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1. Introduction 

Human Immunodeficiency Virus (HIV) infection causes Acquired Immune Deficiency 

Syndrome (AIDS), while its ape and monkey progenitor Simian Immunodeficiency Virus 

(SIV) does not cause AIDS in its nonhuman primate natural reservoir hosts.  Astonishingly, 

AIDS is avoided despite findings in a number of these host primate species indicating they 

too harbor high levels of virus replication that kills off CD4 T cells.  These primate species 

that are so called “natural hosts” of SIV, essentially have HIV without ever getting AIDS.   

The elucidation of the exact mechanisms allowing natural SIV hosts to avoid disease 

progression may prove decisive in the battle to understand HIV pathogenesis for the 

purpose of preventative or curative HIV and AIDS therapy. Comparative studies in natural 

and nonnatural hosts of lentiviral infections (i.e. HIV or SIV) have defined essential 

distinguishing features, opening up new avenues for possible therapeutic and preventative 

intervention.  

In this chapter, we will describe recent and past breakthroughs that come from comparing 

lentiviral infections in AIDS-free natural hosts, to immunocompromised nonnatural hosts. 

In addition, we will discuss how the knowledge derived from the study of natural hosts 

may inform the design of novel therapies and vaccine strategies for HIV-infected humans. 

1.1 A brief history of HIV 
The observation in the late ‘70s and early ‘80s of a previously unrecognized adult-onset 

immunodeficiency associated with Kaposi’s sarcoma (a skin cancer now known to be 

caused by Herpes Virus 8) and Pneumocystis carinii (a yeast-like fungus now known as 

Pneumocystis jiroveci) pneumonia signaled the beginning of one of the most devastating 

tragedies of modern times: the AIDS epidemic. Early epidemiological hypotheses on the 

etiologic agent of this disease included sexually transmitted pathogens as well as toxic 

“street” drugs (Centers for Disease Control (CDC), 1982; Harris et al., 1983).  During these 

early years, basic and clinical researchers alike began furiously searching for the causes of 

AIDS, which culminated in 1983 with the discovery of the Human Immunodeficiency 

Virus (Barre-Sinoussi et al., 1983). 

A series of studies in molecular virology and epidemiology conducted in subsequent years 
have delineated both the timing and geographical origin of the AIDS pandemic. The African 
city of Kinshasa (formerly known as Leopoldville), in the Democratic Republic of the Congo, 
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is the place where the oldest known HIV-infected samples were discovered in a lymph node 
biopsy from 1960 and a blood-plasma sample from 1959 (Paul M Sharp & Beatrice H Hahn, 
2008). In 1998, Zhu et al. estimated that HIV-1 originated in the 1940’s or early 1950’s, and 
also proposed that the split between HIV-1 and HIV-2 must have occurred considerably 
earlier (T. Zhu et al., 1998). Ten years later, Worobey et al. proposed the origin of HIV-1 to 
be anywhere from 1884-1933, a range corresponding to the rise of urban populations in the 
Leopoldville/Kinshasa area (Worobey et al., 2008). Collectively, these observations and 
models have refuted the controversial speculation that experimental polio vaccine 
formulations from the 1950’s were responsible for the AIDS epidemic (Worobey et al., 2004). 
Subsequent studies indicated that HIV infection in humans arose from cross-species 
transmission of viruses that naturally infect African nonhuman primates (NHP), which are 
referred to as natural hosts for SIV (P M Sharp & B H Hahn, 2010). The next section will 
describe the different African nonhuman primates infected with SIV, focusing on those that 
infected giving rise to HIV-1 and HIV-2.  

1.2 Introduction to natural hosts 
At least 40 monkey species in Africa have been found to be naturally infected with species-

specific strains of SIVs, and usually with a high prevalence. In the vast majority of cases the 

virus is designated by a three-letter abbreviation of the infected nonhuman primates (NHP) 

species name to differentiate between SIV strains (VandeWoude and Apetrei, 2006). For 

example, SIVcpz is the virus isolated from chimpanzees (Pan troglodytes), SIVsmm from 

sooty mangabeys (Cercocebus atys), SIVmnd from mandrills (Mandrillus sphinx), SIVagm 

from African green monkeys (AGM), and so on. The viruses that infect the different species 

of AGM are named SIVagm.ver (Vervet monkey), SIVagm.gri (Grivet monkey), SIVagm.sab 

(Green monkey), SIVagm.tan (Tantalus monkey). Table 1 lists the different African 

nonhuman primates infected with SIV. 

These natural hosts for SIV represent an extremely large reservoir of lentiviruses 

potentially infecting other species. Phylogenetic analyses revealed that there have been 

cross-species transmissions of divergent viral strains since the beginning of the evolution 

of primate lentiviruses (Courgnaud et al., 2003; Hirsch, Dapolito, Goeken, & Campbell, 

1995; P M Sharp & B H Hahn, 2010). For instance, HIV-2 emerged from the west African 

natural host sooty mangabey (Cercocebus atys) in at least eight cross-species events into 

the human population (Wertheim & Worobey, 2009), while the origins of HIV-1 have 

been more controversial.  Four HIV-1 lineages originating in chimpanzees have been 

independently transmitted across species to infect humans, though one or two may have 

come via gorillas (P M Sharp & B H Hahn, 2010; Takehisa & Miura, 2010).  Most HIV-1 

isolates resemble viruses found in a chimpanzee subspecies (Pan troglodytes troglodytes) 

native to areas in and around Cameroon, Gabon and Equatorial Guinea, including the 

areas around Kinshasa (Gao et al., 1999; P M Sharp & B H Hahn, 2010).  HIV-1 group M, 

responsible for a suggested 98% of the global epidemic, as well as rare groups N and O, 

are endemic in the aforementioned areas. Hunting chimpanzees for food, which is 

thought to be the method of cross-species transmission is also common in this central 

African region (Gao et al., 1999). In addition, the SIVs that have been isolated from Asian 

macaques, the most commonly used primate model of HIV infection, appear to have 

been transmitted from captive sooty mangabeys (reviewed in I. Pandrea, Sodora, 

Silvestri, & Apetrei, 2008).  
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Genus Species/subspecies Virus 

African green 

monkeys 

(Chlorocebus) 

Vervet monkey (C. pygerythrus) 

Grivet monkey (C. aethiops) 

Green monkey (C. sabaeus) 

Tantalus monkey (C. tantalus) 

SIVagm.ver 

SIVagm.gri 

SIVagm.sab 

SIVagm.tan 

Black and white 

colobus 

(Colobus) 

Manted guereza (C. guereza) 

Western red colobus (Piliocolobus 
badius) 

Olive colobus (Procolobus verus) 

SIVcol 

SIVwrc 

SIVolc 

Chimpanzee 

(Pan) 

Western chimpanzee (P. troglodytes 

troglodytes) 

Eastern chimpanzee (P. troglodytes 

schweinfirthii) 

SIVcpz.ptt 

SIVcpz.pts 

Guenons 

(Cercopithecus) 

Sykes’ monkey (C. mitis) 

L’Hoest monkey (C. lhoesti) 

Sun-tailed monkey (C. solatus) 

De Brazza monkey (C. neglectus) 

Mona (C. mona) 

Mustached monkey (C. cephus) 

SIVsyk 

SIVlhoest 

SIVsun 

SIVdeb 

SIVmon 

SIVmus 

Lophocebus Black mangabey (Lophocebus aterrimus) SIVbkm 

Mandrills (Mandrillus) 
Mandrill (M. sphinx) 

Drill (M. leucophaeus) 

SIVmnd/SIVmnd2 

SIVdrl 

Talapoins 

(Miopithecus) 
Angolan talapoin (M. talapoin) SIVtal 

White-eyelid 

mangabeys 

(Cercocebus) 

Sooty mangabey (C. atys) 

Red-capped mangabey (C. torquatus) 

SIVsmm 

SIVrcm 

Table 1. Natural SIV hosts (reviewed on (VandeWoude & Apetrei, 2006)) 

Most of the naturally occurring SIVs do not cause disease in their natural hosts (Paiardini, et 
al., 2009); however, they can be highly pathogenic when replicating in nonnatural hosts, 
such as rhesus macaques and humans.  Wild chimpanzee studies of SIV prevalence and 
pathogenicity, made possible by testing stool samples, have recently demonstrated that SIV 
positive chimpanzees die at a faster rate than their uninfected counterparts –a 9.8-15.6-fold 
increased death hazard) (Keele et al., 2009). While searching for the age and origins of the 
chimpanzee SIV, a major breakthrough came when it was noticed that the 5’ region of the 
chimpanzee SIV genome closely matches that found in red-capped mangabeys (Cercocebus 
torquatus), but the 3’ end closely resembles SIVs found in greater spot-nosed (Cercopithecus 
nictitans), mustached (Cercopithecus cephus) and mona monkeys (Cercopithecus mona).  Based 
on these findings, SIVcpz is thought to be a recombination of viruses ancestral to those found 
in red-capped mangabeys, mona, spot-nosed and mustached monkeys (Paul M Sharp, 
Shaw, & Beatrice H Hahn, 2005).  The data suggest that chimpanzees have not evolved 
along with their own SIV for very long, and may represent a necessary evolutionary stage 
for the virus to enable cross-species transmission into humans. In a recent study, Worobey et 
al. established that SIV is at least 32,000 years old, based on Bioko Island geography and SIV 
relatedness of the various African nonhuman primates on the island.  The authors conclude 
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that humans may have had previous encounters with this virus over time, and that natural 
hosts that show low pathogenicity to SIV have arisen likely as “a consequence of long-term 
host-virus coevolution” (P M Sharp & B H Hahn, 2010; Worobey et al., 2010) . 
As above mentioned, and in obvious contrast with HIV infection in humans, which almost 
invariably leads to AIDS if left untreated, SIV infection in natural African NHP hosts is 
typically non-progressive.  The infected animals live an apparently normal lifespan, without 
experiencing any signs of illness whether in the wild or captivity (Paiardini ann rev med). 
The fact that HIV causes a deadly disease in humans while its simian counterparts are 
virtually non-pathogenic in their natural hosts remains one of the fundamental mysteries of 
modern medicine, and it is widely recognized that the elucidation of the exact mechanisms 
allowing natural SIV hosts to avoid disease progression may prove critical in terms of HIV 
pathogenesis, therapy, and vaccines. Over the past few years, comparative studies in natural 
and nonnatural hosts of lentiviral infections have shed light on a number of critical 
distinguishing features.  

2. Immunology and virology of HIV and SIV infections  

2.1 Viral loads  
2.1.1 Nonnatural hosts for HIV and SIV infections 
As previously noted, HIV and SIV infections in humans and Asian macaques were 
generated from cross-species transmissions of viruses that naturally infect nonhuman 
primates in Africa. These primate lentiviruses replicate very efficiently in vivo, with the vast 
majority of HIV-infected humans and SIV-infected Asian macaques showing approximately 
108 virions per milliliter of plasma during the acute phase of infection (Picker, 2006) (figure 
1). Tracking SIV-infected macaques has been and continues to be indispensible for our 
understanding of virus kinetics at all stages of infection and in key tissues (i.e. gut and 
lymph node).  Information obtained early in the infection process when virus replication 
begins  and the adaptive immune response is underway, is vital to our ability to rationally 
design effective treatment and preventative strategies. 
As the infection advances into the chronic phase, viral load in plasma declines and 
stabilizes to its “set point” (figure 1). This stage is reached once the immune system 
develops antibodies in an attempt to fight the virus. The behavior of the virus at set point 
is characterized by three major factors: (i) viral load remains relatively stable for several 
years; (ii) individuals who have a higher set point level have faster progression to AIDS; 
and (iii) shortly before the development of clinical AIDS, viral load increases. Despite 
declining levels of viral replication from peak viremia to set point, other factors persist, 
such as generalized immune activation, that play important roles in damaging a 
progressively dysfunctional immune system. 

2.1.2 Natural hosts for SIV infections 
Worth noting is the point that both in the acute and chronic phases of infection, the levels of 
plasma viremia are similar in HIV-infected humans and SIV-infected natural hosts, such as 
sooty mangabeys and African green monkeys (figure 1) (Picker, 2006) . The implication of 
the data is clear and extremely important: the presence of a cytophatic virus that replicates 
at high levels is not sufficient, by itself, to induce AIDS. In other words, additional factors 
are required for disease progression in HIV-infected humans and SIV-infected rhesus 
macaques. 
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Fig. 1. Viral load in natural and nonnatural host species.   

Natural host species (sooty mangabeys −−−, African green monkeys −−−) and nonnatural 

host species (humans −−−, rhesus macaques −−−) have similar levels of viremia in the acute 
and chronic phase of infection. Originally published in Blood Online. Brenchley JM & 
Paiardini M. Immunodeficiency lentiviral infections in natural and nonnatural hosts. Blood. 
Prepublished April 19, 2011; DOI:10.1182/blood-2010-12-325936. 

2.2 CD4 T cell homeostasis 
2.2.1 Nonnatural hosts for HIV and SIV infections 
The depletion of CD4 T cells is the immunological hallmark of progressive HIV infection.  
The loss of circulating CD4 T cell numbers at levels below 200 cells/ml of blood 
coincides with onset of opportunistic infections. As such, a better understanding of the 
dynamics of CD4 T cell depletion is essential when studying the pathogenesis of HIV 
infection. Depletion of CD4 T cells from the peripheral blood is generally quite slow, 

with HIV-infected humans losing approximately 40 CD4 T cells per l of blood per year 
during the chronic phase of infection (Moore, Keruly, Richman, Creagh-Kirk, & 
Chaisson, 1992).  
The study of SIV-infected macaques has provided important information on the dynamics of 
CD4 T cell depletion, particularly in the early phase of infection and in anatomical locations 
difficult to study in HIV-infected humans. In particular, a series of influential studies have 
elucidated the early consequences of pathogenic HIV and SIV infections at the level of 
mucosal tissues, showing that the depletion of CD4 T cells is more rapid and severe at this 
site than in the peripheral blood or secondary lymphoid organs (figure 2) (Brenchley, 
Schacker, et al., 2004a; Douek, Mario Roederer, & Koup, 2009; Guadalupe et al., 2003; Haase, 
2005; Mehandru et al., 2004; T Schneider et al., 1995; Veazey et al., 1998). Other observations 
underpin the reasons why the mucosal tissues undergo such stress: (i) the large majority of 
CD4 T cells located in the effector mucosal sites show a memory, activated, CCR5+ 
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phenotype, (ii) the majority of newly transmitted HIV and SIV strains are CCR5-tropic, and 
(iii) primate lentiviruses preferentially infect activated CD4 T cells (Z. Zhang et al., 1999; 
Brenchley, Hill, et al., 2004b; Brenchley, Silvestri, & Douek, 2010; Veazey et al., 2000; Y .  
Zhang et al., 2000). As such, a large fraction of mucosal-resident CD4 T cells represent a 
highly susceptible target for virus replication, especially at a time when no antiviral 
adaptive immune response has yet been generated. Using the macaque SIV model, it was 
demonstrated that mucosal memory CD4+CCR5+ T cells are the earliest targets of the virus 
regardless of the route of infection (Veazey et al., 1998), and the majority (70-95%) of CD4 T 
cells in the jejunum, ileum, and colon are depleted in less than three weeks post infection  
(Li et al., 2005; Mattapallil et al., 2005). Due to the large surface area of the gastrointestinal 
(GI) tract, this severe loss of mucosal CD4 T cells during the acute phase of infection likely 
translates to depletion of most CD4 T cells within the body.  
While there is a general consensus on the dramatic loss of mucosal CD4 T cells, the exact 

mechanisms accounting for this depletion are not completely clear, with evidence pointing 

in different directions.  Direct virus-mediated killing of infected CD4 T cells is responsible 

for the earliest (within days of infection) loss of CD4 T cells (Mattapallil et al., 2005) and 

CD95-mediated activation induced cell death of uninfected bystander CD4 T cells (Li et al., 

2005) accounts for the subsequent depletion (within weeks). Of note, recent studies 

comparing multiple GI sites have shown anatomic-specific differences in the extent of CD4 

T cell loss in chronically SIV-infected rhesus macaques, with CD4 T cell depletion being 

more severe in the small intestine compared to the large intestine (L. D. Harris, Klatt, et al., 

2010a). Due to the complexity of performing longitudinal mucosal collections and sampling 

multiple anatomic sites, similar comparative analysis has not, systematically, been 

performed in humans.  Therefore it is debatable whether this phenomenon extends to HIV-

infected individuals. 

Based on these findings, a new model of AIDS pathogenesis has been proposed. That is to say, 

the early and complex dysfunction of the mucosal immune system induces a significant 

impairment of mucosal barrier integrity resulting in a series of pathogenic sequelae that 

become mostly apparent during chronic infection. The best characterized consequences of 

damage to the mucosal barrier are the translocation of microbial products from the intestinal 

lumen into systemic circulation, and the establishment of high levels of chronic immune 

activation. From this relatively new point of view, the depletion of CD4 T cells from mucosal 

tissues during acute HIV or SIV infection is a key determinant of disease progression [1, 49-52].  

2.2.2 Natural hosts for SIV infection  
One of the most peculiar features of natural hosts of SIV infection is their ability to preserve 

healthy levels of peripheral CD4 T cells, despite levels of plasma viremia similar or even 

higher than those described in HIV-infected individuals (Chakrabarti et al., 2000; Rey-Cuillé 

et al., 1998; Silvestri et al., 2003).  For instance, approximately 90% of SIV-infected sooty 

mangabeys maintain CD4 T cell counts comparable to those observed in uninfected animals 

(Sumpter et al., 2007). This is a clear difference compared to the progressive depletion of 

circulating CD4 T cells that characterize pathogenic HIV and SIV infections in humans and 

rhesus macaques (figure 2).  

Intriguingly, two recent studies aimed at investigating the kinetics of mucosal CD4 T cells 
during SIV infection of sooty mangabeys and African green monkeys (Gordon et al., 2007; I. 
V. Pandrea et al., 2007b) demonstrated that just like HIV-infected humans and SIV-infected 
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rhesus macaques, SIV-infected sooty mangabeys manifest a rapid and severe depletion of 
mucosal CD4 T cells (figure 2). In the first study, Gordon et al. showed that memory CD4 T 
cells are rapidly and severely depleted from the mucosal sites (but not from peripheral 
blood or lymph nodes) of SIV infected sooty mangabeys, with kinetics remarkably similar to 
those observed during pathogenic SIVmac infection of macaques (Gordon et al., 2007). In the 
second study, Pandrea et al. observed a similar level of mucosal CD4 T cell depletion in 
African green monkeys compared to rhesus macaques during the acute phase of SIV 
infection (I. V. Pandrea et al., 2007b). Notably, the early loss of mucosal CD4 T cells does not 
progress further after reaching a stable plateau in sooty mangabeys and is followed by a 
partial recovery of these cells in African green monkeys—trends that contrast with that 
described in pathogenic HIV and SIV infections in humans and rhesus macaques where 
mucosal CD4 T cell depletion becomes increasingly more severe as disease progresses to 
AIDS. 
Intriguingly, despite levels of CD4 T cells in the gut comparable to those described in HIV-

infected humans who progress to AIDS, sooty mangabeys and African green monkeys 

maintain normal mucosal immune function, as indicated by the maintenance of an intact 

mucosal barrier, the complete absence of any increased susceptibility to infections, and the 

lack of microbial translocation (Brenchley, Price, Schacker, Asher, et al., 2006a; Estes et al., 

2010; Gordon et al., 2007; I. V. Pandrea et al., 2007b).  These findings raise an important 

question of how SIV-infected natural hosts maintain mucosal immunity and avoid 

progression to AIDS despite the loss of mucosal CD4 T cells. One might hypothesize that in 

sooty mangabeys, preservation of CD4 T cell homeostasis in the peripheral blood 

compensates for the loss of mucosal CD4 T cells, and is sufficient to maintain a functional 

immune system. This hypothesis, however, is not consistent with the observation that a 

fraction of naturally and experimentally infected sooty mangabeys experience a variable but 

significant (with animals showing <100 cells/ul blood) loss of CD4 T cell in blood and 

tissues, while still remaining healthy and AIDS-free (Milush et al., 2007; Mir, Gasper, 

Sundaravaradan, & Sodora, 2011; Sumpter et al., 2007; Taaffe et al., 2010). The evidence 

indicates that even a generalized depletion of CD4 T cells, per se, is not sufficient to induce 

progression to AIDS in natural hosts for SIV.  This leaves unanswered the question of how 

SIV-infected sooty mangabeys can afford to lose CD4 T cells but maintain mucosal 

immunity and avoid progression to AIDS.  

To answer this question, several, non-mutually exclusive mechanisms have been suggested 

in the past few years. One possibility is that the lack of other pathogenic factors, in 

particular chronic immune activation, protects the CD4 T cell depleted mucosa of sooty 

mangabeys (Mirko Paiardini et al., 2009b). An alternative possibility is that the immune 

system of natural hosts evolved to be less dependent on CD4 T cells, with other cell types 

carrying on the CD4 T cell helper functions. In particular, two recently published studies of 

sooty mangabeys and African green monkeys showed the presence of a significant fraction 

of that despite lacking CD4 expression, indeed act as CD4 T cells; this allows the immune 

system to maintain “classical” helper functions that otherwise would be lost (Milush et al., 

2011, Beaumier et al., 2009). A third possibility is that despite being quantitatively similar, 

the depletion of CD4 T cells is qualitatively different in pathogenic and nonpathogenic 

lentiviral infections. This last possibility implies that natural hosts for SIV are able to 

preserve certain critical CD4 T cell subsets, in the context of generalized CD4 T cell 

depletion, sufficient for maintaining a functional immune system. 
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Two of these mechanisms, i.e. the lack of immune activation and the preservation of the 
homeostasis of selective CD4 T cell subsets, are described in more details in the next sections. 
 

 

Fig. 2. CD4 T cell homeostasis in natural and nonnatural hosts.  

In both pathogenic (humans −−−, rhesus macaques −−−) and nonpathogenic  

(sooty mangabeys −−− and African green monkeys −−−) HIV/SIV infection, CD4 T cells are 
rapidly lost in the mucosal associated lymphoid tissue (MALT, dotted lines). In contrast to 
pathogenic infection, CD4 T cells are generally preserved in the peripheral blood (PB, solid 
lines) of natural host species. Originally published in Blood Online. Brenchley JM & Paiardini 
M. Immunodeficiency lentiviral infections in natural and nonnatural hosts. Blood. 
Prepublished April 19, 2011; DOI:10.1182/blood-2010-12-325936. 

3. Immune activation 

3.1 Immune activation markers and their role as predictors of disease progression 
The establishment of a state of chronic, generalized immune activation is a characteristic 
feature of pathogenic HIV infection in humans and SIV infection in macaques (Douek D 
Ann REv Med 2009; Sodora DL AIDS 2009). A large number of scientific evidence clearly 
shows that HIV infection is associated with high frequencies of numerous immune cell 
types, including CD4 and CD8 T cells, B cells, NK cells, and monocytes, that express 
markers of activation, proliferation, and apoptosis (reviewed in Sodora et al., 2008).  
The strong association between immune activation and AIDS pathogenesis is well 
documented. A large 2006 study that took place over 20 years probing 2,801 treatment naïve 
HIV-1 infected patients concluded that only a small percent of CD4 loss variability could be 
attributed to HIV-1 RNA plasma viral loads, suggesting other factors, mainly immune 
activation, were likely responsible for CD4 T cell decline (Rodríguez et al., 2006). CD4 T cell 
recovery during antiretroviral treatment is mitigated when there are higher frequencies of 
CD4 and CD8 CD38+HLA-DR+ T cells (Hunt et al., 2003). Naïve CD8 T cells defined by 
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CD45RA and CD62L expression are lost in parallel with CD4 T cells, regardless of the stage 
of disease progression and despite rises in total numbers of CD8 T cells (M Roederer et al., 
1995). Low levels of CD69, an early marker of activation, and increased T regulatory cells 
have been associated with HIV-resistant individuals (Card et al., 2009), along with low 
levels of HLA-DR+CD38+ CD4 T cells and Ki-67+ CD4 and CD8 T cells (Koning et al., 2005). 
Upon stimulation, activation markers CD80, CD86 and CD70 are increased in HIV infected 
patients (Wolthers et al., 1996).  Other soluble activation markers have also been found in 
serum and plasma to be increased in HIV infected patients including beta2-microglobulin 
(Grieco et al., 1984), IL-2 receptor (Sethi & Näher, 1986; Pizzolo et al., 1987), tumor necrosis 
factor (Reddy, Sorrell, Lange, & Grieco, 1988) tumor necrosis factor receptor II (Fahey et al., 
1998) and others.  
A recurrent trend in research focusing on immune activation is the consistent importance of 

CD38 as a marker of disease prognosis.  CD38, otherwise known as cyclic ADP ribose 

hydrolase, is an ectoenzyme transmembrane glycoprotein that correlates with other cell 

activation markers and is associated with enhanced cell to cell adhesion, cytokine 

production and T-cell activation (Deeks et al., 2004). According to a Giorgi et al. study 

referenced over 330 times (ISI Web of KnowledgeSM), CD4 and CD8 T cell expression of 

CD38 is increased in clinically defined AIDS patients who survived less than 6 months 

versus those who survived greater than 18 months (J V Giorgi et al., 1999; Sandler et al., 

2011). While the level of HIV RNA is a good predictor of disease progression early in 

infection, and CD4 T cell count is as good if not better later in infection, CD38 levels on CD8 

T cells is a good early and late predictor (Janis V Giorgi et al., 2002). Activated 

CD8+CD38+CD45RO+ T cells predict CD4 T cell decline (Bofill et al., 1996), though 

CD8+HLA-DR+ cannot (J V Giorgi et al., 1993).   An activation set-point measured by CD38 

expression on CD4 and especially CD8 T cells arises early in infection and is relatively stable 

and able to predict subsequent CD4 T cell decline even without considering viral load 

(Deeks et al., 2004). Also, increased HLADR+CD38+ T cells in elite controllers with low 

plasma virus loads is associated with decreased CD4 counts (Hunt et al., 2008), in tune with 

the idea that T cell activation promotes HIV disease progression (Fahey et al., 1998).  

Soluble markers of immune activation, that are more easily measurable than cellular 

activation, have also been shown to have prognostic value and predict HIV disease 

progression with comparable efficiency to CD4 counts and viral load measurements (Liu et 

al., 1997). In particular, neopterin, produced by macrophages upon IFNg stimulation 

(Melmed, Taylor, Detels, Bozorgmehri, & Fahey, 1989), beta2-microglobulin for general 

lymphoid activation (Chitra, Bakthavatsalam, & Palvannan, 2011; Fahey et al., 1990), and 

soluble IL-2 receptor (Sethi & Näher, 1986) have all been shown to be elevated and 

predictive of disease progression to varying degrees (Fahey et al., 1998). Increased soluble 

CD14 levels, a marker of monocyte activation that also correlated with IL-6, C-reactive 

protein, serum amyloid A and D-dimer, independently predicts mortality in HIV patients 

(Sandler et al., 2011).  

In summary, the HIV-associated immune activation (i) is characterized by high frequencies 
of numerous immune cell types expressing markers of activation, proliferation, and 
apoptosis; (ii) predicts the tempo of progression to AIDS independently from, and more 
accurately than viral load; (iii) strongly correlates with the efficacy of antiretroviral therapy 
(ART) in reconstituting the immune system of HIV-infected individuals. Although the 
benefits of being able to predict or modify the course of disease during acute HIV infection 
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would likely be substantial, the value of immune activation biomarkers has largely been 
detected during chronic HIV infection due to the obvious constraints of human studies. 

3.2 Causes and consequence of HIV-associated chronic immune activation 
The causes of the chronic immune activation and subsequent immunopathogenesis in HIV 

infected patients is unsettled. Whether or not immunopathogenesis is mainly caused by the 

virus or the immune response to the virus has been the object of a long scientific debate.  

While some have focused on the virus and its direct cytophathicity by claiming “it’s the 

virus stupid” (Cohen, 1993), others counterclaimed, “it’s the immune system, stupid” (STEP 

perspective, 1999; Smith, 2006). Further studies in humans, natural hosts of SIV, rhesus 

macaque models of progressive infection and even mice models of immune activation have 

helped to clarify that the cause of HIV pathogenesis is multifactorial, with both viral and 

host factors contributing to progression to AIDS. Moreover, many arms of the immune 

system aside from infected CD4 T cells are dysregulated.  

A particularly salient example of how immune activation alone damages the immune 

system comes from a transgenic mouse model of chronic immune activation triggered by 

CD27-CD70 costimulation.  The mice showed uncanny familiarity with HIV disease without 

a virus present, with constant costimulation and TCR antigen stimulation leading to thymic 

involution, T cell turnover, loss of naïve T cell populations, and progressive inability of T 

cells to respond ex vivo upon stimulation (Tesselaar et al., 2003). 

Possible explanations for HIV-associated chronic immune activation is a long list: gut 

damage and microbial translocation (Brenchley, Price, & Douek, 2006b), loss of T helper 17 

(Th17) cells (Brenchley et al., 2008),  loss of regulatory T cells (Hunt et al., 2011, Card et al., 

2009), expansion and exhaustion of HIV-specific T cells (Khaitan & Unutmaz, 2011) 

decreased lymphopoiesis and increased depletion of central memory CD4 T cells (TCM), both 

resulting in increases in homeostatic proliferation (Brenchley et al., 2010; Okoye et al., 2007; 

M Paiardini et al., 2009a; Picker et al., 2004; Sauce et al., 2011) and latent or newly acquired 

infections due to general immunodeficiency (Ford, Puronen, & Sereti, 2009).  

In particular, special emphasis has been recently placed on the role played by the complex 

dysfunction of the mucosal immune system typical of pathogenic HIV and SIV infections in 

humans and rhesus macaques.  The HIV-associated mucosal immune dysfunction is 

characterized by the loss of integrity of the mucosal barrier and the translocation of 

microbial products from the intestinal lumen into systemic circulation. Alexander and 

collaborators defined microbial translocation as “passage of both viable and nonviable 

microbes and microbial products, such as endotoxin across the intestinal barrier.” They 

show that microbial translocation of microbes and microbial products occurred because of 

alterations in mucosal balance (Alexander et al., 1990).  

Numerous evidences demonstrated the translocation of bacteria and bacterial products into 
the bloodstream in pathogenic HIV and SIV infections. Lipopolysacharides (LPS), which is 
excreted from gram-negative bacteria and act as an endotoxin, is one of the bacterial 
products that is translocated into the bloodstream and can therefore be used as an indicator 
of microbial translocation. Circulating LPS levels were increased in chronically HIV-infected 
individuals and SIV-infected rhesus macaques during the chronic phase of the disease, and 
LPS levels were associated with increased levels of soluble CD14, a marker of monocyte 
response to LPS (Brenchley, Price, Schacker, Asher, et al., 2006a). Of note, a recent case-
control study demonstrated that soluble CD14 is an independent predictor of mortality in 
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HIV infection, with individuals falling in the  highest quartile of sCD14 levels having a 6-
fold higher risk of death than those in the lowest quartile, even after adjusting for 
inflammatory markers, CD4 T cell count, and HIV RNA level (Sandler et al., 2011). 
Moreover, another study demonstrated that microbial translocation was detected by the 
presence of 16S ribosomal DNA in 95% of untreated HIV-infected patients observed (Jiang 
et al., 2009). Interestingly, plasma LPS levels were found to be higher with drug abuse, or co-
infection with hepatitis-c virus (HCV) (Ancuta et al., 2008). 
Due to the immediacy of these events, and the fact that translocating products are bioactive 
in vivo, the gut breakdown and associated microbial translocation cascade has been thought 
to stoke the fire of, or at least contribute to, the establishment of high levels of innate and 
adaptive immune activation (Brenchley, Price, & Douek, 2006b; Douek et al., 2009).  
Evidence supporting this model comes from the fact that plasma levels of LPS are 
significantly increased, and correlate with the level of systemic immune activation in 
chronically HIV infected individuals and SIV infected rhesus macaques. Even uninfected 
CD4 T cells in the gut dive to extremely low numbers after just weeks of infection, as 
bacterial products rise in the blood of HIV infected patients.  In a more recent study, 
Nowroozalizadeh and collaborators found elevated levels of plasma LPS in both individuals 
infected with HIV type 1 and HIV type 2. Furthermore, they showed that the severity of 
microbial translocation correlates with CD4 T cell count and viral load independently of 
HIV type, as well as with defective innate and mitogen responsiveness (Nowroozalizadeh et 
al., 2010).  
Due to its broad impacts on several cell types of the innate and adaptive immune response, 
HIV-associated immune activation may damage the immune system in many different 
ways. Depletion of CD4 T cells in the gut and peripheral blood in the acute phase and 
beyond leads to vacancies in the T cell receptor repertoire that threatens immune resources 
normally in reserve to fight new, latent or mutating infections (Simons et al., 2008).  Certain 
CD4 T cell specificities are preferentially lost.  For instance, CD4 T cells specific for 
Mycobacterium tuberculosis (MTB) are lost quickly compared to those for CMV, likely due to 
lower expression of CCR5 ligand MIP-1b on MTB specific CD4 T cells (Geldmacher et al., 
2010). Cytokines and other soluble factors (as described in the section about activation 
markers) are at dangerously abnormal levels. Th17, an IL-17 producing CD4 T cell subset 
critical for mucosal immunity are preferentially depleted (Brenchley et al., 2008).  B cell 
dysfunction is also pronounced as HIV impacts activation states, hypergammaglobulinemia, 
exhaustion, and impaired antibody production against vaccination and infections (reviewed 
in Shen & Tomaras, 2011).  
In spite of the large number of immune abnormalities that have been described, there are 
still unanswered questions about the exact mechanisms by which this virus causes 
progressive disease, possibly because so many constituents are impacted. 

4. Depletion of Th17 cells and loss of mucosal barrier integrity 

An important mechanism that appears to link loss of mucosal barrier integrity, microbial 
translocation and the establishment of immune activation is the preferential depletion of 
Th17 cells, a recently identified CD4 T cell subset that produce IL-17 and IL-22 and play a 
critical role in antimicrobial mucosal immunity. In particular, IL-17 and IL-22 (i) induce 
epithelial cells to express cytokines (i.e., IL-6 and GM-CSF), chemokines (i.e., IL-8, CXCL1, 
CXCL10, and CCL20) and metalloproteinases critical for the recruitment, activation and 
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migration of neutrophils to areas of bacterial infection; (ii) promote the production of 
antimicrobial molecules, such as defensins; and (iii) regulate the integrity of the epithelial 
barrier by stimulating the proliferation and survival of GI enterocyte and the transcription 
of tight junction proteins (Aujla et al., 2008; Dandekar, George, & Bäumler, 2010; Guglani & 
Khader, 2010; Liang et al., 2006; Milner, Sandler, & Douek, 2010; Ouyang & Valdez, 2008; 
Romagnani, 2008; Zheng et al., 2008). Consistent with their important role in antimicrobial 
immunity, Th17 cells confer protection against several extracellular pathogens, such as 
Candida albicans, Klebsiella pneumoniae, Citrobacter rodentium, Mycobacteria tuberculosis, 
Staphylococcus aureus, Bacteroides fragilis, Escherichia coli (Huang, Na, Fidel, & 
Schwarzenberger, 2004; Khader et al., 2007; Ouyang & Valdez, 2008). Given the role of Th17 
cells in mucosal immunity, and the observed mucosal immune dysfunction associated with 
HIV infection, we and others investigated the homeostasis of Th17 during pathogenic 
lentiviral infection, showing that Th17 cells are preferentially depleted in the gastrointestinal 
tracts of HIV-infected humans and SIV-infected macaques (Brenchley et al., 2008; Cecchinato 
et al., 2008; d'Ettorre, Mirko Paiardini, Ceccarelli, Silvestri, & Vullo, 2011; Favre et al., 2009; 
Gordon et al., 2010; Raffatellu et al., 2008). Moreover, Raffatellu and colleagues showed that 
in healthy SIV-negative rhesus macaques, the gene expression profile induced by S. 
typhimurium in ileal loops is dominated by Th17 responses, including the expression of IL-
17 and IL-22; and severe depletion of mucosal Th17 cells in SIV-infected rhesus macaques 
resulted in an impaired mucosal barrier function and increased S. typhimurium 
dissemination (Raffatellu et al., 2008). Furthermore, loss of mucosal Th17 cells has been 
associated with increased systemic immune activation and disease progression in both HIV-
infected humans and SIV-infected rhesus macaques (Cecchinato et al., 2008; Gordon et al., 
2010; Hartigan-O'connor, Hirao, McCune, & Dandekar, 2011). Consistent with the model 
linking depletion of Th17 cells with compromised antimicrobial immunity, it has been 
shown that patients with dominant negative stat3 gene mutations, common in 
hyperimmunoglobulin E syndrome or the more biblical Job’s syndrome, in which CD4 T 
cells are unable to differentiate into Th17 cells, are exquisitely susceptible to bacterial 
infections (Milner et al., 2008). 
Collectively, these studies demonstrate that pathogenic HIV and SIV infections are 
associated with a preferential and sustained depletion of mucosal Th17 cells, the severity of 
which correlates with the structural and immunological maintenance of the mucosal barrier, 
the levels of immune activation, and progression to AIDS. These observations further 
elucidate the immunodeficiency of HIV disease and provide a mechanistic basis for the 
mucosal barrier breakdown that characterizes HIV infection. 

5. Immunology of natural hosts for SIV 

5.1 Absence of chronic immune activation 
A very large body of evidence clearly demonstrated that, in sharp contrast with all the known 
models of pathogenic HIV infection, nonpathogenic SIV infection of natural hosts is 
characterized by the absence of high levels of chronic immune activation, assessed as the 
fraction of cells expressing markers of activation and proliferation, in the context of continuous 
virus replication (figure 3) (Mirko Paiardini et al., 2009b; Silvestri et al., 2003; Silvestri, Mirko 
Paiardini, I. Pandrea, Lederman, & Sodora, 2007). Consistent with their lower levels of 
immune activation, infected sooty mangabeys show no increase in lymphocyte apoptosis, 
lymph node structural damage, thymic involution, or loss of naïve T cell populations—all of 

www.intechopen.com



 
HIV Without AIDS: The Immunological Secrets of Natural Hosts 

 

211 

which are normally attributed to chronic immune activation (Silvestri et al., 2003). 
Furthermore, naturally SIV-infected sooty mangabeys preserve the ability to properly regulate 
cell cycle progression when compared to SIV-infected macaques (Paiardini M JV 2006). 
 

 

Fig. 3. Immune activation in natural and nonnatural hosts.  
In contrast to pathogenic HIV/SIV infection (humans −−− , rhesus macaques −−−), 
nonpathogenic SIV infection in natural hosts (sooty mangabeys −−− and  
African green monkeys −−−) is associated with the resolution of immune activation during 
chronic infection. Originally published in Blood Online. Brenchley JM & Paiardini M. 
Immunodeficiency lentiviral infections in natural and nonnatural hosts. Blood. Prepublished 
April 19, 2011; DOI:10.1182/blood-2010-12-325936. 

Interestingly, the consistently low levels of chronic immune activation in natural hosts does 
not result from intrinsically attenuated innate immune responses, but rather from active 
immuno-regulatory mechanisms that allow these animals to tune-down the immune response 
during the transition from the acute to the chronic phase of infection (figure 3). The initial 
studies of natural SIV infections were performed during chronic infection and were not able to 
inform early events. Indeed, more recent studies designed to characterize the acute phase of 
SIV infection consistently show that, as described for progressive infection, nonprogressive 
SIV infection is also associated with an early increase in T cell proliferation and activation 
(Gordon et al., 2007; Kornfeld et al., 2005; I. V. Pandrea et al., 2007b; Silvestri et al., 2005). This 
phenotype is very common among several natural hosts, even those less characterized than 
sooty mangabeys and African green monkeys. For instance, transient levels of immune 
activation have been described in Mandrills, in which CD4 and CD8 HLA-DR+ cells at first 
increase but then return to normal levels by day 60 post-infection (Onanga et al., 2006), as well 
as in Caribbean African green monkeys, which show a rapid increase in CD8 HLA-DR+ T cells 
and then a rapid return to baseline 2-3 weeks post-infection, while having no changes in CD4 
HLA-DR+ T cell frequencies (Kornfeld et al., 2005; I. Pandrea et al., 2006). Furthermore, the 
rapid resolution of acute immune activation has also been shown at a genetic level in sooty 
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mangabeys and African green monkeys from microarray data of early infection revealing that 
interferon stimulated genes are upregulated early in both natural and nonnatural hosts. Only 
natural hosts reduce their expression in blood and lymph nodes to near pre-infection levels in 
the acute to chronic phase transition (4-6 weeks), while macaques fail to resolve their early 
interferon stimulated gene response (Bosinger et al., 2009; Jacquelin et al., 2009; Lederer et al., 
2009). Finally, immunohistochemical and immunofluorescent analyses recently demonstrated 

a robust IFN- response in the lymph nodes of sooty mangabeys, African green monkeys, and 
rhesus macaques in the acute phase of SIV infection, which is later resolved only in mangabeys 
and African green monkeys (L. D. Harris, Tabb, et al., 2010b). 
The finding that naturally SIV-infected sooty mangabeys do not experience elevated levels 
of chronic immune activation in the context of high levels of viral replication further 
confirms the association between chronic immune activation and disease progression, and 
highlights the clinical importance of defining the mechanisms accounting for the 
establishment of high levels of chronic activation, or lack thereof, in pathogenic and 
nonpathogenic lentiviral infections. 

5.2 Preservation of Th17 cells and mucosal integrity  
Homeostasis of mucosal Th17 cells is a feature that distinguishes pathogenic HIV/SIV 
infections of humans and rhesus macaques, where these cells are preferentially depleted, from 
nonprogressive SIV infection of sooty mangabeys and African green monkeys, wherein Th17 
cells are preserved at healthy frequencies (Brenchley et al., 2008; Cecchinato et al., 2008; Favre 
et al., 2009; Hartigan-O'connor et al., 2011; Mirko Paiardini, 2010; Raffatellu et al., 2008). 
As previously described, studies in natural hosts demonstrated that a significant depletion 

of mucosal CD4 T cells alone is not sufficient to cause AIDS (Gordon et al., 2007; I. V. 

Pandrea et al., 2007b), suggesting that preservation of a specific CD4 T cell subset may allow 

the maintenance of mucosal integrity in the context of generalized CD4 T cell depletion.  An 

increasing number of experimental evidence suggests that Th17 cells represent this specific 

subset. Indeed, Th17 cells are depleted in all the known models of pathogenic HIV/SIV 

infection, and preserved in all the known models of nonprogressive HIV/SIV infection 

including natural hosts for SIV, human long-term non-progressors and rhesus macaque elite 

controllers (Brenchley et al., 2008; Cecchinato et al., 2008; Favre et al., 2009; Mirko Paiardini, 

2010).  Specifically, we showed that whereas human Th17 cells are preferentially diminished 

compared to IFNg secreting Th1 cells in the gastrointestinal tracts of HIV-infected people, 

sooty mangabey Th17 cells are maintained in blood and the gastrointestinal tract (Brenchley 

et al., 2008).  Likewise, while pigtailed macaques lose most IL-17 producing CD4 T cells by 

day 10 post-infection, African green monkeys show no decline (Favre et al., 2009). 

Intriguingly, in nonprogressive infections of sooty mangabeys and African green monkeys 

preservation of healthy frequencies of Th17 cells is associated with maintenance of mucosal 

immunity, absence of microbial translocation and low levels of chronic immune activation 

(figure 4) (Brenchley, Price, Schacker, Asher, et al., 2006a). Finally, Th17 cells were measured 

in human long-term non-progressors (n=14) and were found to be at levels equivalent to 

uninfected controls and those successfully (i.e., viral loads <50 copies/mL) treated with 

antiretroviral therapy in the colon and peripheral blood (Ciccone et al., 2011). 

To understand how natural hosts preserve Th17 cells and mucosal immunity might be 
central to the development of therapeutic interventions aimed at improving mucosal 
immunity in HIV-infected individuals. While the exact cause accounting for this phenotype 
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is still unclear, several non-mutually exclusive mechanisms have been proposed, including 
the increased susceptibility to HIV/SIV infection of Th17 cells and its CD4+CCR6+ and 
CD4+CD161+ T cell precursors (Gosselin et al., 2010; Kader et al., 2009; Monteiro et al., 2011; 
Prendergast et al., 2010) and the defective generation of Th17 cells in nonnatural versus 
natural hosts. Very recent and unpublished observations suggest that loss of CD4+IL-21+ T 
cells and CD103+ dendritic cells, with reduced availability of IL-21 or retinoic acid, 
respectively, may significantly contribute to Th17 cell depletion in SIV-infected rhesus 
macaques (Cervasi B et al, CROI 2011; Klatt N et al, Keystone 2011). Consistent with their 
important role in Th17 cell homeostasis, CD4+IL-21+ T cells and CD103+ dendritic cells are 
preserved in SIV-infected SM (Cervasi B et al, CROI 2011; Klatt N et al, Keystone 2011). 
Collectively, these data indicate that by preserving the balance of IL-17 and IL-22 producing 
Th17 cells, natural hosts for SIV maintain mucosal barrier integrity and avoid the 
establishment of aberrant immune activation (figure 4). As such, the data suggest that 
differential regulation of Th17 cell homeostasis may be central in determining the 
pathogenic or nonpathogenic outcome of HIV and SIV infections in primates. 
 

 

Fig. 4. Th17 cell homeostasis and mucosal immunity in natural and nonnatural hosts. 
Mucosal Th17 cells are preferentially depleted in nonnatural hosts (humans and RM) but 
preserved at healthy frequencies in natural hosts (sooty mangabeys and African green 
monkeys) for lentiviral infections. Th17 cells regulate antimicrobial immunity, i.e. recruiting 
neutrophils, maintaining tight junction integrity and stimulating antimicrobial molecule 
production.  As such, the preservation of Th17 cells is one of the key factors limiting 
microbial translocation and chronic immune activation, thus contributing to the ability of 
natural hosts to remain AIDS-free.  Adapted from (Mirko Paiardini, 2010). 
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5.3 Preservation of bone marrow based T cell renewal  
As stated earlier, the mechanisms leading to CD4 T cell loss in HIV infection are 

multifactorial and still not completely defined.  In addition to direct viral infection and 

bystander cell death, evidence has exhibited that insufficient T cell reconstitution may play a 

key role.  Within the bone marrow, a major site of hematopoiesis and T cell proliferation, a 

suppression of function common in HIV-infected humans is associated with AIDS related 

neutropenia, thrombocytopenia and lymphopenia (Bain, 1997; Isgrò et al., 2005; Moses, 

Nelson, & Bagby, 1998; Silvestri et al., 2003). 

Our group recently aimed to address the hypothesis that the preservation of bone marrow 

based proliferation and regeneration of T cells could be an important factor in regulating 

CD4 T cell homeostasis in progressive and nonprogressive lentiviral infections. To test this 

hypothesis, we utilized carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling 

during in vitro stimulations, along with flow-cytometric intracellular measurements of the 

cell cycle marker Ki-67, to measure proliferation in sooty mangabeys and rhesus macaques; 

these assessments were performed also in the experimental setting of in vivo antibody-

mediated CD4 or CD8 lymphocyte depletion (M Paiardini et al., 2009a). We discovered that 

SIV positive rhesus macaques have diminished proliferative capacity in bone marrow CD4 

and CD8 T cells, while SIV positive SM had no decline compared to uninfected monkeys.  

Intriguingly, the rare subset of SIV-infected SM with low CD4 T cell count showed 

significantly lower levels of bone marrow proliferation when compared to SM that preserve 

the homeostasis of the CD4 T cell compartment (M Paiardini et al., 2009a).  In addition, we 

found a correlation between Ki-67+ CD4 T cells and CD4 T cell count in the bone marrow 

but not in the peripheral blood (figure 5)(M Paiardini et al., 2009a). 

 

 

Fig. 5. Bone Marrow based CD4 T cell proliferation in sooty mangabeys.  

In SIV-infected SM, blood CD4 T cell count correlates directly with the percentage of 

proliferating CD4 T cells in the bone marrow (BM, left panel) and inversely with the 

percentage of proliferating CD4 T cells in the peripheral blood (PB, right panel). This 

research was originally published in Blood. Paiardini M, Blood. 2009; 113(3), 612-621.  

© the American Society of Hematology. 

These findings suggest that the bone marrow is a major site of T cell proliferation in 

nonhuman primates, and the ability of SIV-infected sooty mangabeys to preserve the bone 

marrow based CD4 T cell proliferation is important for maintaining the homeostasis of the 

CD4 T cell compartment and avoiding progression to AIDS. 
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5.4 Lower expression of CCR5 on CD4 T cells  
Another feature distinguishing natural and nonnatural hosts for lentiviral infections is 
the expression of CCR5, the main co-receptor used by HIV and SIV in vivo, to enter CD4 
T cells. A comparative, cross sectional analysis of CCR5 expression in blood, lymph 
nodes and rectal biopsies obtained from several natural (sooty mangabeys, African green 
monkeys, and others) and nonnatural (human, rhesus macaques, and others) primate 
host species demonstrated that natural hosts for SIV infection consistently show a 
paucity of CD4 T cells expressing CCR5 (I. Pandrea et al., 2007a). This lower fraction of 
CD4 T cells expressing CCR5 was confirmed in both infected and uninfected animals, 
and in all sampled tissues, including those representing the major sites of viral 
replication (mucosa and lymph node) and CD4 T cell depletion (mucosa) during 
pathogenic HIV/SIV infection. Moreover, a five year longitudinal study of SIV-infected 
and uninfected sooty mangabeys showed stable median fractions (between 2-4%) of CD4 
T cells expressing CCR5, independent of SIV (Taaffe et al., 2010). While this observation 
is very consistent and clear, its interpretation has been difficult, since naturally SIV-
infected sooty mangabeys show levels of virus replication comparable to those of 
pathogenic infections. In an ongoing effort to better understand the pathophysiologic 
role of this decreased fraction of CCR5+ CD4 T cells in sooty mangabeys, we recently 
compared the levels and kinetics of CCR5 expression in sooty mangabey and rhesus 
macaque CD4 T cells, as well as the phenotype in their naïve, central memory, and 
effector memory subsets, following in vitro and in vivo activation. By doing this, we 
found CD4 T cells from sooty mangabeys failed to up-regulate CCR5 as do rhesus 
macaques in spite of activation and proliferation found to be equal in both species upon 
stimulation in vitro. Intriguingly, this phenomenon was more evident in CD4 T cells 
with a central-memory phenotype (TCM), and associated with a markedly reduced 
susceptibility of these cells to SIV infection. Since recent findings indicated the depletion 
of CD4 TCM cells as a critical step in the loss of CD4 T cell homeostasis and disease 
progression in SIV-infected rhesus macaques (Okoye et al., 2007; Picker et al., 2004), our 
recent data suggests that partial protection of CD4 TCM cells from SIV infection is one 
mechanism contributing to maintenance of a healthy immune system and avoidance of 
progression to AIDS in SIV-infected sooty mangabeys (Paiardini et al., 2011).  

6. How natural hosts may inform the design of novel vaccine and therapeutic 
approaches for HIV-infected humans 

The pathogenesis of HIV infection results from a complex interaction between virus and 
host. Studies aimed at characterizing the virus-host interactions in natural hosts have led to 
important findings for understanding HIV pathogenesis in humans and, even more 
important, have many implications for new therapies and vaccines, giving us the 
opportunity to stop disease progression by understanding what nature has already 
discovered over millennia (Sodora et al., 2009). Table 2, along with the section above, 
summarizes several therapeutic approaches that could attempt to mimic the critical features 
of nonpathogenic infection in sooty mangabeys, which could be beneficial if included in the 
clinical management of HIV-infected humans.  
1. Targeting chronic immune activation to slow disease progression. Considering that 

chronic immune activation is a key player in HIV pathogenesis, being associated 

with CD4 T cell depletion and the overall functionality of the immune system, and it 
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is absent in nonprogressive SIV infection of natural hosts, there is a strong rationale 

for introducing immune suppressive molecules in the treatment of HIV-infected 

individuals. In this context, it is important to note that in HIV-infected humans 

chronic immune activation is not fully resolved even in the setting of successful 

antiretroviral therapy (ART), and that this residual immune activation is considered 

the major cause for the increased “non-AIDS” morbidity and mortality observed in 

individuals undergoing long-term ART (Grund, Neuhaus, Phillips, INSIGHT 

SMART Study Group, 2009). Since the exact mechanisms and signaling pathways 

responsible for chronic immune activation in HIV-infected humans are still unclear, 

approaches have mostly focused on using drugs with a generic immune suppressive 

ability, such as Cyclosporin, Rapamycin, and Hydroxychloroquine, already in use 

for individuals with autoimmune disorders or recipients of transplants. 

Hydroxychloroquine, an antimalarial drug also used to reduce inflammation in 

rheumatoid arthritis and lupus, has already been shown to reduce the expression of 

the immune activation markers CD38, Ki-67 and HLA-DR on CD8 T-cells and to 

decrease viral loads in HIV infected patients (Murray et al., 2010, Sperber et al., 

1995).   

2. Preserving Th17 cell homeostasis by increasing their differentiation and survival.  IL-21, a 

multifunctional cytokine that initiates the induction of Th17 cells (Korn et al., 2007; 

Nurieva et al., 2007; Yang et al., 2008) could be used to test the hypothesis that 

increased levels of Th17 cells will sure up gut permeability, thus preventing 

continuous microbial translocation and immune activation. The rationale for using 

this cytokine comes from several findings, including the following: (i) plasma levels 

of IL-21 are significantly decreased in HIV infected patients (Iannello et al., 2008); (ii) 

CD8 T cells producing IL-21 are increased in elite controllers, (Williams et al. 2011); 

(iii) circulating CD4 T cells expressing IL-21 are severely lost in pathogenic SIV 

infection of rhesus macaques, with the extent of this depletion being associated with 

that of Th17 cells (Cervasi B, CROI 2011),; (iv) CD4 T cells producing IL-21 are 

preserved at healthy frequencies in SIV-infected sooty mangabeys (Cervasi B, CROI 

2011) ; (v) finally, IL-21 is already in clinical trials for the use against renal cell 

carcinoma and melanoma (Hashmi & Van Veldhuizen, 2010). 

3. Targeting of CCR5 expression.  Specifically targeting expression of CCR5 and other co-

receptors for HIV may be critical in preventing AIDS. A unique bone marrow 

transplantation demonstrated the attainability of an HIV cure, despite the unusual 

and unrepeatable events that led to that cure: harsh chemotherapy, total body 

irradiation and an unlikely hematopoietic stem cell transplantation match of a 

homozygous CCR5Δ32 donor (Hütter, Nowak, Mossner, Ganepola, et al., 2009a).  

This case report of one patient has justifiably led to excitement about future therapies 

using CCR5Δ32 donors as well as other entry blocking strategies in HIV infection 

(Hütter, Thomas Schneider, & Thiel, 2009b).  Other less strenuous methods to target 

CCR5 have been made possible by zinc finger nuclease-mediated gene disruption, 

maraviroc, small interfering RNA molecules, and a number of new molecular 

nanotechnologies (reviewed in Cannon & June, 2011). Data obtained in sooty 

mangabeys suggest that these treatments may be significantly enhanced upon 

targeting of CCR5 expression on CD4 TCM cells specifically. 
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Feature of HIV or SIV 
infections 

Natural hosts 
Nonnatural 

hosts 
Possible therapeutic 

intervention 

Chronic immune 
activation 

No Yes 
Immune modulators of 

activation 

Progressive loss of 
peripheral CD4 T cells 

No Yes 
CD4 T cell renewal 

strategies; IL-7 and other 
homeostatic cytokines 

Mucosal Th17 cells Preserved Lost 

Increase Th17 cell 
differentiation; IL-21 

and other Th17-driving 
factors 

Frequency of 
CD4+CCR5+ T cells 

Very low Normal CCR5 blockade 

Mucosal integrity Preserved Lost 
Sure up mucosal 

boundaries 

Table 2. Critical features distinguishing pathogenic from non nonpathogenic SIV infection in 
nonnatural and natural hosts, respectively. The last column includes general targets for 
intervention derived from studying natural hosts.  These approaches mimic critical features 
of nonprogressive lentiviral infection and could improve the clinical management of HIV-
infected humans.  

7. Final remarks 

We firmly believe that a comprehensive elucidation of how natural hosts for SIV have co-
evolved to avoid disease progression is critical for understanding the mechanisms of AIDS 
pathogenesis in HIV-infected humans. The elucidation of these mechanisms may translate 
into major advances in prevention and therapy of HIV infection and AIDS.  
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