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1. Introduction 

The genetic abnormalities found in various types of leukemia and lymphoma do not 
provide a complete picture of the molecular mechanism(s) responsible for hematopoietic 
malignancies. Aberrant changes in epigenetics, including systems controlling DNA 
methylation, histone modifications, chromatin remodeling and miRNAs, are additional 
mechanisms that contribute to the malignant phenotype. DNA methylation is one of the 
basic mechanisms that controls the development and differentiation, and maintains the 
normal physiological status, in mammalian cells. DNA methylation is also involved in the 
regulation of imprinted gene expression and X-chromosome inactivation, and in the fine-
tuning of tissue specific differentiation and development from stem cells. However, aberrant 
promoter hypermethylation of CpG islands leads to epigenetic silencing of multiple genes, 
including tumor suppressor genes, and has been recognized as an important mechanism 
involved in carcinogenesis. Furthermore, multiple genes have been shown to be methylated 
simultaneously (a condition termed the CpG island methylator phenotype: CIMP) in various 
types of human malignancies. This mechanism is a fundamental process involved in the 
development of many tumors. A comprehensive knowledge of the methylation profile of a 
given tumor may provide important information for risk assessment, diagnosis, monitoring, 
and treatments.  
Adult T cell leukemia/lymphoma (ATLL) is an aggressive malignant disease of CD4-
positive T lymphocytes caused by infection with human T-lymphotropic virus type I 
(HTLV-1). HTLV-1 causes ATLL in 3-5% of infected individuals after a long latent period of 
40-60 years. Such a long latent period suggests that a multi-step 
leukemogenic/lymphomagenic mechanism is involved in the development of ATLL, 
although the critical event(s) involved in the progression have not been characterized in 
details. The pathogenesis of HTLV-1 has been investigated intensively in terms of the viral 
regulatory proteins HTLV-1 Tax and Rex, which are supposed to play key roles in the 
HTLV-1 leukemogenesis/lymphomagenesis, as well as the HTLV-1 basic leucine zipper 
factor (HBZ). The mechanism(s) underlying the progression of ATLL have been reported 
from various genetic aspects, including specific chromosome abnormalities and changes in 
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the characteristic HTLV-1 Tax and Rex protein expression pattern, although the detailed 
mechanism(s) triggering the onset and progression of ATLL remains to be elucidated.  
In this chapter, the current state of knowledge about the epigenetic abnormalities that occur 
during the development and progression of T cell leukemia/lymphoma, especially during 
adult T- cell leukemia/lymphoma (ATLL), will be reviewed, as will the basic mechanism of 
epigenetic regulation of gene expression and various clinical aspects of T cell 
leukemia/lymphoma. In addition, the relevance of this knowledge to leukemia/lymphoma 
risk assessment, prevention and early detection will be discussed. 

2. Epigenetic regulation on gene expression 

The term “epigenetics” was coined by Conrad H. Waddinton in the 1940s, fusing the word 
“genetics” with “epigenesis”. The classical definition proposed by Waddinton involves the 
heritability of a phenotype, passed on through either mitosis or meiosis. Recently, 
epigenetics has been proposed as “a stably heritable phenotype resulting from changes in a 
chromosome without alterations in the DNA sequence” (Berger et al., 2009). The pigenetic 
regulation of gene expression falls mainly into two categories, DNA methylation and 
histone modification (Figure 1). 
 

 

Fig. 1. (A) DNAmethylation of CpG islands in the 5’ transcriptional regulatory region occurs 
gene silencing. (B) Histone acetylation and deacetylation regulate gene expression. (C) DNA 
methylation recruits methyl-CpG binding proteins such as MeCP2, MBD1, MBD2 and 
MBD4, followed by association with co-repressors such as HDAC complexes, resulting in 
gene silencing. (D) Histone modification and gene expression state. Ac, acetylation; Me, 
methylation; H3, histone 3; K, lysine. 
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2.1 DNA methylation 

In the case of eukaryotes, especially in vertebrates, 5-methylcytosine is the predominant 

modified base in DNA. The 5’-methylation of cytosine residues is a physical modification, 

and does not inhibit its pairing with guanine nucleotide. In mammals, cytosine methylation 

is essentially confined to the sequence 5’-CpG-3’ (Razin & Riggs, 1980). In certain areas of 

the genome of mammals, especially in regulatory regions of genes like promoters and 

enhancers, a high concentration of these CpG dinucleotides is found, and these are referred 

to as “CpG islands” (CGIs). The methyl-residue is exposed to the major groove of double 

stranded DNA, and the modification of cytosine in regulatory regions results in the 

alteration (inhibition or activation) of the interactions between DNA and DNA binding 

proteins. The methylation of cytosine is catalyzed by DNA methyltransferase enzymes, 

which can transfer the methyl residue supplied by S-adenosylmethionine (SAM) to cytosine 

on DNA. In mammals, three DNA methyltransferases, DNMT1, DNMT3A, and DNMT3B, 

are known to carry out methylation and maintenance.  

DNA methyltransferase I (DNMT1) is known as a “maintenance methyltransferase”. This 

enzyme has been shown to have a 10-fold preference for hemi-methylated sites as a 

substrate. This enzyme can transfer a methyl residue specifically to a newly synthesized 

strand after semi-conservative replication of methylated DNA, and copies the methylation 

status of the parental DNA during the division of somatic cells. UHRF1 (also known as 

NP95) preferentially binds to hemi-methylated sites, and it has been suggested that DNMT1 

might be recruited to DNA replication foci by UHRF1 (Sharif et al., 2007; Bostick et al., 2007). 

Mammalian cells use DNMT1 primarily to maintain the DNA methylation profile in a stable 

fashion throughout cell division.  

De novo methylation of unmodified DNA is required to form methylation patterns in 
response to embryogenesis, cell differentiation and extracellular signals. DNMT3A and 
DNMT3B are known as “de novo methyltransferases” which are used to methylate 
previously unmethylated DNA during development and differentiation. These DNMTs 
function to discontinuously change the methylation profile for specific compartments of 
the genome in a tissue-specific manner in vertebrates. In mammals, during the early 
stage of embryonic development and the early development of primordial germ cells, 
DNA methylation is erased, followed by introduction of DNA methylation by de novo 
methyltransferases at different sites (Reik, 2007). The de novo methylation is carried by 
DNMT3A and DNMT3B during the early stage of embryonic development, and DNMT3A 
and its cofactor, DNMT3-like (DBMT3L), are active during germ cell development. 
Recently, a new model was proposed, in which DNMT3A and DNMT3B, 
compartmentalized to CpG islands, complete the methylation process and correct errors 
left by DNMT1 (Jones & Liang, 2009). 
In general, the DNA methylation profile is associated with gene repression, and CpG island 

methylation is involved in the regulation of imprinted gene expression and X-chromosome 

inactivation, in addition to the fine-tuning of the specific differentiation of cells and their 

development from stem cells (Csankovszki et al., 2001; Jones & Takai, 2001; Kaneda et al., 

2004; Meissner et al., 2008). Aberrant methylation of DNA is also known to be associated 

with many diseases including malignant tumors, imprinting disorders, and neuronal 

diseases. Aberrant promoter hypermethylation of tumor suppressor genes is a prevalent 

phenomenon in human cancers, as well as malignant leukemia/lymphoma, and inhibits the 

expression of these genes, leading to tumorigenesis in these cells. Recently, it has been 
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reported that aberrant promoter hypermethylation, referred to as the CpG island methylator 

phenotype (CIMP), is associated with specific clinical conditions in colorectal cancer, brain 

tumors, and malignant leukemia/lymphoma, as we will describe later in detail. On the 

other hand, it is also known that genome-wide hypomethylation is commonly observed in 

human tumors, and global loss of DNA methylation leads to widespread tumorigenesis as a 

result of chromosomal instability (Holm et al., 2005).   

2.2 Histone modification 

Large eukaryotic genomes in the nucleus are tightly packed, forming the fundamental 
repeating units referred to as nucleosomes. The nucleosome core particle consists of 
approximately 147 base pairs of DNA wrapped in left-handed superhelical turns around a 
histone octamer consisting of 2 copies each of the core histones H2A, H2B, H3, and H4. The 
N-terminal tail domains of histones comprise 25~30% of the mass of individual histones, 
and pass through a channel formed by the minor grooves of two DNA strands, and 
protrude from the surface of the chromatin. The tails of histones are subject to many 
posttranslational modifications, including methylation of arginines, methylation, 
acetylation, ubiquitination, ADP-ribosylation, and sumolation of lysines, and 
phosphorylation of serine and threonine residues. These modifications on the tail domains 
are considered to be a histone language that is read by other proteins. This language is 
referred to as the “histone code” (Strahl & Allis, 2000), and also as the “epigenetic code” 
with regard to histone modification and DNA methylation. 

2.2.1 Histone acetylation 

Histone acetylation that occurs at multiple lysine residues of histone 3 (H3) and histone 4 
(H4) is associated with active transcription, commonly observed in euchromatin, and is 
usually carried out by a variety of histone acetyltransferase complexes (HATs) such as p300, 
CBP and MOZ, which are known as fusion genes in acute myeloid leukemia. Histone 
acetylation results in a change in the net charge of nucleosomes, which can lead to the 
decrease of inter- or intranucleosomal DNA-histone interactions. On the other hand, 
deacetylation of histones occurs as a result of interactions with histone deacetylase 
complexes (HDACs), and is associated with transcriptional repression. Histone deacetylase 
complexes, HDAC1 and HDAC2, contain the SIN3 complex and MiNuRD (nucleosome 
remodeling and deacetylase) complex, and these complexes interact with methylated DNA 
on gene promoters through methylated DNA binding proteins, MeCP2 and MBD2/MBD3, 
respectively. SIRT1 is an NAD(+)-dependent histone deacetylase, and is a stress-response 
and chromatin-silencing factor, which is involved in various nuclear events such as 
transcription, DNA replication, and DNA repair (Abdelmohsen et al., 2007). The PML-
RARA fusion protein induces a block on hematopoietic differentiation and acute 
promyelocytic leukemia by inactivating target genes via its ability to recruit HDAC3, MBD1 
and DNA methyltransferases (Villa et al., 2006). The AML protein, a partner of fusion 
proteins detected in acute myeloid leukemia, interacts with p300, CBP, MOZ, PML, SIN3A 
and HDAC. 

2.2.2 Histone methylation 

Promoter regions in actively transcribed genes are marked by the presence of a trimethyl 
mark on histone 3 lysine 4 (H3K4me3), in addition to hypomethylated promoter CpG 
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islands and histone hyperacetylation. The transcribed body of an active gene is 
characterized by trimethylation of histone 3 at lysine 36 (H3K36me3), while transcriptionally 
repressed genes exhibit the trimethylation of histone 3 at lysine 27 (H3K27me3). 
Permanently silenced genes are characterized by trimethylation at lysine 9 (H3K9me3), with 
histone hypoacetylation and hypermethylation of CpG islands on their promoters. For these 
histone methylations, polycomb group (PcG) and Trithorax group (Trx) proteins work on 
alternative systems of epigenetic memory to regulate gene expression and chromatin 
structure via modification of histone tails in a heritable manner (Bantignies & Cavalli, 2006; 
Cernilogar & Orlando, 2005; Cunliffe, 2003). 
The multiprotein polycomb complexes are important mediators of transcriptional 

repression. The PRC2 (Polycomb repressive complex) is responsible for adding methyl 

groups to H3K27 (Kirmizis et al., 2004). The catalytic component of the PRC2 complex is 

EZH2, a histone methyltransferase. The cofactors SUZ12 and EED induce EZH2 activity and 

interact with nucleosomes. The H3K27-methylated histones recruit the PRC1 complex, and 

PC2, a component of the PRC1 complex, binds to H3K27-methylated histones and blocks 

gene activation by interfering with the movement of nucleosomes. H3K27-methylated 

histones also recruit the PRC2 complex to nucleosomes of the nascent DNA strand during 

DNA replication to continue gene silencing (Hansen et al., 2008). The mutation and over-

expression of EZH2 has been reported in malignant cells, especially in diffuse large B-cell 

lymphomas (Morin et al., 2010). Histone demethylation is mediated by the Jumonji domain 

(JMJD) enzymes, which remove tri-, di- or monomethyl modifications. H3K27me3 is 

similarly removed by the JMJD3 and UTX proteins. Alterations of UTX have been found in a 

variety of tumors (van Haaften et al., 2009). However, the mechanism by which loss of the 

H3K27 methylation system leads to cancer remains poorly characterized. 

Trithorax (Trx) group molecules, such as the MLL/ALL family of genes are 

methyltransferases for H3K4, and positively regulate the expression of target genes, 

including multiple HOX genes. MLL is a frequent target for recurrent translocations in acute 

leukemias that may be characterized as acute myeloid leukemia (AML), acute lymphoblastic 

leukemia (ALL), or mixed lineage leukemia (MLL). More than 50 different MLL fusion 

partners have been identified so far. Leukemogenic MLL translocations encode MLL fusion 

proteins that have lost H3K4 methyltransferase activity, and loss of H3K4 methyltransferase 

activity is strongly associated with disorders of hematopoietic progenitor cells. LSD1 

(lysine-specific demethylase-1) removes di- and monomethyl modifications from H3K4 

(Kouzarides, 2007).  

2.3 Transcriptional regulation of genes 

In addition to epigenetic regulation by DNA methylation and histone modifications, the 
other major regulation system is concerned with transcriptional regulation as a result of 
remodeling of the chromatin structure. Chromatin is actively remodeled by the SWI/SNF 
family protein complexes, referred to as chromatin remodeling complexes, which have DNA 
helicase activity (DNA-dependent ATPase activity) to alter the histone-DNA contacts. 
Chromatin remodeling complexes carry out transient unwrapping of the DNA end from 
histone octamers, forming a DNA loop, and moving nucleosomes to different translational 
positions (sliding). These chromatin remodeling complexes are mainly thought to exert 
activities that precede transcriptional activation of genes. Among the ATPase subunit  
group (SMARCA1-6) of chromatin remodeling complexes, SMARCA2/BRM and 
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SMARCA4/BRG1 interact with chromatin-modifying enzymes, such as HDAC1, HDAC2, 
SIN3, and poly (ADP-ribose) polymerase (PARP) 1, and methyl-CpG binding protein 
MeCP2 (Calvin et al., 2010; Harikrishnan et al., 2005; Sif et al., 2001). In many tumor cells, 
alterations of the SMARCA2, 4, and 6 genes have been reported (Gunduz et al., 2005; Wong 
et al., 2000; Yano et al., 2004).  
Chromatin remodeling and epigenetic regulation are involved in the intricate control of 
gene expression. The methyl-CpG binding protein, MeCP2, is involved in histone 
methyltransferase activity (Fuks et al., 2003) and in regulating DNA methyltransferase 
DNMT1 (Kimura & Shiota, 2003). Methylated CpG islands in the 5’ transcriptional 
regulatory region recruit methyl-CpG binding proteins such as MeCP2, MBD1, MBD2 and 
MBD4, followed by association with co-repressors such as HDAC complexes, histone 
methyltransferases, and chromatin remodeling complexes, thus resulting in the formation of 
a repressive chromatin structure that leads to gene silencing. This may provide “epigenetic 
memory” by helping progeny cells to “remember” their cellular identity (Bird, 2002). The 
epigenetic landscape of the whole genome is different in malignant cells compared to that in 
normal cells. Epigenetic processes have been implicated in the development of various 
malignancies, including leukemia/lymphoma, in which the repression or silencing of tumor 
suppressor genes is remarkably common (Costello et al., 2000; Esteller, 2005; Esteller et al., 
2001; Herman & Baylin, 2003; Miremadi et al., 2007). 

3. Clinical characteristics of T-cell lymphoma 

T-cell lymphoma is distinct clinicopathological entity classified by the WHO. T-cell 
lymphoma is a neoplasm with geographical variations in frequency, and the pathogenesis 
and clinical behavior, including the prognosis, are different from other lymphomas, such as 
B-cell lymphoma and Hodgkin’s lymphoma. In this section, we mainly discuss the clinical 
features and management of T-cell lymphoma. 

3.1 Clinical features of T-cell lymphoma 
3.1.1 Epidemiology  

The incidence of T-cell lymphoma demonstrates interesting geographical variations; in 
North America and Europe, about 5-10% of lymphomas are T-cell lymphomas (Anderson et 
al., 2002). However, in Asia, T-cell and natural killer (NK)-cell lymphomas account for 15-
25% of all lymphomas (Au et al., 2005). The higher prevalence of T-cell lymphoma in Asia is 
reported to be influenced by endemic virus infections, such as human T-cell lymphotropic 
virus type-I (HTLV-1) and Epstein-Barr virus (EBV). The establishment of management 
recommendations by Asian oncologists in collaboration with international experts is 
urgently needed.  

3.1.2 Clinical behavior of T-cell lymphoma  

The WHO’s classification includes 15 different T-cell lymphomas. Peripheral T-cell 
lymphoma not otherwise specified (PTCL-NOS), angioimmunoblastic T-cell lymphoma 
(AITL), and anaplastic large cell lymphoma (ALCL) account for 70-80% of T-cell lymphomas 
(Armitage et al., 1998). The other subtypes of T-cell lymphoma are rare entities. 
PTCL-NOS is a heterogeneous subtype that cannot be defined as another specific T-cell 
lymphoma. Both nodal and extranodal sites can be involved in this lymphoma. The nodal 
type can be well characterized histologically, but the extranodal type often does not show a 
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definite histopathological pattern. In particular, cutaneous PTCL has specific histological 
features, and this lymphoma is defined as a distinct subtype; cutaneous T-cell lymphoma, in 
the WHO classification. Therefore, PTCL-NOS is often diagnosed by demonstration of a T-
cell lineage. The relatively high proportion of patients with PTCL-NOS described in some 
series of T-cell lymphomas might thus reflect inadequate classification into other T-cell 
lymphoma subtypes. The clinical behavior of PTCL-NOS is not specific, but it generally has 
an aggressive clinical course similar to aggressive B-cell lymphoma, but the outcome of 
PTCL-NOS is poorer than that of aggressive B-cell lymphomas, such as diffuse large B-cell 
lymphoma (Tomita et al., 2007). 
The clinicopathological features of ALCL depend on the presence of anaplastic large cell 
lymphoma kinase (ALK). ALK-positive ALCL typicallys arise in 20-30-year-old patients, 
and mainly in males (Suzuki et al., 2000). The presentation can be both nodal and 
extranodal, involving the skin, bones, soft tissues, lungs, and liver. On the other hand, ALK-
negative ALCL occurs primarily in elderly patients, and its presentation is usually nodal. 
The prognosis of ALCL is clearly divided into two groups by ALK expression, with the 
ALK-positive ALCL patients having a better prognosis than the ALK-negative patients 
(Suzuki et al., 2000). 
AITL occurs in elderly patients, who are often initially described as having an atypical 
reactive process with generalized lymphoadenopathy, skin rash, hepatosplenomegaly, fever 
and hypergammaglobulinemia. The prognosis of AITL is poor and comparable to that of 
PTCL-NOS, and many patients will die of infectious complications that may be the result of 
underlying immunodeficiency (Armitage et al., 1998). 
Other uncommon T-cell lymphomas include enteropathy-associated T-cell lymphoma 
(EATL), adult T-cell leukemia/lymphoma (ATLL), hepatosplenic T-cell lymphoma (10), and 
subcutaneous panniculitis-like T-cell lymphoma. EATL is associated with gluten-sensitive 
enteropathy and has a fatal clinical course. ATLL is caused by infection with HTLV-1, and 
this entity is also described in other sections in this issue. 

3.2 Management of T-cell lymphomas 
3.2.1 Initial assessment and staging of T-cell lymphomas 
In the process of diagnosing T-cell lymphoma, the assessment of viral infection should be 
done as early as possible. The histological features and immunophenotype of ATLL are not 
specific among other T-cell lymphomas, and the detection of HTLV-1 is the only clue to the 
diagnosis of ATLL. The detection of EBV infection in the serum and lymphoma tissue is also 
important in T-cell lymphoma patients. In NK-cell lymphoma, the detection of EBV in 
tissues is an important diagnostic tool. When EBV is detectable in lymphoma or non-
lymphoma cells, quantification of EBV DNA by quantitative PCR is a useful surrogate 
marker of the disease burden. 
Radiological procedures including CT and MRI are critical methods used in the staging of T-
cell lymphomas. In addition, [18F]-fluorodeoxyglucose (FDG) has recently been reported to 
be avid in T-cell lymphoma patients, and PET/CT might be a useful procedure for the initial 
assessment of T-cell lymphoma patients (Kako et al., 2007). 

3.3 Treatment 
3.3.1 Initial chemotherapy  

In the past several decades, conventional anthracycline-based chemotherapy has been the 
mainstay for the treatment of lymphoma, including T-cell lymphoma. The large 
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international group trial established that cyclophosphamide, doxorubicin, vincristine, and 
predonisone (CHOP) was equally effective and less toxic than intensive second and third 
generation chemotherapy for aggressive lymphoma (Fisher et al., 1993). CHOP or CHOP-
type chemotherapy is now considered to be the standard treatment for peripheral T-cell 
lymphomas, including PTCL-NOS, AITL and ALCL. However, the results of treatment with 
a CHOP-like regimen for T-cell lymphoma is poor, with 5-year overall survival (OS) of 10-
45% (Armitage et al., 1998; López-Guillermo et al., 1998). Due to the low incidence of T-cell 
lymphoma, the optimum treatment regimen for T-cell lymphoma has not been studied 
prospectively in randomized controlled trials, and no effective regimen other than CHOP 
has been established. Although ALK-positive ALCL patients have a good prognosis even 
when treated using the CHOP regimen (Suzuki et al., 2000), other PTCL patients will need 
more efficacious regimens. 
Recently, modern dose-intense regimens have been investigated for aggressive lymphoma. 
A cyclophosphamide, doxorubicin, vincristine, dexamethasone (hyper CVAD) regimen was 
reported to be effective against Burkitt’s lymphoma or mantle cell lymphoma, and a study 
of the hyper CVAD regimen for T-cell lymphoma patients showed a 3-year OS that was 
similar to that obtained using CHOP (49% and 43%)(Escalón et al., 2005). A French group 
showed that the cyclophosphamide, doxorubicin, vincristine, bleomycin, and prednisone 
(ACVBP) regimen was associated with a significant better 5-year OS than CHOP (46% vs 
38%) in a randomized trial of patients with various types of aggressive lymphomas (Tilly et 
al., 2003). However, T-cell lymphoma patients accounted for only 15% of the cases evaluated 
in this study. Randomized trials will be necessary for more accurate assessment of the 
efficacy of this regimen for T-cell lymphoma. 

3.3.2 Hematopoietic stem cell transplantation  

Because of the generally poor outcome obtained with initial conventional chemotherapy, 
high-dose chemotherapy with autologous stem cell transplantation (ASCT) has been 
considered as a part of initial treatment for T-cell lymphoma. Numerous studies have 
shown favorable outcomes with low treatment-related mortality (TRM) (median OS was 
50-70 months), particularly in advanced stage patients (Rodriguezet al., 2003 & 2007; 
Feyler et al., 2007). One study excluding ALK-positive ALCL patients, who are known to 
have a good prognosis with chemotherapy alone, showed that the median OS was 54 
months, which was similar to the results of chemotherapy alone (Mounier et al., 2004). 
The trial conducted by the EBMT including 146 AILT patients reported that the median 
OS was 59 months, with low TRM (7%), indicating that ASCT should be considered as a 
useful treatment strategy for AITL patients (Kyriakou et al., 2008). Although most studies 
were retrospective and included ALK-positive ALCL patients, the favorable results and 
low toxicity indicated that ASCT is a promising strategy for PTCL patients. To clarify the 
patients who would benefit most from ASCT, further investigations in a prospective 
randomized setting are warranted.  
Allogeneic HSCT is considered as a salvage treatment for relapsed or refractory patients. 
Corradini et al conducted a Phase 2 study of 17 relapsed or refractory patients, and showed 
that there was a good outcome, with 64% and 80% 1-year disease-free survival (DFS) and OS 
respectively. Of interest, several patients responded to donor lymphocyte infusion, 
suggesting that there was a graft-versus lymphoma effect (Corradini et al., 2004). Another 
author reported their retrospective experience with seventy-seven PTCL patients who 
received an allogeneic HSCT. This study showed that the 5-year OS and event-free survival 
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(EFS) rates were 57% and 53%, respectively, in almost non-complete response (CR) patients 
(Le Gouill et al., 2008). However the 1-year TRM was 32% in patients treated using a 
myeloablative conditioning regimen, indicating that further prospective trials, including 
reduced induction stem cell transplantation, will be necessary. 

3.3.3 Novel therapeutic agents  

Several new agents, including molecular targeting drugs, have been studied. Gemcitabine 

has been investigated in several combination chemotherapy regimens. When gemcitabine 

was combined with etoposide and CHOP for the treatment of 26 patients with T-cell 

lymphoma, favorable results were demonstrated, including an overall response rate of 77%, 

with 62% achieving a CR. However, 54% of patients experienced severe neutropenia, and 

the EFS was only 7 months (O'Connor, 2010).  

Alemtuzumab is a humanized monoclonal antibody against CD52, which is expressed on 

both T cells and B cells. In 24 patients with T-cell lymphomas, alemtuzumab plus CHOP 

treatment resulted in a CR in 71% of patients, and a 1-year OS of 70%, and 2-year OS of 53%. 

However, severe infective complications, such as invasive aspergillosis and cytomegalovirus 

disease, were often observed (Gallamini et al., 2007). 

Romidepin was the first histone deacetylase inhibitor (HDACi) to show efficacy in patients 

with PTCL or cutaneous T-cell lymphoma (CTCL). In a report of four patients treated in a 

phase 1 study, one patient with PTCL-NOS had a CR, and prompted a subsequent phase 2 

study to assess its efficacy in patients with CTCL (Sandor et al., 2002). These two trials 

resulted in the FDA approval of the agent for patients with CTCL. Romideptin was also 

studied in patients with PTCL in a multicenter study; leading to an overall response rate of 

33%, with a CR rate of 11% (Piekarz et al., 2009). On the basis of these results, a confirmatory 

international study of romideptin in PTCL patients is ongoing. 

In conclusion, T-cell lymphoma is a distinct subtype of lymphoma, based on its unique 

epidemiology and clinical behavior. However, the optimal treatment strategy is undefined, 

and a prognostic model remains unclear due to the rarity of this entity. PTCL, the most 

common T-cell lymphoma, has a poor prognosis when patients are treated with 

conventional chemotherapy, and a large scale study is needed to establish more effective 

chemotherapy regimens, including HSCT. Novel targeted agents have been and are 

currently being examined for efficacy against the disease and to decrease the toxicity for the 

patients, and an improved understanding of the biology of PTCLs may give rise to new 

treatment options. 

4. Leukemogenesis/lymphomagenesis and the progression of adult T-cell 
leukemia-lymphoma -The clinical aspects- 

4.1 Epidemiology, etiology, and leukemogenesis 

Adult T-cell leukemia-lymphoma (ATLL) is a mature T-cell malignancy, caused by human 

T-cell leukemia virus type-I (HTLV-1)(Poiesz et al., 1980), and is characterized by 

lymphadenopathy, hepatosplenomegaly, skin lesions, the appearance of abnormal 

lymphocytes with convoluted or lobulated nuclei in the peripheral blood (PB) and specific 

geographic distributions (Uchiyama et al., 1977). ATLL cells are often resistant to 

conventional chemotherapeutic agents associated with the expression of P-glycoprotein 

(Kuwazuru et al., 1990) or functional lung resistance-related protein (Ohno et al., 2001), and 
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ATLL patients often present with opportunistic infections (Shimoyama et al., 1991). At 

present, the therapeutic outcomes of patients with acute or lymphoma type ATLL are still 

very poor. 

It is estimated that over one million peoples infected by HTLV-1 live in Japan (Yamaguchi et 
al., 2002) and that 15-20 million peoples are infected worldwide (Proietti et al., 2005). Only a 
small percentage of HTLV-1 carriers develop ATLL at a median age of 67 in Japan, whose 
median age is older than those in other countries. The cumulative risk of ATLL 
development in HTLV-1 carriers from 30 to 79 years of age was estimated to be 2.1% for 
females and 6.6% for males (Arisawa et al., 2000). Recently, the Joint Study on Predisposing 
Factors on ATLL Development (JSPFAD) Group performed a large scale cohort study 
between 2002 and 2008 for HTLV-1 carriers in order to clarify the risk factors for the 
development of ATLL. During this period, 14 cases out of 1,218 HTLV-1 carriers developed 
ATLL. This study revealed 4 major risk factors for the development of ATLL in HTLV-1 
carriers using a multivariate analysis, i.e., high HTLV-1 proviral loads (in other words, an 
increase in HTLV-1 infected cells) in the PB, advanced age (over 40 years of age), the 
existence of a family history of ATLL, and detecting HTLV-1 antibody positivity during 
treatment for other diseases (Iwanaga et al., 2010). Familial ATLL cases were reported by 
several researchers (Miyamoto et al., 1985; Ratner et al., 1990; Wilks et al., 1993). Surprisingly, 
we experienced a family with accumulated familial ATLL, in which six of seven siblings 
(excluding one who died during World War II) developed acute type ATLL between 1978 
and 1989 (Nomura et al., 2006).  
In HTLV-1 leukemogenesis, the HTLV-1 viral protein Tax activates nuclear factor-κB (NF-
κB), represses p53, and is associated with various other protein-protein interactions 
(Yoshida, 2001). In particular, Tax plays an important role in the early phase of HTLV-1 
leukemogenesis by immortalization of HTLV-1 infected T cells. On the other hand, cells 
expressing Tax are eradicated by the normal immune surveillance system by Tax- specific 
cytotoxic T lymphocytes (CTL). The accumulation of gene impairment finally results in 
leukemogenesis/lymphomagenesis of ATLL in HTLV-1 infected cells that escape from the 
CTL. However, ATLL cells frequently lack Tax expression or carry deletions in the Tax gene. 
Therefore, the Tax gene has been suggested to be non-essential for the proliferation of ATLL 
cells. On the other hand, HTLV-1 basic leucine zipper factor gene (HBZ) is expressed on the 
ATLL cells in all ATLL patients, and supports the proliferation of ATLL cells (Satou et al., 
2006). HBZ is now considered to be vital for the leukemogenesis and progression of ATLL. 
Interestingly, there is a distinct mechanism of flower cell formation in ATLL cells which is a 
characteristic feature of the acute type ATLL demonstrated by Fukuda et al (2005). The 
multilobulated nuclear formation in ATLL cells is induced by overactivation of 
phosphatidylinositol 3-kinase signaling cascades resulting from disruption of 
phosphatidylinositol-3,4,5-triphosphate inositol phosphatases such as the phosphatase and 
tensin homolog deleted on chromosome 10 (PTEN) and Src homology 2 domain containing 
inositol polyphosphate phosphatase (SHIP). Moreover this aberrantly activated signaling 
pathway is suggested to have an essential role in the development of ATLL in patients. 
Recently, it has been reported that ATLL cells are derived from regulatory T (Treg) cells or 
helper T cell type 2 (Th2) cells both of which express CD4 and CD25 on their cell surface. 
Because ATLL cells express CC chemokine receptor 4 (CCR4) which is expressed on both 
Treg and Th2 cells, and forkhead/winged helix transcription factor (FoxP3) which is 
expressed on Treg cells in most ATLL patients, ATLL cells are now thought to be mainly of 
Treg cell origin (Karube et al., 2004). 
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4.2 Clinical features 
The signs or symptoms frequently seen at the onset of ATLL include lymph node swelling, 
hepatosplenomegaly and skin lesions. ATLL patients also often suffer from abdominal 
symptoms such as abdominal pain or refractory diarrhea due to infiltration of ATLL cells 
into the gastrointestinal (GI) tract (Utsunomiya et al., 1988), and headache or disturbance of 
consciousness due to infiltration of ATLL cells into the central nervous systems (CNS). In 
addition, cough or dyspnea due to pleural effusion or lung infiltration of ATLL cells, 
abdominal distension due to lymph node swelling in the abdominal cavity, 
hepatosplenomegaly and/or ascites often distress ATLL patients. General fatigue, muscle 
weakness, constipation, and disturbance of consciousness are also seen, and are caused by 
the hypercalcemia associated with ATLL.  
Opportunistic infections are common in ATLL patients due to impairment of cellular 
immunity. In particular, fungal (cutaneous, pulmonary, oral, esophageal and meningeal) 
and protozoal (Pneumocystis carinii, Strongyloides stercoralis) infections are often seen at 
diagnosis, mainly in the acute or chronic, rather than the lymphoma type, of ATLL 
(Shimoyama et al., 1991).  

4.3 Hematological and laboratory features 

Leukocytes often increase from moderate to marked levels in leukemic type ATLL, while 
anemia and thrombocytopenia are rarely seen or mild, if they occur at all. Increases in the 
serum level of lactate dehydrogenase (LDH), serum calcium and soluble interleukin-2 receptor 
(sIL-2R) are frequently observed. Neutrophilia and/or eosinophilia are also observed due to 
the increased level of cytokines produced by the ATLL cells. Eosinophilia is a poor prognostic 
factor in ATLL patients (Utsunomiya et al., 2007). Hypercalcemia occurs more frequently in 
patients with aggressive ATLL, not only at the onset but also at relapse or upon transformation 
from an indolent to aggressive form. The mechanism underlying hypercalcemia is thought to 
be associated with the expression of parathyroid hormone-related peptides (PTHrP) 
(Watanabe et al., 1990) or tumor necrosis factor-β (TNF-β) (Ishibashi et al., 1991). In addition, 
over expression of receptor activator of nuclear factor-κB ligand (RANKL) on ATLL cells was 
found to correlate with hypercalcemia in ATLL patients (Nosaka et al., 2002). The tumor 
suppressor lung cancer 1 (TSLC1) gene was initially identified as a novel cell surface marker 
for ATLL. Afterward the expression of TSLC1 was found to be associated with tumor growth 
and organ infiltration of ATLL cells (Dewan et al., 2008). 

4.4 Diagnosis and classification 

ATLL is diagnosed as peripheral T-cell leukemia or lymphoma by cytology and the surface 
phenotype of tumor cells, and/or pathology combined with immunohistochemical findings. 
Positivity for anti-HTLV-1 antibodies in the sera is mandatory for a diagnosis of ATLL. Most 
ATLL cells have a CD4+CD8- surface phenotype, and other unusual phenotypes such as 
CD4+CD8+, CD4-CD8+, CD4-CD8- are seen in about 20% of ATLL patients. The patients with 
these unusual phenotypes have a poorer prognosis than the patients with the typical 
phenotype (Kamihira, et al., 1992). ATLL cells also express CD25, CCR4 and FoxP3. 
Histologically, the lymph nodes are occupied by diffuse proliferation of lymphoma cells with 
resultant destruction of the lymph node structure. Extranodal lesions such as those in the GI 
tract, skin or lungs should be diagnosed by histological examination. In addition to the 
presence of HTLV-1 antibodies in the sera, the detection of monoclonal integration of HTLV-1 
proviral DNA in leukemia cells or tumor cells is necessary for a definite diagnosis of ATLL. 
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After the diagnosis of ATLL, subclassification of ATLL should be performed to determine 
the optimal therapeutic regimen. ATLL is divided into four clinical subtypes; the acute, 
lymphoma, chronic and smoldering types, according to the percentage of ATLL cells in the 
PB, the involvement of the CNS, bone, peritoneum, pleura and GI tract, and whether there 
are increases in the serum LDH and calcium (Table 1) (Shimoyama et al, 1991). An increase 
in the serum LDH and blood urea nitrogen, and a decrease in the serum albumin level are 
poor prognostic factors in patients with chronic type ATLL, so patients who have at least 
one of these poor prognostic factors have been considered to belong to the unfavorable 
subgroup (Shimoyama, 1994). The acute, lymphoma and chronic types with at least one of 
poor prognostic factors are considered to be aggressive ATLL, while chronic type, without 
any poor prognostic factors, and the smoldering types are called indolent ATLL.  
 

 

Table 1. Diagnostic criteria for clinical subtype of ATLL 
N: normal upper limit, CNS: central nervous system, GI tract: gastrointestinal tract. 
*  : No essential qualification except terms required for other subtype(s). 
*2: No essential qualification if other terms are fulfilled, but histology-proven malignant lesion(s) is 
required in case abnormal T-lymphocytes are less than 5% in peripheral blood. 
*3: Accompanied by T-lymphocytosis (3.5×109/l or more). 
*4: In case abnormal T-lymphocytes are less than 5% in peripheral blood, histology-proven tumor lesion 
is required.  

A specific subtype of ATLL whose main lesions are limited to the skin, and does not have 
marked leukemic cells (<5%), a serum LDH level without exceeding 1.5-fold the normal 
upper limit, and a serum calcium level in the normal range was proposed as cutaneous type 
ATLL. The percentage of abnormal T-lymphocytes in the PB of such patients is less than 5% 
(Amano et al., 2008). 

4.5 Progression/acute transformation 

Indolent ATLL often progresses into acute type ATLL during the long period of the natural 
course of the disease. The rapid growth of lymph nodes, hepatosplenomegaly, and/or 
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marked skin manifestations suddenly occur in previously indolent ATLL, often 
accompanied by marked leukocytosis, an increase in the serum LDH, sIL-2R and/or 
hypercalcemia. In particular, the sIL-2R level has been considered to be an indicator of 
disease progression and prognosis (Kamihira et al., 1994). Multi-step aberrant CpG island 
hyper-methylation was detected in ATLL patients, which was associated with the 
progression and transformation (crisis) of ATLL (Sato et al., 2010). Clonal evolution of ATLL 
cells often occurs at the time of acute transformation in ATLL patients. 

4.6 Spontaneous regression 

Few ATLL patients show spontaneous regression of tumors (Shimamoto et al., 1993). We 

experienced two chronic type ATLL patients, both of whom had a poor prognostic factor 

(increased serum LDH), who obtained a complete remission (CR) without any therapeutic 

intervention. In one patient, the systemic lymphadenopathy and ATLL cells in the PB 

disappeared, and the serum LDH level was normalized after surgical excision of an inguinal 

lymph node. However, he suffered from bone pain due to multiple bone lesions infiltrated 

by ATLL cells about 10 months after the CR. In another patient, the leukocytes and 

abnormal lymphocytes in the PB, and the serum LDH level gradually decreased to normal 

range. The ATLL cells in her PB had disappeared completely about 6 years after the 

diagnosis of ATLL without any therapy. She is now in an HTLV-1 carrier state, and has been 

free from ATLL for about 7 years after the complete disappearance of the ATLL cells in her 

PB. Although the mechanisms of spontaneous regression of ATLL have not been elucidated, 

it is suggested that the cytotoxic activity of peripheral mononuclear cells or the apoptosis of 

ATLL cells are associated with this phenomenon (Jinnohara et al., 1997; Matsushita et al., 

1999). Clarification of this interesting phenomenon might be useful for the development of 

new immunological therapy for ATLL patients. 

4.7 Therapy 

Treatment for patients with ATLL differs according to the clinical subtypes. It therefore is 
very important to make an accurate diagnosis of the clinical subtype of ATLL in order to 
ensure that the appropriate therapy is selected. In patients with indolent ATLL including 
those with the smoldering type or the chronic type without any unfavorable prognostic 
factors, watchful waiting is the standard of care in Japan except when the patients are 
suffering from symptomatic skin lesions. 
Generally, intensive combination chemotherapy for aggressive ATLL has been performed 
immediately after the diagnosis because the prognoses of aggressive ATLL are poorer than 
those of other non-Hodgkin’s lymphomas (NHL) free from HTLV-1 infection (Shimoyama et 
al., 1988). The results of chemotherapy in studies performed by the Japan Clinical Oncology 
Group-Lymphoma Study Group (JCOG-LSG) from the 1980’s to early 1990’s were 
unsatisfactory for ATLL. The CR rate was 17-42%, and the median OS time was 5-13 
months, and the OS rate at 3 years was only 13-24% (Uozumi, 2010). Recently, Tsukasaki et 
al (2007) reported the results of a randomized phase III trial for aggressive ATLL. They 
revealed that the CR rate was higher in the patients treated with sequential combination 
chemotherapy consisting of VCAP (vincristine, cyclophosphamide, doxorubicin, and 
prednisone), AMP (doxorubicin, ranimustine, and prednisone), and VECP (vindesine, 
etpoposide, carboplatin, and prednisone) (mLSG15) than in those treated with biweekly 
CHOP (vincristine, cyclophosphamide, doxorubicin, and prednisone: bi-CHOP) (40% vs 
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25%, respectively). Furthermore, the OS rate at 3 years was higher in the mLSG15 arm than 
in the bi-CHOP arm (24% vs 13%, respectively) (Tsukasaki et al., 2007). 
On the other hand, Bazarbachi et al (2010) reported that excellent results were obtained 
using combination therapy with zidovudine (AZT) and interferon-α (IFN) for ATLL 
patients. The OS rate at 5 years was 46% for their 75 patients who received first-line 
antiviral therapy. In particular, the OS rate at 5 years for patients with the chronic and 
smoldering types of ATLL was 100%. However, the results for aggressive type ATLL 
obtained using AZT/IFN therapy were inferior to those obtained during the JCOG-LSG 
study (JCOG9303, JCOG9801)(Yamada et al., 2001; Tsukasaki et al., 2007). Nevertheless, as 
the results of chemotherapy for aggressive ATLL are unsatisfactory, new strategies using 
approaches other than conventional chemotherapy are needed for ATLL to improve the 
survival of the patients. 
We previously reported that allogeneic hematopoietic stem cell transplantation (allo-HSCT) 
was useful for aggressive ATLL (Utsunomiya et al., 2001). Following our report, many other 
researchers reported the possibility of long-term survival in ATLL patients who received 
allo-HSCT using conventional or reduced intensity conditioning (Fukushima et al., 2005; 
Okamura et al., 2005; Shiratori et al., 2008; Hishizawa et al., 2010). A graft-versus-Tax (Gv-
Tax) response in ATLL patients after allo-HSCT was demonstrated by Harashima et al 
(2004). The Gv-Tax response, which has been suggested to induce a graft versus-ATLL (Gv-
ATLL) effect may bring about the eradication of not only ATLL cells but also of HTLV-1 
infected cells in general (Okamura et al., 2005; Yonekura et al., 2008). 
New agents, especially an anti-CCR4 antibody (KW-0761) are promising for ATLL therapy. 
Recently, promising results for relapsed ATLL patients who had been treated by 
intravenous administration of KW-0761 indicated that the overall response rate was 31% in 
a phase I study (Yamamoto et al., 2010) and 50% in a phase II study (Ishida et al., 2010). 
Other novel agents, such as lenalidomide (a thalidomide analogue) and bortezomib, which 
inhibits proteasome and thereby inhibits activation of NF-κB, are now being evaluated in 
clinical trials for relapsed ATLL in Japan. In addition, immunotherapy using dendric cells 
stimulated by Tax peptides is now being prepared for ATLL patients who had previously 
obtained remission by chemotherapy. 
In conclusion, ATLL presents diverse features, and the mechanisms of leukemogenesis 

induced by HTLV-1 development and the progression of ATLL have not been well 

elucidated. Clarification of these mechanisms will therefore give ATLL patients a chance to 

obtain a cure. Furthermore, our final goals are not only to cure ATLL patients, but also to 

completely eradicate HTLV-1 by preventing HTLV-1 infection or by eradicating infections 

once they are established.  

5. Epigenetics of leukemia and lymphoma 

5.1 Modulation of the expression profile in the immune system through epigenetic 
mechanism 

Epigenetic mechanisms control the development and differentiation, and maintain the 
normal physiological status in mammalian cells, and epigenetic events link a subjects’ 
genotype to their phenotype. Epigenetic regulatory mechanisms are a central system to 
control the differentiation and function of the immune system and to ensure an 
appropriate gene expression profile in immune cells (Natoli G, 2010). This mechanism 
changes the gene expression profile, permitting cells to adapt to multiple environmental 
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pressures. Pathogenic factors may be considered such an environmental pressure (Arens 
& Schoenberger; 2010). Consequently, cellular differentiation and adaptation might be 
considered as an epigenetic phenomenon. Many of the recent epigenetic investigations 
have focused on DNA methylation, histone modifications and chromatin remodeling. 
Non-coding RNAs, such miRNAs, also play important roles in epigenetic pathways (Thai 
et al. 2010). 

5.2 Epigenetic abnormalities in leukemia and lymphoma 

Lymphoma and leukemia, as well as other cancers, have been thought to be predominantly 

induced by acquired genetic changes such as mutations, deletions, and amplifications of 

genes and chromosome translocations. However, it is now becoming clear that 

microenvironment-mediated epigenetic alterations also play important roles. Although 

many genetic changes have been reported, it is difficult to discriminate cause from 

consequence. It is also unclear whether genetic or epigenetic changes occur first. Recent data 

suggest that cancer has a fundamentally common basis that is grounded in a polyclonal 

epigenetic disruption of stem/progenitor cells, mediated by 'tumor-progenitor genes'. 

Furthermore, tumor cell heterogeneity is due, in part, to epigenetic variation in progenitor 

cells, and epigenetic plasticity, together with genetic lesions, drives tumor progression 

(Feinburg et al, 2006). The epigenetic disruption of key genes is supposed to occur at the 

earliest stage of cancer development. Some of the most convincing evidence for epigenetic 

disruption of progenitor cells derives from the ubiquitous nature of genome-wide 

hypomethylation, which is present in almost of all malignant tumors. In addition, gene-

silencing induced by hypermethylation of genes involved in DNA repair (MGMT, hMLH1), 

cell cycle progression (p16INK4a, p15INK4b, p14ARF), signal transducing molecules 

(SHP1), apoptosis (DAPK) and cell adhesion (CHD1, HCAD) (Flanagan, 2007) is also 

common. Therefore, non-neoplastic, but epigenetically disrupted, stem/progenitor cells 

might be a crucial target for cancer risk assessment and chemoprevention. 

5.3 Frequent gene silencing of hematopoietic cell-specific protein tyrosine 
phosphatase (SHP1) in hemetopoietic cell malignancies 

Genome-wide studies of gene expression on a genomic scale using cDNA microarrays make 
it easy to measure the transcription levels of almost every gene at once. Various types of 
leukemia/lymphoma have been analyzed using cDNA microarrays to investigate the 
molecular basis of leukemogenesis/ lymphomagenesis. From the cDNA microarray 
analyses of gene expression pattern of the human NK/T cell line (NK-YS), followed by 
comprehensive and systematic tissue microarrays, RT-PCR and Western blotting analysis, it 
has been demonstrated that strongly decreased expression of hematopoietic cell specific 
protein-tyrosine-phosphatase SHP1 mRNA was present in malignant cells (Oka et al., 2001). 
A further analysis using standard immunohistochemistry and tissue microarrays, which 
utilized 207 paraffin-embedded specimens of various kinds of malignant lymphomas, 
showed that 100% of NK/T lymphomas and more than 95% of malignant 
leukemia/lymphoma patient specimens of DLBCL, follicular lymphoma (FL), Hodgkin’s 
lymphoma (HL) (Hodgkin's disease (HD)), mantle cell lymphoma (MCL), peripheral T-cell 
lymphoma (PTCL), ATLL and plasmacytoma were negative for SHP1 protein expression. 
The promoter region of the SHP1 gene has been revealed to be highly methylated in patient 
samples of adult T cell leukemia (methylation frequency: 90%), natural killer (NK)/T cell 
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lymphoma (91%), diffuse large B-cell lymphoma (93%), MALT lymphoma (82%), mantle cell 
lymphoma (75%), plasmacytoma (100%) and follicular lymphoma (96%). The methylation 
frequency was significantly higher in high grade-MALT lymphoma cases (100%) than in low 
grade-MALT lymphoma cases (70%), correlating well with the frequency of the lack of SHP1 
protein in high grade- (80%) and low grade-MALT lymphoma (54%) (Oka et al., 2002; 
Koyama et al., 2003). This suggests that the SHP1 gene silencing with aberrant CpG 
methylation is related to the progression of lymphoma, in addition to the malignant 
transformation. Furthermore, the promoter methylation of the SHP1 gene was clearly 
correlated with the clinical stage, such as complete remission or relapse. Loss of 
heterozygosity with microsatellite markers near the SHP1 gene was shown in 79% of 
informative ALL cases. These findings indicate that the SHP1 gene is a relevant novel 
biomarker of a wide range of hematopoietic malignancies. Additionally, these results 
suggest that loss of SHP1 gene expression plays an important role in multistep 
lymphomagenesis/leukemogenesis.  
SHP1 negatively regulates the Janus kinase/signal transducer and activator of transcription 
(Jak/STAT) signaling pathway (Chim et al., 2004a; Chim et al., 2004b). SHP1 in myeloma 
showed hypermethylation, with constitutive STAT3 phosphorylation. Demethylating 
reagent-treated myeloma samples showed restored SHP1 expression in accordance with 
down-regulation of phosphorylated STAT3 (Chim et al., 2004a). SHP1 methylation thus 
leading to the induction of epigenetic activation of the Jak/STAT pathway might play a key 
role in the pathogenesis of myeloma. Similarly, frequent methylation of SHP1 was observed 
in mantle cell and follicular lymphomas (Oka et al., 2001 & 2002; Chim et al., 2004c) and also 
in acute myeloid leukemia (Oka et al., 2001; Chim et al., 2004b). The hypermethylation of 
SHP1 led to the activation of the Jak/STAT signaling pathway, along with the upregulation 
of cyclin D1 and BCL2, and could be the basis for the lymomagenesis of follicular lymphoma 
(Koyama et al., 2003; Chim et al., 2004c). 

6. Epigenetic alterations induced by infectious agents  

6.1 Oncogenic infectious agents 

Infectious agents, including viruses, bacteria and parasites, have been reported to be 

associated with various human malignancies (Oka et al., 2011). These include Epstein-Barr 

virus (EBV), human T lymphotropic virus type-I (HTLV-1), human T lymphotropic virus 
type-II (HTLV-2), hepatitis viruses (hepatitis B virus (HBV) and hepatitis C virus (HCV)), 
human papilloma virus (HPV), polyoma viruses (JC virus, BK virus, SV40) and Kaposi’s 
sarcoma-associated herpesvirus/human herpesvirus-8 (KSHV/HHV-8). EBV is associated 
with Burkitt’s lymphoma and diffuse large B-cell lymphoma (DLBCL), NK/T lymphoma, 
nasopharyngeal carcinoma and Hodgkin’s disease (Lindstrom et al., 2002; Kwong et al., 
2002; Bravender, 2010). HTLV-1 is associated with adult T-cell leukemia/lymphoma (ATLL) 
(Poiesz et al. 1980; Hinuma et al., 1981; Yoshida et al., 1982), HTLV-2 with hairy cell 
leukemia (Feuer et al., 2005; Kaplan, 1993; Hielle, 1991), HHV-8 with Kaposi’s sarcoma and 
primary effusion lymphomas (Zhang et al., 2010; Du, 2007), HBV and HCV with 
hepatocellular carcinoma (HCC) (Miroux et al., 2010; Alavian et al., 2010), HPV with cervical 
carcinoma (Tota et al., 2010; Grce et al., 2010) and JCV with brain and colon cancer (Parkin, 
2006; Selgrad et al.,2009). The bacterium Helicobacter pylori, a major contributor to gastric 
cancer and MALT lymphoma, and parasitic infections such as particular Schistosoma 
hematobium, a major cause of bladder cancer in Egypt, and liver flukes (Zur Hausen, 2009) 
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are also associated with human cancers. The molecular mechanisms by which these 
infectious agents contribute to the carcinogenesis and lymphomagenesis are not always 
clear. However, some of the evidence discussed below suggests an important role for 
epigenetic changes and aberrant DNA methylation in the onset and progression of 
malignancies associated with infectious agents. 

6.2 Epigenetic changes induced by virus infection 

More than 20% of cancers have been causally linked to human pathogens (Zur Hausen, 2009). 

Why virus infection is sometimes controlled, and on the other occasions leads to the 

progression to malignant tumors is still mystery. However, recent evidence suggests that 

epigenetic changes induced by infection play a causative role. Oncogenic viruses have been 

revealed to increase DNA methylation activity and decrease histone acetylation activity 

(Flanagan, 2007). The latent membrane protein 1 (LMP-1), one of the virus proteins of EBV, has 

been shown to be an oncoprotein with transforming activity. LMP-1 activates DNMT1, 

DNMT3a and DNMT3b to initiate epigenetic alterations, followed by hypermethylation and 

gene silencing of the E-cadherin gene (Tsai et al., 2002). Human epithelial cells expressing LMP-

1 have been shown to have higher invasive activity, in accordance with reduced expression of 

the E-cadherin gene (Kim et al., 2000). Integration-defective HIV-I was shown to increase 

DNMT1 expression, followed by increased methylation of CpG islands in the promoter region 

of the p16INK4A and IFN-gamma genes to induce gene silencing (Fang et al., 2001; Mikovits et al., 

1998). Overall increases in DNA methyltransferase activity in malignant cells compared with 

normal tissues is also common in non-virus-related cancers (Esteller, 2006)  

The ability to alter histone modifications and chromatin structure is also common to many 

oncogenic viruses, including EBV, HPV, adenoviruses and HTLV-1. EBV nuclear antigens 

EBNA2 and EBNA 3c alter histone acetylation by interacting with p300/CBP, PCAF histone 

acetyltransferase (HAT) complexes or with histone deacetylase (HDAC), respectively (Wang 

et al., 2000; Knight et al., 2003). The HPV E6 oncoprotein binds and inhibits the histone 

acetyltransferase activity of the p300/CBP complex (Patel et al., 1999). The HTLV-1 Tax 

protein also interacts with the p300/CBP complex to mediate transcriptional repression 

(Kwok et al., 1996). Disruption or alteration of p300/CBP histone acetyltransferase activity is 

common to many oncogenic viruses, suggesting that it may be one of the critical early 

events in virus-induced tumorigenesis. Further evidence of the early involvement of 

p300/CBP in various non-viral cancers has also been observed, suggesting that abrogation 

or perturbation of the histone acetyltransferase activity of p300/CBP may be one of the 

critical early events in all malignant tumors (Flanagan, 2007).  

6.3 Accumulation of epigenetic abnormalities during the development and 
progression of ATLL 

ATLL is an aggressive malignant disease of CD4-positive T lymphocytes caused by infection 
with HTLV-1 (Poiesz et al., 1980; Hinuma et al., 1981). HTLV-1 causes ATLL in 3-5% of 
infected individuals after a long latent period of 40–60 years (Tajima et al., 1990). Such a long 
latent period suggests that a multi-step leukemogenic/lymphomagenic mechanism is involved 
in the development of ATLL, although the critical events in its progression have not been well 
characterized. The pathogenesis of HTLV-1 has been intensively investigated in terms of the 
viral regulatory proteins HTLV-1 Tax and Rex, which are supposed to play key roles in the 
HTLV-1 leukemogenesis/lymphomagenesis, as well as the HTLV-1 basic leucine zipper factor 
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(HBZ) (Matsuoka et al., 2003, 2007; Gaudray et al.2002). The mechanism responsible for the 
progression of ATLL have been investigated from various genetic aspects, including specific 
chromosome abnormalities (Okamoto et al., 1989; Oka et al.1992, 2006; Ariyama et al.1999; 
Fujimoto et al., 1999), changes in the characteristic HTLV-1 Tax, Rex and HBZ protein 
expression patterns (Oka et al., 1992; Selgrad et al., 2009) and aberrant expression of the SHP1 
(Oka et al., 2002, 2006), P53 (Yamato et al., 1993; Tawara et al., 2006), DRS (Shimakage et al. 
2007), and ASY/Nogo (Shimakage et al. 2006) genes, although the detailed mechanisms 
triggering the onset and progression of ATLL remains to be elucidated. Frequent epigenetic 
aberration of DNA hypermethylation associated with SHP1 gene silencing has been identified 
in a wide range of hematopoietic malignancies (Oka et al., 2001, 2002; Koyama et al., 2003). 

Recently, the number of genes methylated CpG islands, including the SHP1, P15, P16, P73, 
HCAD, DAPK, and MGMT genes, has been reported to increase with disease progression, and 
aberrant hypermethylation in specific genes has been detected even in HTLV-1 carriers, and 
correlated with eventual progression to ATLL (Sato et al., 2010). CIMP was observed most 
frequently in the lymphoma type ATLL, and was also closely associated with the progression 
and crisis of ATLL. The high number of methylated genes, and the increased incidence of 
CIMP were shown to be unfavorable prognostic factors for ATLL (Sato et al., 2010) and 
correlated with a shorter overall survival as calculated by a Kaplan-Meyer analysis. These 
findings strongly suggest that the multi-step accumulation of aberrant CpG methylation in 
specific target genes and the presence of CIMP are deeply involved in the crisis, progression 
and prognosis of ATLL, and that CpG methylation and CIMP may provide new diagnostic 
and prognostic biomarkers for patients with this disease (Figure 2). 
 

 

Fig. 2. Natural course from infection of human T lymphotropic virus type-I (HTLV-1) to 
onset and progression of adult T-cell leukemia/lymphoma (ATLL). Accumulation of genetic 
and epigenetic changes in host and virus genome during long latent period induce onset of 
ATLL. 
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It will be of interest to determine whether there is a direct link between HTLV-1 induction of 
DNMTs causing CIMP and hypermethylation of specific target genes, and how or what kind 
of viruses induce deregulation of the epigenetic machinery. Such discoveries may provide 
new insights into the understanding of the molecular mechanisms responsible for virus-
induced lymphomagenesis and leukemogenesis. 
The HTLV-1 Tax protein has been demonstrated to activate the nuclear factor-κB (NF-κB) 

and Akt pathways as major cellular pro-survival pathways (Yoshida, 2001). However, Tax 

transcripts are detected in only about 40% of transformed ATLL cells and are sometimes 

mutated. On the other hand, it has been demonstrated that the Hbz transcript is 

ubiquitously expressed in all ATLL cells, and possesses a pro-proliferative function in cells 

(Satou et al., 2006). It has therefore been proposed that Tax initiates transformation, while 

HBZ is required to maintain the transformed phenotype late in ATLL when Tax expression 

is extinguished (Matsuoka & Jeang, 2011). During malignant progression, tumor cells need 

to acquire novel characteristics that lead to uncontrolled growth and reduced 

immunogenicity. The loss of Tax expression in vivo could facilitate the escape of HTLV-1 

infected cells from CTL-surveillance to induce disease progression. In the Bovine Leukemia 

Virus (BLV)-induced ovine (sheep) leukemia model, silencing of viral gene expression has 

been proposed as a mechanism leading to immune evasion (Merimi et at., 2007). They 

showed that there was a correlation between the complete suppression of provirus 

expression and tumor onset, providing experimental evidence that virus and Tax silencing 

are critical, if not mandatory, for the progression to overt malignancy. This suggests that 

epigenetic and/or genetic changes in the host genome induced by HTLV-1 infection are 

crucial for the onset and progression, independent of virus genome expression.  

This raises questions about whether it might be possible to maintain the leukemic 

phenotype, on for cells to progress to ATLL without Tax expression. One possibility is that 

the genetic changes are associated with multipolar mitosis and aneuploidy. Aberrant 

centrosome replication is linked to oncogenesis, disregulating the intact spindle assembly 

checkpoint, accurate centrosome cycle and proper cytokinesis (Chi & Jeang, 2007). A second 

possibility is that there is aberrant expression of miRNAs (microRNAs) in ATLL leukemic 

cells, which occur independent of Tax expression.  Yeung et al. reported that the tumor 

suppressor protein, TP53INP1, in HTLV-1 infected/transformed cells was targeted for 

repression by upregulated expression of miR-93 and miR-130b (Yeung et al., 2008). Pichler et 

al also reported that TP53INP1 was targeted in HTLV-1 infected/transformed cells by miR-

21, -24, 146a and -155 (Pichler et al., 2008). Bellon et al described that ATLL cells show 

increased expression of miR155 (Bellon et al., 2009). These aberrant expression levels of 

onco-miR may disregulate downstream gene expression. A third possibility is that aberrant 

gene expression induced by epigenetic abnormalities, including aberrant DNA methylation, 

abnormal changes in histone modifications and dysregulation of chromatin remodeling, are 

maintained by daughter cells though epigenetic machinery.  

6.4 Possible link to host-pathogen interaction 

Experimental interspecies-transmission of BLV to sheep shows the shorter latency period 
preceding disease onset: leukemia occurs usually 1-4 years after infection in contrast to 4-10 
years in cows. In addition, the incidence of virus-induced leukemia is much higher: almost 
all infected sheep will succumb within normal life time compared to only about 5% in cattle, 
suggesting that it is related to the lack of natural transmission of BLV to sheep (Florins et al., 
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2008). In nature it is often observed that interspecies transmission of viruses results in a high 
incidence of disease in the new host. Genetic analyses of several human and simian T-cell 
leukemia virus type-I (HTLV-1/STLV-1) strains of African and Asian origin suggest recent 
interspecies transfer between species within primate genera, including humans. The 
phylogenetic analyses suggest that at least three independent human-simian exchanges 
have occurred during the evolution of these retroviruses (Dekaban et al., 1996). The 
incidence of ATLL within normal lifetime is about 5%, suggesting that HTLV-1 is in the 
process to establish a new relationship to human as a natural host. Elucidation of symbiotic 
evolution mechanisms may provides new insights to find out the strategy to reduce the 
virulence of HTLV-1 and suppress the onset of diseases. 

7. Epigenetic therapy for leukemia/ lymphoma 

Abnormalities of the epigenetic machinery have been associated with a broad range of 

diseases, including hematologic disorders and malignant leukemia/lymphoma. The 

malignancies have specific epigenetic profiles related to their histological type, and show 

many common phenotypes such as self-sufficiency of growth signals, resistance to anti-

proliferative or pro-apoptotic signals, and so on. As previously reported, epigenetic markers 

can be used for various clinical applications, including for determing the risk of the onset 

and progression, for early detection, prediction of prognosis, and for predicting treatment 

outcomes and evaluating the response to treatment.  

Moreover, there are already several systems with high sensitivity for detecting epigenetic 

profiles, such as the methylation-specific polymerase chain reaction (MSP) assay, which 

have been developed using leukemia/lymphoma samples (Oka et al., 2002; Sato et al., 2010). 

The epigenetic modifications are characterized by reversible reactions. On the basis of this 

point, inhibitors to reverse these modifications as therapeutic interventions have been 

developed and exploited, and good results have been reported for various malignant 

leukemias/lymphomas.  

It is important to determine why T cell leukemia/lymphoma shows a worse prognosis than 

other disease, and to use this information to design a effective treatment. It is noteworthy 

that epigenetic therapy is now regarded as an innovative approach to the treatment of T cell 

leukemia/lymphoma (Piekarz et al., 2009a). In fact, treatment of tumor cells with epigenetic 

drugs can induce a range of antitumor effects, including apoptosis, cell cycle arrest, 

differentiation and senescence, modulation of immune responses, and angiogenesis (Bolden 

et al., 2006). The current drugs targeted for epigenetic mechanisms are categorized as either 

histone deacetylase (HDAC) inhibitors (HDACi) such as vorinostat, romidepsin and DNA 

methyltransferase (DNMT) inhibitors, such as 5-aza-2'-deoxycytidine (DAC) or 5-

azacytidine (5-AC). 

HDACi have diverse structures, and include sodium butyrate, vorinostat, MS-275, TSA, and 

FK228 (Prince et al., 2009). However, regardless of their structures, similarities have been 

observed with regard to their efficacy, and their timing- and dose-dependence, although 

some profiles on gene expression induced by HDACi seem to be agent-specific (Gray et al., 

2004; Peart et al., 2005). Several HDACi have also been reported to predominantly improve 

the patient prognosis (Prince et al., 2009). However, the mechanism responsible for the 

marked efficacy of HDACi in T cell lymphoma is not yet understood, nor is there an 

understanding of the differences among the various HDACi. Piekarz et al. speculated that 
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the responsive subset of T cell lymphomas has its origin in an as-yet unknown chromosomal 

rearrangement that recruits the class I HDACs to the promoter of a gene, and T cell 

lymphoma is therefore distinctly susceptible to different therapeutic interventions that affect 

HDACs (Piekarz et al., 2009b). In particular, Vorinostat (suberoylanilide hydroxamic acid, 

SAHA), which is a hydroxamic acid derivative that inhibits both class I and II HDACs, 

showed a good response for the treatment of relapsed and refractory cutaneous T-cell 

lymphoma (CTCL) (O'Connor et al., 2006; Mann et al., 2007; Duvic et al., 2007; Olsen et al., 

2007; Garcia-Manero et al., 2008). Romidepsin (depsipeptide, FR901228, FK228, NSC 630176) 

is generally classified as a broad-spectrum inhibitor, as it inhibits class II enzymes. 

Romidepin was the first HDACi reported to show efficacy as monotherapy (complete or 

partial response) in patients with PTCL and CTCL (Piekarz et al., 2001). Favorable responses 

have been confirmed in CLL (Byrd et al., 2005; Dai et al., 2008; Inoue et al., 2009), CTCL 

(Piekarz et al., 2009b; Bates et al., 2010; Whittaker et al., 2010), and in additional PTCL 

patients (Bates et al., 2010; Piekarz et al., 2011). Panobinostat (LBH589) induces clinical 

responses in patients with refractory CTCL (Ellis et al., 2008). Peart et al. described that the 

specific attributes of each individual HDACi could be clarified, and that “matching” an 

individual HDACi to particular tumors or genetic profiles might help improve the clinical 

responses (Peart et al., 2003). 

The two main analogs of DNMT inhibitors, such as DAC and 5-AC, are incorporated into 

DNA to trap and target DNMTs for degradation. The subsequent absence of these enzymes 

during DNA synthesis causes hypomethylation, and finally, reactivation of silenced gene 

expression in the daughter cells. The activated gene expression has effects on multiple 

pathways, contributing to a clinical response (Yoo et al., 2006). However, caution should be 

exercised, because the hypomethylation resulting from treatment these drugs can also likely 

activate oncogenes that are generally known to be silenced (e.g., COX2, EGFR, etc) (Toyota 

et al., 2005). Recent data show that hypomethylation by treatment with a single DAC is 

insufficient for the induction of gene expression (Si et al., 2010). Therefore, combination 

therapies using DNA demethylating agents with HDACi are well established. Indeed, 

HDACi enhance the activation of aberrantly methylated tumor suppressor gene promoters 

in tumor cells by DNA demethylating agents (Cameron et al., 1999; Steiner et al., 2005). 

These results suggest that potentiation of DAC-mediated gene induction by HDACi may be 

more complex than mere additive activities. However, the previous trials have mostly 

involved patients with AML and MDS (Silverman et al., 2009), not including those with T 

cell leukemia/lymphoma.  

Approximately 30–40% cases of PTCL-NOS express CCR4+, and CCR4 expression is an 
unfavorable prognostic factor (Ohshima et al., 2004; Ishida et al., 2004). Additionally, PTCL 
originating from a CCR4+ Treg cell often shows a tendency to be ‘‘PTCL-NOS with genomic 
alterations’’ (Ishida et al., 2011). Tumor cells from most ATLL patients are characterized by 

the Treg phenotype膅CD4+CD25+CCR4+FOXP3+䐢(Yoshie et al., 2002; Karube et al., 2008). 
Consequently, anti-CCR4 mAbs (KW-0761) have been developed, and have shown notable 
anti-tumor effects (Yamamoto et al., 2010; Ishii et al., 2010).  
Interestingly, a recent investigation showed that the CCR4 expression on human CD4+ T 
cells is regulated by histone H3 acetylation and methylation (Singh et al., 2010). In ATLL, it 
was noted that the indolent type is associated with a worse survival (mean survival time: 4.1 
years) (Takasaki et al., 2010), and the proliferation of HTLV-1 infected cells seems to 
determine the viral burden during the carrier state (Matsuoka et al., 2011). These reports 
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suggest that early detection and treatment are essential for preventing transformation, or for 
decreasing the tumor burden in patients with the disease. Tax expression is regulated by the 
SUV39H1 histone methyltransferase (Kamoi et al., 2006) and HDAC1 (Ego et al., 2002), 
which negatively regulate the viral gene expression. These findings indicate that the 
presence of epigenetic abnormalities, including those that occur as a result of Tax regulation, 
play crucial roles in the pathogenesis of ATLL. A previous report showed that a histone 
deacetylase inhibitor, valproate, reduced the HTLV-1 proviral load in HAM/TSP through 
induction of tax gene expression and subsequent activation of CTLs (Lezin et al., 2007). 
However, it is important to note that the downstream effectors affected by these epigenetic 
agents have not been elucidated, although their primary enzymatic targets are known. In 
addition, it is necessary to confirm the optimal dosing schedule, potency, pharmacology, 
and longterm toxicity for each cell type. 
Recent reports have evaluated additional combinations of HDACi with other agents, such 
as anthracyclines, in patients with AML and MDS (Zxu et al., 2010) and AMG 655 (anti-
TRAIL receptor 2 antibody) in patients with various B cell lymphomas (National Cancer 
Institute (NCI), USA; http://www.cancer.gov). It appears that combination therapy using 
epigenetic agents with another therapy, such as immunotherapy, will make it possible to 
create an effective treatment strategy for intractable T cell leukemia/lymphoma. 
Additional larger studies of epigenetic therapy in subjects with intractable T cell 
leukemia/lymphoma are warranted. 

8. Conclusions and perspective 

Increased activity of DNA methyltransferases and decreases in p300/CBP-mediated 
histone acetylation are common in both virus-induced and non-viral malignancies, which 
suggests that epigenetic therapy would be effective for a wide range of malignancies. 
Aberrant DNA methylation has been shown to be the most consistent molecular changes 
present in many neoplasms. Hypermethylation of specific target genes, which can be 
detected at various stages and in different types of lymphomas and leukemias, can be 
detected with high sensitivity and accuracy. In the near future, we hope to be able to 
identify the specific signature of the methylation profile and biomarkers of 
hypermethylated genes for each specific type and stage of malignancy. Moreover, some 
epigenetic markers might be present prior to the development of lymphoma and 
leukemia. Thus, epigenetic markers may crucial for identifying the risk of 
leukemia/lymphoma development and also indicate the possibility of cancer prevention 
for such high-risk patients. Epigenetic changes, in contrast to genetic changes, can be 
easily reversed by the use of therapeutic interventions at various stages. The 
hypermethylated genes found in various cancers, in addition to leukemia/lymphoma, 
seem to be particularly sensitive to reactivation by demethylating reagents and HDACi. 
Therefore, restoration of multiple gene functions at the same time may be possible by 
therapeutic targeting of DNA methylation and histone acetylation. This could have 
profound implications for the diagnosis and treatment of malignancies. 
The newer technologies that enable the global analyses of the epigenome are developing 
with remarkable speed, and include methods such as ChIP-on-chip (Chromatin 
ImmunoPrecipitation with microarray) and ChIP-sequencing, with deep sequencing by next 
generation sequencers for mapping global methylation and chromatin modifications, which 
will provide information about the landscape of infection-induced alterations, and about the 

www.intechopen.com



Accumulation of Specific Epigenetic 
Abnormalities During Development and Progression of T Cell Leukemia/Lymphoma 

 

153 

dynamic nature of microbe-host interactions and the human epigenome itself with regard to 
the various diseases. Such findings will greatly assist in improving human health.   
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