to increased invasiveness46. Similarly, the p53 mutation drives cancer 
invasiveness by facilitating the recycling of integrin, a class of cell surface receptor that 
interacts with extracellular matrix during cell migration47.  
The aggregate of the data suggest that both angiogenesis and cell migratory properties are 
intimately integrated into a master circuitry controlled by critical proteins that dictate 
cellular response to growth or apoptotic signals. In this context, mutations facilitating self-
autonomous growth or suppression of apoptosis also contribute to angiogenesis and cell 
invasion. 

4.6 Cross-talk between canonical pathways 
The conceptualization of distinct pathways contributing to the various critical phenotypes 
constitutes a simplification aimed to consolidate distinct biological concepts. The reality is 
that pathways mediating the cancer phenotype exhibit high degrees of cross-talk and 
functional redundancy. For instance, EGFR hyperactivation is associated with increased 
tumor growth (replicative potential), angiogenesis, and increased tumor motility 48. 
Similarly, many genes mediating cell motility, telomere function, and angiogenesis are 
under transcriptional regulation by p53 and RB associated E2Fs49. 

5. Pathway of glioblastoma progression 

It was previously thought that glioblastoma arises from the acquisition of a defined set of 
mutations that occur in a particular temporal order. This model is largely grounded on the 
framework established in colon cancer, where a series of genetic alterations characterizes 
different phases of neoplastic progression50. The framework is supported by the observation 
that Grade II astrocytomas typically harbor mutations in p53; Grade III astrocytomas harbor 
activating mutations/amplifications of CDKN2A (p16Ink4a); and Grade IV astrocytomas 
harbor mutations in PTEN and EGFR51. This data was interpreted to mean that glioblastoma 
results from sequential inactivation of the p53, RB, and RTK/PI3K axes. 
While such a paradigm may hold true for a subset of the secondary glioblastomas, the 
picture emerging from the genomic characterization of primary glioblastomas reveals a 
much more dynamic process3,4. The profile of somatic mutations in different glioblastomas 
is highly variable. These results suggest that most glioblastomas evolve along a multitude of 
pathways in response to differing selective pressures to achieve the phenotypes described 
by Hanahan and Weinberg52. This somewhat stochastic model of cancer progression further 
implies that mutations critical at one juncture in the neoplastic process may lose relevance as 
additional mutations are acquired. Thus, while a mutational profile constitutes an 
archeological profile of the history of the neoplasm, extrapolating therapeutic targets from 
such a profile may be challenging. 

6. Molecular subtypes  

Genome-scale gene expression profiling using microarray technology have revealed distinct 

molecular subtypes within tumors previously classified as glioblastomas 12, 53-55. The number 
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of subtypes varies depending on the study, however, three subtypes consistently appear 

across independent studies and reflect distinct biologic and clinical behaviors 12, 55, 56. 

Importantly, the transcript signature parallels those obtained during distinct stages in 

neural development, suggesting the tumor may have arisen from different stages of 

neurogenesis55.  

The first subtype is termed pro-neural. The transcript signature resembles those of neuro-

blasts and oligodendrocytes derived from fetal and adult brain55. This subtype harbors 

molecular and clinical features that closely mirror those previously classified as secondary 

glioblastomas. Molecularly, pro-neural glioblastomas harbor mutations classically 

associated with the secondary subtype, including p53 and PDGFR12. Accordingly, grade II 

and III gliomas harbor molecular signatures most reminiscent of the pro-neural subtype55. 

Clinically, this subtype typically affects younger patients, is associated with improved 

overall survival55, and responds poorly to concurrent radiation/temozolomide treatment 

upon disease progression12. Interestingly, mutations in the isocitrate dehydrogenase 1 gene 

(IDH1), a metabolic protein required for conversion of isocitrate to a-ketoglutamate during 

the citric acid cycle, is frequently observed in pro-neural glioblastomas (see section on 

glioblastoma predisposition syndromes). The molecular basis of how this mutation 

contributes to the cancer phenotype remains an active area of investigation. 

Classical (also termed proliferative by some authors) constitutes the second molecular 

subtype. Transcript signature in the classical subtype resembles those observed in transit 

amplifying neural progenitor cells55 and murine astrocytes12. This subtype is exclusively 

found in WHO grade IV tumors and constitutes a form of primary glioblastoma57. 

Molecularly, this subtype is characterized by amplification of (or activating mutations in) 

EGFR and CDKN2A (p16Ink4a). Genes involved in pathways highly active in neural stem and 

progenitor cells (including the Notch and Sonic hedgehog pathway) are highly expressed in 

the classical subtype).58 The patients afflicted are typically older than those with the pro-

neural subtype. Relative to the other subtype, patients afflicted with the classical subtype 

exhibit the worst prognosis, but the best therapeutic response to concurrent 

radiation/temozolomide treatment.  
The mesenchymal subtype makes up the final category. The transcript signature in the 
mesenchymal subtype mirrors those observed in the neural stem cells of the forebrain55 and 
cultured astroglial cells59. Most cultured glioblastoma cell lines exhibit transcript signatures 
that fall into this subtype. Molecularly, the subtype is characterized by inactivating NF1 and 
PTEN mutations12. This subgroup also has the highest expression of angiogenesis markers 
including VEGF (Vascular Epithelial Growth Factor) transcripts and highest density of 
microvascular proliferation12. The patients afflicted are typically older than those with the 
pro-neural subtype. Relative to the other subtypes, mesenchymal glioblastomas exhibit 
clinical response similar to the classical subtype, and a trend toward slightly improved 
prognosis and response to radiation/temozolomide therapy12. 
There is significant debate with regards to the origin of the distinct molecular subtypes. On 
one extreme is the thought that the subtypes originate from the same cell type with 
differences driven by distinct signaling pathways. The other extreme suggests that subtypes 
are determined by the same signaling pathways activated in a different cell of origin. The 
observation that the same canonical pathways are altered irrespective of subtype would 
tend to support the latter hypothesis. However, it is conceivable that different genes thought 
to participate in the same canonical pathway may modulate processes distinct of that 
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pathway. Such functions may contribute to the distinct molecular subtypes. Still, it is 
conceivable that differences in signaling and cell of origin both contribute to subtype 
formation. This critical debate awaits experimental resolution. 

7. Summary 

The past three decades of work in cancer research has generated a sophisticated conceptual 
framework for the process of neoplastic transformation. The framework suggests that 
genetic and epigenetic events inactivating critical pathways that regulate several key aspects 
of cellular function are an etiology. These cellular functions can be categorized as self-
sufficiency in growth signaling, evasion of apoptosis, insensitivity to anti-growth signals, 
tissue invasion, and limitless replicative potential and angiogenesis. This framework has 
largely been validated by a large scale, high-throughput characterization of the genomic and 
epigenomic landscape in glioblastomas. The picture emerging from these analyses suggests 
that most glioblastomas evolve along a multitude of pathways in response to differing 
selective pressures to achieve the cancer phenotypes. Transcript based analysis revealed 
distinct subtypes with potential implications with regards to the cell of origin. The dynamic 
interplay of growth dysregulation and the cell of origin during the neoplastic 
transformation process harbors vital implications with regards to therapeutic development.  
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