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1. Introduction 

The conventional innate and adaptive immune systems are very effective at viral 

infections. However, for retroviral infections, there is another immune system that can 

recognize at multiple levels e.g. expression of internal host factors with antiviral activity. 

This is a component of viral recognition and subsequent restriction that has been called 

“intrinsic immunity”(Bieniasz, 2004). Intrinsic immunity can distinguish from innate and 

adaptive immunity, and it does not need to be induced by viral infections. Retrovirus 

replication has many steps in common with other retroviruses. Upon entry into the 

cytoplasm of target cells, some host factors are required for efficient retroviral replication 

cycle, and others act as restriction factors that block reverse transcription and ligation of 

viral cDNA to chromosomal DNA. Recently, several host factors have been identified 

such as the proline isomerase cyclophilin A (CypA), ApoB mRNA editing catalytic 

subunit (APOBEC) and tripartite motif protein 5 alpha (TRIM5) against retrovirus 

infection. This review will focus on how these host factors modulate retroviral activity. It 

will then present our current understanding of the mechanism that may explain zoonotic 

transmission of retroviruses. 

1.1 Fv1 and Fv4: Restriction factors that block infection by Friend-MLV in murine cells 
The most intensively studied anti-cellular gene is Friend virus susceptibility (Fv) gene in 

laboratory mice. Fv1 and Fv4 were of special interest in Fv alleles because cultured murine 

cells containing them were resistant to infection by Friend murine leukemia virus 

(MLV)(Gardner et al., 1980; Hartley et al., 1970; Pincus et al., 1971; Rasheed and Gardner, 

1983; Suzuki, 1975). Fv1-mediated restriction of MLV, for instance, is a well-studied 

representative of a class of restriction factors that act after membrane fusion, are highly 

virus-specific (Goff, 2004). Fv1 has two alleles, Fv1n and Fv1b, targeting B- and N-tropic 

MLV, respectively (Rein et al., 1976). Fv4 was shown to encode an ecotropic MLV-like env 

gene and recent report showed that Fv4 inhibits infection by exerting dominant negative 

effect on MLV Env (Takeda and Matano, 2007). Although the precise mechanism of Fv1 

restriction remains unclear, the important point is that the viral determinants for this type of 

restriction have been mapped to the capsid protein (MLV amino acid 110) and as a target of 

host factors that can modulate retroviral life cycle (Gautsch et al., 1978; Kozak and 

Chakraborti, 1996).  
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1.2 Ref1 and Lv1: Fv1-type restriction factors in human or primate cells 
A host factor that belongs to the same category of Fv1-type restriction factors is Ref1 
(restriction factor 1). Ref1 is expressed in human and other non-murine cells and imposes 
a similar restriction of Fv1 that is controlled by relationship between the same capsid 
residue (MLV CA 110) and Fv1 (Towers et al., 2000). The difference between Ref1 and Fv1 
function is that Ref1 restricts retroviral replication at a step prior to reverse transcription 
while Fv1 seems to impose a post-reverse transcription block (Goff, 2004). Another 
restriction factor, lentivirus susceptibility factor 1 (Lv1), was found to be responsible for 
restricting HIV-1 and N-tropic MLV but not rhesus macaque simian immunodeficiency 
virus (SIVmac) replication in Old World monkey cells (Besnier et al., 2002; Cowan et al., 
2002; Munk et al., 2002).  

1.3 TRIM5: Fv1-type host factor restricting HIV-1 in primate cells 

Recently, the host protein which dictates Ref1 activity was identified as an -isoform of 

rhesus macaque TRIM5 protein by the laboratory of Dr. Joseph Sodroski (Stremlau et al., 
2004). TRIM5 is a member of the tripartite motif (TRIM) family of proteins, and has RING, 
B-box 2 and coiled-coil as common and conserved domains among the family and 
B30.2(PRYSPRY) domain on its c-terminal region (Nisole et al., 2005). Subsequently, the 

human and non-human primates homologues of TRIM5 were shown to explain restriction 
activity against retroviruses, N-MLV, and equine anemia virus (Hatziioannou et al., 2004b; 
Keckesova et al., 2004; Perron et al., 2004; Si et al., 2006; Song et al., 2005; Yap et al., 2004; 

Ylinen et al., 2005). Rhesus monkey TRIM5 has strong anti-HIV-1 activity, only modest 
restriction against SIVmac, and does not block MLV infection, whereas its human 
homologue does not active against HIV-1 infection.  

TRIM5 recognizes incoming viral core, but not a monomeric capsid protein, thorough its 

B30.2(PRYSPRY) domain. B-box2 and coiled-coil domains are required for TRIM5 
multimerization, and both coiled-coil and B30.2(PRYSPRY) domains are essential for viral 

core binding (Reymond et al., 2001; Stremlau et al., 2006). TRIM5 captures HIV-1 core at a 
very early step(s) after infection, immediately after the release of core into cytoplasm. To 

restrict HIV-1 infection and to recognize viral core, TRIM5 must be oligomerized through 
its B-box 2 and coiled-coil domains. Its RING domain has E3 ubiqutin ligase activity, and 

self-ubiqutination is occurred, then TRIM5 is quickly degraded. This quick degradation of 

TRIM5 is not necessary for post-entry restriction, since replacement of TRIM5 RING 
domain with the corresponding domain of TRIM21 which has lower self-ubiqutination 

activity and longer half life than TRIM5 didn’t alter the antiviral activity. When TRIM5 
was over expressed, cytoplasmic body is formed, and the cytoplasmic body is supposed to 

be required for its antiviral activity. During TRIM5-mediated post-entry restriction, 
disassembly of viral core is induced too quickly and the accumulation of viral RT-products 
is reduced. MG132 treatment inhibits to induce quick-disassembly, but still HIV-1 infectivity 

was restricted. Two reports showed that TRIM5 could block not only viral cDNA 
accumulation but also the nuclear import of viral cDNA (Berthoux et al., 2004; Wu et al., 

2006). Thus TRIM5-mediated post-entry restriction is thought to have at least two phases: 

(i) TRIM5 induces quick-disassembly of viral core in a proteasome dependent manner and 

(ii) TRIM5 degrades HIV-1 cDNAs in a proteasome independent manner. The determinant 
of specificity and magnitude of the post-entry restriction lies on B30.2(PRYSPRY) domain. 

Recently, Pacheco et al. reported that new world monkey TRIM5 restricts foamy virus 
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infection (Pacheco et al., 2010). Another consideration is the clinical significance of TRIM5 
against acquired immunodeficiency syndrome (AIDS) in human. Moreover several reports 

showed that the efficacy of TRIM5-mediated suppression of HIV-1 replication might 
interfere with disease progression of AIDS in humans (Cagliani et al., 2010; van Manen et 

al., 2008). Thus, TRIM5-mediated restriction may occur multi step in retrovirus replication 
with the relationship between other host factor(s). 

Recently, the lab of Dr. Yasuhiro Ikeda reported that rhesus macaque TRIM5 also inhibits 
HIV-1 production by inducing the degradation of a viral precursor Gag protein (Sakuma et 
al., 2007). To restrict HIV-1 production, amino acid residues in B-box 2 and coiled-coil 
domains dictated the specificity of the restriction. In the late restriction, the accumulation of 
HIV-1 RNA was not affected but the accumulation of precursor Gag was inhibited in an 

ubiqutine-proteasome independent manner. This TRIM5-mediated late-restriction is still 

controversial (Zhang et al., 2008), yet it is presumable that TRIM5 restricts HIV-1 infection 

and production in two distinct mechanisms. Although TRIM5 restricts HIV-1 infection in 
broad range of cells, its late restriction depends on a cell line (Sakuma et al., 2007). 
Here is another notable class of the TRIM family called TRIM-Cyp isolated from new wold 
monkeys (NWM). A report from the laboratory of Dr. Jeremy Luban demonstrated that owl 
monkey has TRIM-Cyp that restricts HIV-1 infection (Sayah et al., 2004). Although TRIM-
Cyp has a cyclophilin A sequence in its C-terminal region instead of B30.2(PRYSPRY) 
domain that dictates the specificity and the magnitude of post entry restriction in OWM-

TRIM5-mediated post-entry restriction, it recognizes incoming core structure and restricts 
HIV-1 infection (Stremlau et al., 2006). Recently, TRIM-Cyp mRNA was also detected in a 
rhesus macaque cell, and over-expressed rhesus TRIM-Cyp restricts HIV-1 infection and 
production (Brennan et al., 2008; Dietrich et al., 2010; Sakuma et al., 2010; Wilson et al., 
2008). 

Not like other restriction factors, the counter part of TRIM5-mediated restrictions is not 

accessory gene product of HIV-1, and human TRIM5 has just a modest restriction activity. 

NWM cell doesn’t have TRIM5, yet even without B30.2(PRYSPRY), TRIM5-Cyp can be a 

defense against viral infection. These evidences suggest that TRIM5 could be a key 

molecule to explain the species-species barrier. And if so, TRIM5’s dual antiviral activities 
can block the viral transmission even from closer species like to human from monkeys. 

1.4 APOBEC: Enzymatic restriction factor that target retroviruses 
Replication of HIV-1 in primary CD4+ T cells, monocyte and some immortalized T cell lines 
depends on the presence of HIV-1 accessory gene product, Vif (stands for virus infectivity 
factor)(Fisher et al., 1987; Strebel et al., 1987), and it works in a host cell-specific manner. Vif 
is required for enhanced HIV-1 replication in some cell types called non-permissive cells, in 
contrast HIV-1 replication is Vif-independent in permissive cells (Akari et al., 1992; Blanc et 
al., 1993; Borman et al., 1995; Fan and Peden, 1992; Gabuzda et al., 1992; Sakai et al., 1993; 
von Schwedler et al., 1993). Recently, some cytidine deaminases were identified as a new 
class of host restriction factors that target retroviruses such as HIV-1 or SIV (Cullen, 2006; 
Harris and Liddament, 2004). APOBEC3G (Apo3G), a member of the APOBEC family of 
cytidine deaminases, is the first identified enzymatic restriction factor and the determinant 

that makes cells permissive or non-permissive. Unlike TRIM5 nor Fv1, Apo3G does not 
exert its antiviral activity by targeting the viral capsid protein, but it has to be incorporated 
into a newly synthesized virion during a production step, and then inhibits virus replication 
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by targeting single-stranded viral cDNA during an infection step. HIV-1 counteracts Apo3G 
with Vif expression. During the production of progeny virions, Vif binds to Apo3G and 
induces Apo3G’s proteosomal degradation, resulting in the decreased steady-state levels of 
human Apo3G (hApo3G) (Yu et al., 2003). 
There are several antiretroviral mechanisms of Apo3G against HIV-1 infection. First, 
Apo3G-containing virus can be resulted in a large number substitution that register as 
cytidine (C) to thymine (T) in a virus minus-strand during reverse transcription, resulting 
guanine (G) to adenine (A) mutations in a viral plus strand, known as ‘G to A 
hypermutaion’(Harris et al., 2003; Lecossier et al., 2003; Mangeat et al., 2003; Mariani et al., 
2003; Yu et al., 2004; Zhang et al., 2003). Second, Apo3G can inhibit tRNA annealing or 
tRNA processing during reverse transcription (Guo et al., 2006; Guo et al., 2007; Mbisa et al., 
2007). Third, Apo3G inhibits DNA strand transfer or integration (Li et al., 2007; Luo et al., 
2007; Mbisa et al., 2007). Although Apo3G has the most potent anti-HIV-1 activity among 
the APOBEC family of proteins, another member of the family, APOBEC3F (Apo3F) was 
shown to inhibit HIV-1 infection in the absence of Vif (Bishop et al., 2004a; Liddament et al., 
2004; Wiegand et al., 2004; Zheng et al., 2004), whereas APOBEC3B (Apo3B) can inhibit HIV-
1 infection in both the presence and absence of Vif (Bishop et al., 2004a; Doehle et al., 2005; 
Rose et al., 2005). 
Although we can imagine the broad range of antiretroviral activity of APOBEC family 
because APOBEC proteins from non-human species can also inhibit HIV-1 infection (Bishop 
et al., 2004a; Bishop et al., 2004b; Cullen, 2006; Mariani et al., 2003; Wiegand et al., 2004), the 
Vif-Apo3G interaction is thought to be species specific (Mariani et al., 2003; Simon et al., 
1998). Accordingly, hApo3G is insensitive to SIVagm Vif while african green monkey 
Apo3G (agmApo3G) is insensitive to HIV-1 Vif and the determinant of this species 
specificity depends on amino acid 128 of hApo3G and agmApo3G (Bogerd et al., 2004; 
Mangeat et al., 2004; Mariani et al., 2003; Schrofelbauer et al., 2004; Xu et al., 2004). However, 
such species specificity is not strictly controlled, for example a report from the laboratory of 
Klaus Strebel demonstrated that SIVagm Vif supported replication of SIVagm virus in the 
hApo3G-positive human A3.01 T cell line. Replication of vif-defective SIVagm in A3.01 cells 
was severely restricted, resulted in an accumulation of cytidine deaminase-induced G-to-A 
mutations in SIVagm genome (Takeuchi et al., 2005). Therefore, it is probable that SIV Vif 
has evolved to counteract hApo3G restriction and this might contribute zoonotic 
transmission of SIV.  
Although the antiviral activity of Apo3G is clearly correlated with its deaminase activity 
(Iwatani et al., 2006; Mangeat et al., 2003; Navarro et al., 2005; Opi et al., 2006; Shindo et al., 
2003; Zhang et al., 2003), some members of APOBEC family have additional anti-retrovirus 
activities that do not require catalytically activity of itself (Li et al., 2007; Luo et al., 2007). In 
fact, several reports showed that deaminase-defective Apo3G and Apo3F have antiviral 
activity, and some antiviral-inactive mutants of both Apo3G and Apo3F have cytidine 
deaminase activity (Bishop et al., 2006; Holmes et al., 2007; Newman et al., 2005; Shindo et 
al., 2003). 
However, deaminase-defective Apo3G mutant with C288S/C291A substitutions did not 
show any anti-viral actibity and over-expression of the mutant could work as a dominant 
negative agent of wild-type Apo3G, suggesting a tightly-relationship between antiviral and 
deaminase activities (Miyagi et al., 2007; Opi et al., 2006). Recently, it was demonstrated that 
hApo3G has an intrinsic immune effect on viral DNA synthesis, which may account for 
cytidine deaminase-independent antiviral activity of Apo3G, and did not abort replication 
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steps following reverse transcription (Iwatani et al., 2007). Therefore, precise mechanism of 
Apo3G-dependent restriction of retroviral infection still remains unclear. 

1.5 Cyclophilin A: positive factor against retrovirus replication (or restriction factor?) 
Cyclophilins are ubiquitous proteins and first identified as the target of cyclosporine A 
(CsA), an immunosuppressive reagent (Takahashi et al., 1989). CypA has proline-isomerase 
activity that catalyzes the cis-trans isomerization of proline residue (Fischer et al., 1989). The 
binding of cyclosporine A to cyclophilin A inhibits this isomerase activity (Takahashi et al., 
1989). In retrovirus replication, CypA was found to bind HIV-1 capsid (CA) in the yeast 
two-hybrid system (Luban et al., 1993). The sequence Ala88-Gly89-Pro90-Ile91 of CA protein 
is the major fragment bound to the active site of CypA (Franke et al., 1994; Gamble et al., 
1996; Zhao et al., 1997). Interestingly, The peptidyl-prolyl bond between Gly89 and Pro90 of 
the CA fragment has a trans conformation, in contrast to the cis conformation observed in 
other known CypA-peptide complexes (Bosco et al., 2002; Zhao et al., 1997), and Gly89 
preceding Pro90 has an unfavorable backbone formation usually only adopted by glycine, 
suggesting that special Gly89-Pro90 sequence but not other Gly-Pro motif is required for the 
binding of CA protein to CypA. Therefore, CypA might be likely to act as a molecular 
chaperone but not a cis-trans isomerase (Zhao et al., 1997). However, one report showed that 
CypA does not only bind CA protein but also catalyzes efficiently cic-trans isomerization of 
Gly89-Pro90 peptidyl-prolyl bond (Bosco et al., 2002). The relationship between the Gly89-
Pro90 bond and catalysis of cis-trans isomerization by CypA still remain unclear. 
It has been well established that CypA promotes an early step of HIV-1 infection in human 
cells (Braaten et al., 1996a; Braaten et al., 1996c; Braaten and Luban, 2001; Franke and Luban, 
1996; Franke et al., 1994; Hatziioannou et al., 2005; Sokolskaja et al., 2004; Thali et al., 1994). 
CypA is efficiently encapsidated into HIV-1 produced from infected cells through 
interaction with the CA domains of the Gag polyprotein and disruption of CypA 
incorporation into virions by CsA or HIV-1 Gag mutants caused a decrease in replication 
efficiency (Ackerson et al., 1998; Braaten et al., 1996a; Braaten and Luban, 2001; Bukovsky et 
al., 1997; Franke et al., 1994; Ott et al., 1995; Thali et al., 1994). It is still unclear how CypA is 
efficiently packaged into HIV-1 virion, but several report showed that both dimerization of 
CA and multimerization of CypA is required for efficient binding each other (Colgan et al., 
1996; Javanbakht et al., 2007). Although CA-CypA interaction is required for infectivity, the 
important point is that CypA interacts with incoming HIV-1 cores in newly target cells than 
occurring as core assemble during HIV-1 budding from the virion producer cells, indicated 
that target cell CypA promotes HIV-1 infectivity (Kootstra et al., 2003; Sokolskaja et al., 2004; 
Towers et al., 2003).  
CypA-dependent virus replication is only limited the retroviruses which encode CA that 
binds CypA. In fact, only those retroviruses are dependent upon CypA for replication 
(Braaten et al., 1996c; Franke and Luban, 1996; Franke et al., 1994; Luban et al., 1993; Thali et 
al., 1994). These observations suggested that CA-CypA interaction might contribute tropism 
determinants for retroviruses. HIV-1 infection in non-human primate cells inhibits prior to 
reverse transcription after virus entry (Besnier et al., 2002; Cowan et al., 2002; Hatziioannou 
et al., 2003; Himathongkham and Luciw, 1996; Hofmann et al., 1999; Munk et al., 2002; 
Shibata et al., 1995; Towers et al., 2003). This restriction is thought to be the same step in the 
retrovirus life cycle where CypA works (Braaten et al., 1996b). Indeed, Analysis of CypA-
binding region of CA with chimeric viruses of HIV-1 and SIV showed the viral determinant 
for species-specificity (Berthoux et al., 2004; Bukovsky et al., 1997; Cowan et al., 2002; 
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Dorfman and Gottlinger, 1996; Hatziioannou et al., 2004a; Hatziioannou et al., 2006; Ikeda et 
al., 2004; Kamada et al., 2006; Kootstra et al., 2003; Owens et al., 2004; Owens et al., 2003; 
Sayah et al., 2004; Shibata et al., 1991; Shibata et al., 1995; Stremlau et al., 2004; Towers et al., 
2003). 
Human CypA is required for efficient HIV-1 infection but not SIV. There is no known role 
for CypA in SIV infection in human cells. Recently, the first report from the laboratory of 
Klaus Strebel showed that human CypA acts as restriction factor against SIV infection in 
human cells, and SIV Vif counteracts a CypA-imposed inhibition against SIV infection with 
exclusion of CypA from SIV vision (Takeuchi et al., 2007). This phenomenon could 
distinguish from the function of SIV Vif against hApo3G previously reported from same 
laboratory (Takeuchi et al., 2005) because they used human cells lacking detectable 
deaminase activity. This observation raised the possibility that SIV Vif is crucial for zoonotic 
transmission of SIV from monkey to human. 

2. Conclusion 

Viral replication requires a lot of host cell factors, whose species specificity may affect viral 
tropism. On the other hand, there exist host factors that restrict viral replication. The anti-
viral system mediated by some of these restriction factors, termed intrinsic immunity, which 
is distinguished from the conventional innate and adaptive immunity has been indicated to 
play an important role in making species-specific barriers against viral infection. As 
discussed in this chapter, we describe the current progress in understanding of such 

restriction factors against retroviral replication, especially focusing on TRIM5 and 
APOBEC whose anti-retroviral effects have recently been recognized. Additionally, we 
mentioned CypA that is essential for HIV-1 replication in human cells and may affect viral 
tropism. Understanding of these host factors would contribute to identification of the 
determinants for viral tropism. Finally, understanding of the factors mediating intrinsic 
immunity may lead to the development of antiviral agents that can boost their potency and 
thereby lead to treatments for viral disease.  
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