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1. Introduction

Buoyancy-induced fluid motions in cavities have been discussed widely because of the

applications in nature and engineering. A large body of literature exists on the forms of

internal and external forcing, various geometry shapes and temporal conditions (steady or

unsteady) of the resulting flows. Especially for the classic cases of rectangular, cylindrical or

other regular geometries, many authors have investigated imposed temperature or boundary

heat fluxes. Reviews of these research can be found in Ostrach (1988) and Hyun (1994).

The rectangular cavity is not an adequate model for many geophysical situations where a

variable (or sloping) geometry has a significant effect on the system. However, the convective

flows in triangular shaped enclosures have received less attention than those in rectangular

geometries, even though the topic has been of interest for more than two decades

Heat transfer through an attic space into or out of buildings is an important issue for attic

shaped houses in both hot and cold climates. The heat transfer through attics is mainly

governed by a natural convection process, and affected by a number of factors including

the geometry, the interior structure and the insulation etc. One of the important objectives

for design and construction of houses is to provide thermal comfort for occupants. In the

present energy-conscious society, it is also a requirement for houses to be energy efficient,

i.e. the energy consumption for heating or air-conditioning of houses must be minimized. A

small number of publications are devoted to laminar natural convection in two dimensional

isosceles triangular cavities in the vast literature on convection heat transfer.

The temperature and flow patterns, local wall heat fluxes and mean heat flux were measured

experimentally by Flack (1980; 1979) in isosceles triangular cavities with three different aspect

ratios. The cavities, filled with air, were heated/cooled from the base and cooled/heated from

the sloping walls covering a wide range of Rayleigh numbers. For the case of heated bottom

surface it was found that the flow remained laminar for the low Rayleigh numbers. However,

as the Rayleigh number increased, the flow eventually became turbulent. The author also

reported the critical Rayleigh numbers of the transition from laminar to turbulent regimes.

Kent (2009a) has also investigated the natural convection in an attic space for two different

boundary conditions similar to Flack (1980; 1979). The author observed that for top heating
and bottom cooling case the flow is dominated by pure conduction and remains stable for

higher Rayleigh numbers considered. However, the flow becomes unstable for sufficiently

large Rayleigh number for the second case (top cooling and bottom heating).
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A comparison study is performed by Ridouane et al. (2005) where the authors compare their

numerical results produced for two different boundary conditions, (a) cold base and hot

inclined walls (b) hot base and cold inclined walls with the experimental results obtained by

Flack (1980; 1979). A good agreement has been obtained between the numerical predictions
and the experimental measurements of Nusselt number. A numerical study of above

mentioned two boundary conditions has also performed by Ridouane et al. (2006). However,

the authors cut a significant portion of bottom tips and applied adiabatic boundary condition

there. It is revealed from the analysis that the presence of insulated sidewalls, even of

very small height, provides a huge gain of energy and helps keep the attic at the desired

temperature with a minimum energy.

The attic problem under the night-time conditions was again investigated experimentally

by Poulikakos & Bejan (1983a). In their study, the authors modelled the enclosure as a

right-angled triangle with an adiabatic vertical wall, which corresponded to the half of the

full attic domain. A fundamental study of the fluid dynamics inside an attic-shaped triangular

enclosure subject to the night-time conditions was performed by Poulikakos & Bejan (1983b)

with an assumption that the flow was symmetric about the centre plane. Del Campo et al.

(1988) examined the entire isosceles triangular cavities for seven possible combinations of hot

wall, cold wall and insulated wall using the finite element method based on a stream function

or vorticity formulation. A two dimensional right triangular cavity filled with air and water

with various aspect ratios and Rayleigh numbers are also examined by Salmun (1995a).

The stability of the reported single-cell steady state solution was re-examined by Salmun

(1995b) who applied the same procedures developed by Farrow & Patterson (1993) for

analysing the stability of a basic flow solution in a wedge-shaped geometry. Later

Asan & Namli (2001) carried out an investigation to examine the details of the transition from

a single cell to multi cellular structures. Haese & Teubner (2002) investigated the phenomenon

for a large-scale triangular enclosure for night-time or winter day conditions with the effect of

ventilation.

Holtzmann et al. (2000) modelled the buoyant airflow in isosceles triangular cavities with a

heated bottom base and symmetrically cooled top sides for the aspect ratios of 0.2, 0.5, and

1.0 with various Rayleigh numbers. They conducted flow visualization studies with smoke

injected into the cavity. The main objective of their research was to validate the existence of the

numerical prediction of the symmetry-breaking bifurcation of the heated air currents that arise

with gradual increments in Rayleigh number. Ridouane & Campo (2006) has also investigated

the numerical prediction of the symmetry-breaking bifurcation. The author reported that as

Ra is gradually increased, the symmetric plume breaks down and fades away. Thereafter, a

subcritical pitchfork bifurcation is created giving rise to an asymmetric plume occurring at

a critical Rayleigh number, Ra = 1.42 × 105. The steady state laminar natural convection in

right triangular and quarter circular enclosures is investigated by Kent et al. (2007) for the case

of winter-day temperature condition. A number of aspect ratios and Rayleigh numbers have

been chosen to analyse the flow field and the heat transfer.

Unlike night-time conditions, the attic space problem under day-time (heating from above)

conditions has received very limited attention. This may due to the fact that the flow structure

in the attics subject to the daytime condition is relatively simple. The flow visualization

experiments of Flack (1979) showed that the daytime flow remained stable and laminar for all

the tested Rayleigh numbers (up to about 5 × 106). Akinsete & Coleman (1982) numerically

simulated the attic space with hot upper sloping wall and cooled base. Their aim was to

34 Convection and Conduction Heat Transfer
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Periodically Forced Natural Convection Through the Roof of an Attic-Shaped Building 3

obtain previously unavailable heat transfer data relevant to air conditioning calculations. This

study considered only half of the domain. For the purpose of air conditioning calculations,

Asan & Namli (2000) and Kent (2009b) have also reported numerical results for steady,

laminar two-dimensional natural convection in a pitched roof of triangular cross-section
under the summer day (day-time) boundary conditions.
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Fig. 1. Temperature boundary condition on the incline walls of the enclosure

Recently, the transient flow development inside the attic space has been analysed by using

scaling analysis with numerical verification by (Saha, 2011a;b; Saha et al., 2010a;c; Saha,

2008). The authors considered different types of thermal conditions, such as, sudden

heating/cooling and ramp heating/cooling. In real situations, however, the attic space of

buildings is subject to alternative heating and cooling over a diurnal cycle as it can be seen in

Fig. 1. A very few studies for diurnal heating and cooling effect on the attic space are reported

in the literature (Saha et al., 2010b; 2007). The authors discussed a general flow structure and

heat transfer due to the effect of periodic thermal forcing. A detailed explanation of choosing

the period for the model attic is required as the 24-hour period for the field situation is not

applicable here.

In this study, numerical simulations of natural convection in an attic space subject to diurnal

temperature condition on the sloping wall have been carried out. An explanation of choosing

the period of periodic thermal effect has been given with help of the scaling analysis which is

available in the literature. Moreover, the effects of the aspect ratio and Rayleigh number on

the fluid flow and heat transfer have been discussed in details as well as the formation of a

pitchfork bifurcation of the flow at the symmetric line of the enclosure.

2. Formulation of the problem

The physical system is sketched in Fig. 2, which is an air-filled isosceles triangular cavity of

variable aspect ratios. Here 2l is the length of the base or ceiling, T0 is the temperature applied

on the base, TA is the amplitude of temperature fluctuation on the inclined surfaces, h is the

height of the enclosure and P is the period of the thermal forcing.

35Periodically Forced Natural Convection Through the Roof of an Attic-Shaped Building

www.intechopen.com



4 Will-be-set-by-IN-TECH

  

T = T 0   , 
    u  = v  = 0   

  

H 

* + 
0     

P/ 2 sin0 

? ? 

- ? 

v u 

t T T T A r
  

* + 
0 

P / 2 sin 0 

? ? 

- ? 

v u 

t T T T A r 
  

  
  

  

D   

E   

g 

2l 

y 

x 

Fig. 2. A schematic of the geometry and boundary conditions of the enclosure

Under the Boussinesq approximations the governing continuity, momentum and energy

equations take the following forms.
∂u

∂x
+

∂v

∂y
= 0 (1)

∂u

∂t
+ u

∂u
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∂u
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= −
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(
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+
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∂y2

)

(2)
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+ v
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= −

1

ρ

∂p
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+ ν

(

∂2v

∂x2
+

∂2v

∂y2

)

+ gβ (T − T0) (3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= κ

(

∂2T

∂x2
+

∂2T

∂y2

)

(4)

where u and v are the velocity components along x− and y−directions, t is the time, p is

the pressure, ν, ρ, β and κ are kinematic viscosity, density of the fluid, coefficient of thermal

expansion and thermal diffusivity respectively, g is the acceleration due to gravity and T is

the fluid temperature.

The boundary conditions for the present numerical simulations are also shown in Fig. 2. Here,

the temperature of the bottom wall of the cavity is fixed at T = T0. A periodic temperature

boundary condition is applied to the two inclined walls. The Rayleigh number for the periodic

boundary condition has been defined based on the maximum temperature difference between

the inclined surface and the bottom over a cycle as

Ra =
2gβTAh3

κν

Three aspect ratios 0.2, 0.5 and 1.0, four Rayleigh numbers, 1.5 × 106, 7.2 × 105, 1.5 × 104, and

1.5 × 103, and a fixed Prandtl number 0.72 are considered in the present investigation. Based

on the experimental observations of Flack (1979), which reported the critical Rayleigh number

for the flow to become turbulent, we have chosen the maximum Rayleigh number, Ra =
1.5 × 106 so that the flow stays in the laminar regime. It is understood that in real situations

the Rayleigh number may be much higher than this and an appropriate turbulence model

should be applied. This is beyond the scope of this study. In order to avoid the singularities

at the tips in the numerical simulation, the tips are cut off by 5% and at the cutting points

(refer to Fig. 2) rigid non-slip and adiabatic vertical walls are assumed. We anticipate that this

modification of the geometry will not alter the overall flow development significantly.
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3. Selection of the physical period

The period is determined in consideration of the scaling predictions of Saha et al. (2010a;b;c)

which have demonstrated that the time for the adjustment of the temperature in the thermal

boundary layer is by far shorter than the thermal forcing period of 24 hours in field situations.

For sudden heating/cooling boundary conditions the steady state time scale for the boundary

layer development from Saha et al. (2010c) is

ts =
(1 + Pr)1/2(1 + A2)1/2

ARa1/2Pr1/2

(

h2

κ

)

, (5)

and the heating-up or cooling-down time scale for the enclosure to be filled with hot or cold

fluid under the same boundary conditions as in Saha et al. (2010c) is

t f =
(1 + Pr)1/4

A1/2Ra1/4Pr1/4(1 + A2)1/4

(

h2

κ

)

, for tf > ts (6)

On the other hand, the quasi-steady time scale for ramp heating/cooling boundary condition

of the boundary layer development for the case when the ramp time is longer than the
quasi-steady time is (see Saha et al., 2010c)

tsr =
(1 + Pr)1/3(1 + A2)1/3

A2/3Ra1/3Pr1/3

(

tp

h2/κ

)1/3 ( h2

κ

)

, (7)

and the heating-up or cooling-down time scale of the enclosure under the same boundary

conditions from Saha et al. (2010a) is

t f r =

[

h(1 + A2)1/2
− Ax1

]2

A1/2κRa1/4(1 + A2)5/4
, (8)

where x1 is given by

x1 ∼ L

⎡

⎣1 −

(

1 −
κA1/2Ra1/4(1 + A2)1/4

h2
tp

)1/2
⎤

 , (9)

However, if the cavity is filled with cold fluid before the ramp is finished then the filling up

time is given in Saha et al. (2010a) as

t f q ∼

h8/7t3/7
p

κ4/7Ra1/7 A2/7(1 + A2)1/7
, (10)

Table 1 presents the scaling values of the steady and quasi-steady times for sudden and

ramp heating/cooling boundary conditions respectively for different A and Ra. The highest

Rayleigh number considered here for three different aspect ratio is Ra = 1.5× 106. It is noticed

that the steady state times for the boundary layer for this Rayleigh number of A = 0.2, 0.5

and 1.0 are 8.1s, 2.54s and 2.26s respectively. However, for the lowest Rayleigh number,

Ra = 7.2 × 103 the steady state time for A = 0.5 is 35.76s. On the other hand, the quasi-steady

time for the ramp temperature boundary condition depends on the length of the ramp. If

we assume the ramp time to be 1000s then the quasi-steady times for these aspect ratios are

40.51s, 18.62s and 17.23s respectively and for the lowest Rayleigh number, Ra = 7.2 × 103

37Periodically Forced Natural Convection Through the Roof of an Attic-Shaped Building
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Aspect 

ratio 

Steady state time (ts) for  

sudden heating/cooling 

Quasi-steady time (tsr) for  

ramp heating/cooling (tp = 

1000s) 

Ra = 1.5·106 Ra = 7.2·103 Ra = 1.5·106 Ra = 7.2·103 

A=0.2 8.15s - 40.51s - 

A=0.5 2.54s 35.76s 18.62s 108.53s 

A=1.0 2.26s - 17.23s - 

Table 1. Steady state and quasi-steady times for sudden and ramp boundary conditions
respectively for different A and Ra.

the quasi-steady time for the aspect ratio A = 0.5 is 108.53s which is much shorter than the

ramp time (1000s). If the ramp time is 200s the quasi-steady time of A = 0.5 for the lowest

Rayleigh number considered here is 63.47s. Still the quasi-steady time is about half of the

ramp time. Therefore, what happened between the quasi-steady time and the ramp time is,

once the quasi-steady state time tsr is reached, the boundary layer stops growing according

to κ1/2t1/2 which is only valid for conductive boundary layers. The thermal boundary layer

is in a quasi-steady mode with convection balancing conduction. Further increase of the heat

input simply accelerates the flow to maintain the proper thermal balance. The thickness and

the velocity scales during this quasi-steady mode is (see Saha et al., 2010c)

δT ∼

h(1 + A2)1/4

Ra1/4 A1/2

(

tp

t

)1/4

. (11)

and

u ∼ Ra1/2 κ

h

(

t

tp

)1/2

. (12)

respectively. When the hot fluid travels through the boundary layer and reaches the top tip of

the cavity then it has no choice but to move downward along the symmetry line of the cavity.

In this way the cavity is filled up with hot fluid with a horizontal stratification of the thermal

field. However, during the cooling phase, the boundary layer is not stable for the Rayleigh

numbers considered here. In that case initially a cold boundary layer develops adjacent to

the inclined wall which is potentially unstable to the Rayleigh Bénard instability, which may

manifest in a form of sinking plumes. These plumes mix up the cold fluid with the hot fluid

inside the cavity until the end of the cooling phase.

Moreover, Table 2 shows the scaling values of the filling-up times for sudden and ramp

heating/cooling boundary conditions for different A and Ra. It is seen that the heating-up

or cooling-down times for the sudden heating/cooling boundary condition for A = 0.5 and

Ra = 1.5× 106 is 42.39s and for Ra = 7.2× 103 and the same aspect ratio is 159.01s. For aspect

ratios 0.2 and 1.0 the filling-up times are 83.24s and 31.61s respectively when Ra = 1.5 × 106.

The filling-up times for ramp heating/cooling boundary conditions for A = 0.5 are 145.07s

and 308.77s when Ra = 1.5 × 106 and 7.2 × 103 respectively and tp = 1000s. For two other

aspect ratios, A = 0.2 and 1.0, the filling-up times are 213.32s and 122.67s respectively for

Ra = 1 × 106. However, the filling-up time for ramp boundary conditions depends on the

length of the ramp time. If the ramp time is 200s then the filling-up time for the lowest

38 Convection and Conduction Heat Transfer
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Aspect 

ratio 

Filling-up time (tf) for  

sudden heating/cooling 

Filling-up time (tfr) for  

ramp heating/cooling (tp = 

1000s) 

Ra = 1.5·106 Ra = 7.2·103 Ra = 1.5·106 Ra = 7.2·103 

A=0.2 83.24s - 213.32s - 

A=0.5 42.39s 159.01s 145.07s 308.77s 

A=1.0 31.61s - 122.67s - 

Table 2. Heating-up/cooling-down times for sudden and ramp boundary conditions
respectively for different A and Ra.

Rayleigh number considered here is 154.90s for A = 0.5. These times are very short when

compared to the thermal forcing period of 24 hours in field situations. Therefore, the period

of the thermal cycle may be considered as 400s or more based on the above discussions for the

following numerical simulations. However, for a better understanding of the flow at in the

quasi-steady mode, we have chosen a thermal forcing period of 2000s for all the simulations.

4. Numerical scheme and grid and time step dependence tests

Equations (1) - (4) are solved along with the initial and boundary conditions using the SIMPLE

scheme. The finite volume method has been chosen to discretize the governing equations,

with the QUICK scheme (see Leonard & Mokhtari, 1990) approximating the advection term.

The diffusion terms are discretized using central-differencing with second order accurate. A

second order implicit time-marching scheme has also been used for the unsteady term. An

extensive mesh and time step dependence tests have been coonducted in Saha et al. (2010a;b;c)

5. Flow response to the periodic thermal forcing

The flow response to the periodic thermal forcing and the heat transfer through the sloping

boundary are discussed for the case with A = 0.5, Pr = 0.72 and Ra = 1.5× 106 in this section.

5.1 General flow response to diurnal heating and cooling

Since the initial flow is assumed to be isothermal and motionless, there is a start-up process

of the flow response. In order to minimize the start-up effect, three full thermal forcing cycles

are calculated in the numerical simulation before consideration of the flow. It is found that

the start-up effect for the present case is almost negligible, and the flow response in the third

cycle is identical to that in the previous cycle. In the following discussion, the results of the
third cycle are presented.

Fig. 3 shows snapshots of streamlines and the corresponding isotherms and vector field at

different stages of the cycle. The flow and temperature structures, shown in Fig. 3 at t = 2.00P,

represent those at the beginning of the daytime heating process in the third thermal forcing

cycle. At this time, the inclined surfaces and the bottom surface of the enclosure have the same

temperature, but the temperature inside the enclosure is lower than the temperature on the

boundaries due to the cooling effect in the previous thermal cycle. The residual temperature

structure, which is formed in the previous cooling phase, is still present at t = 2.00P. The

39Periodically Forced Natural Convection Through the Roof of an Attic-Shaped Building
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corresponding streamline contours at the same time show two circulating cells, and the

temperature contours indicate stratification in the upper and lower section of the enclosure

with two cold regions in the centre.

As the upper surface temperature increases further, a distinct temperature stratification is
established throughout the enclosure by the time t = 2.05P (see Fig. 3). The streamlines at

this stage indicate that the centers of the two circulating cells have shifted closer to the inclined

surfaces, indicating a strong conduction effect near those boundaries. This phenomenon

has been reported previously in Akinsete & Coleman (1982) and Asan & Namli (2000) for the

daytime condition with constant heating at the upper surface or constant cooling at the bottom

surface.

At t = 2.25P, the temperature on the inclined surfaces peaks. Subsequently, the temperature

drops, representing a decreasing heating effect. Since the interior flow is stably stratified

prior to t = 2.25P, the decrease of the temperature at the inclined surface results in a cooling

event, appearing first at the top corner and expanding downwards as the surface temperature

drops further. At t = 2.45P, two additional circulating cells have formed in the upper

region of the enclosure, and the newly formed cells push the existing cells downwards. The

corresponding temperature contours show two distinct regions, an expanding upper region

responding to the cooling effect, and a shrinking lower region with stratification responding

to the decreasing heating effect. By the time t = 2.50P, the daytime heating ceases; the lower

stratified flow region has disappeared completely and the flow in the enclosure is dominated

by the cooling effect. At this time, the top and the bottom surfaces again have the same

temperature, but the interior temperature is higher than that on the boundaries.

As the upper inclined surface temperature drops below the bottom surface temperature

(t = 2.70P, Fig. 3), the cold-air layer under the inclined surfaces becomes unstable. At

the same time, the hot-air layer above the bottom surface also becomes unstable. As a

consequence, sinking cold-air plumes and rising hot-air plumes are visible in the isotherm

contours and a cellular flow pattern is formed in the corresponding stream function contours.

It is also noticeable that the flow is symmetric about the geometric symmetry plane at this

time. However, as time increases the flow becomes asymmetric about the symmetric line (see

isotherms at t = 2.95P). The large cell from the right hand side of the centreline, which is still

growing, pushes the cell on the left of it towards the left tip. At the same time this large cell

also changes its position and attempts to cross the centreline of the cavity and a small cell next

to it moves into its position and grows.

At t = 2.975P, the large cell in the stream lines has crossed the centerline and the cell on

the right of it grows and becomes as large as it is after a short time (for brevity figures not

included). The flow is also asymmetric at this time. However, it returns to a symmetric flow

at the time t = 3.00P which is the same as that at t = 2.00P, and similar temperature and flow

structures to those at the beginning of the forcing cycle are formed. The above described flow

development is repeated in the next cycle.

The horizontal velocity profiles (velocity parallel to the bottom surface) and the corresponding

temperature profiles evaluated along the line DE shown in Fig. 2 at different time instances of

the third thermal forcing cycle are depicted in Fig. 4. At the beginning of the cycle (t = 2.00P)

the velocity is the highest near the roof of the attic (see Fig. 4a), which is the surface driving the

flow. At the same time, the body of fluid residing outside the top wall layer moves fast toward

the bottom tips to fill up the gap. As time progresses the vertical velocity increases and the

horizontal temperature decreases (see t = 2.05P). A three layer structure in the velocity field

40 Convection and Conduction Heat Transfer
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Fig. 3. A series of snapshots of stream function and temperature contours of the third cycle at
different times for A = 0.5 and Ra = 1.5 × 106. Left: streamlines; right: isotherms.
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Fig. 4. Horizontal velocity profile (left) and temperature profile (right) along DE for A = 0.5
with Ra = 1.5 × 106.

is found at t = 2.45P. At this time the top portion of the cavity is locally cooled and the bottom

portion is still hot (see Fig. 3). After that time the flow completely reverses at t = 2.50P. It is
noted that at this time the horizontal velocity is lower than that at the beginning of the cycle

despite that the temperatures on the sloping boundary and the ceiling are the same at both

times (see Fig. 4b). This is due to the fact that at the beginning of the cycle the flow is mainly

dominated by convection as a result of the cooling effect in the second half of the previous

thermal cycle. However, the flow is dominated by conduction at t = 2.50P as a result of the

heating effect in the first half of the current thermal cycle.

As mentioned above, at the beginning of the cycle (t = 2.00P) the temperatures on the

horizontal and inclined surfaces are the same as shown in Fig. 4(b). However the temperature

near the mid point of the profile line is lower than that at the surfaces by approximately

0.5K, which is consistent with the previous discussion of the flow field. Subsequently the

temperature of the top surface increases (t = 2.05P) while the bottom surface temperature

42 Convection and Conduction Heat Transfer
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Periodically Forced Natural Convection Through the Roof of an Attic-Shaped Building 11

remains the same. It is noteworthy that the top surface reaches its peak temperature at

t = 2.25P (for brevity the profile is not included). After this time the top surface temperature

starts to decrease which can be seen at time t = 2.40P. By comparing the temperature profiles

at t = 2.05P and t = 2.45P shown in Fig. 4(b), it is clear that the temperatures at both
the top and bottom surfaces are the same for these two time instances. However, different

temperature structures are seen in the interior region. The same phenomenon has been found

at the times t = 2.50P and t = 2.00P.

In Fig. 4(c), the velocity profiles at the same location during the night-time cooling phase are

displayed. In this phase the flow structure is more complicated. At t = 2.55P the velocity near

the bottom surface is slightly higher than that near the top. Again a three layer structure of the

velocity field appeared which is seen at t = 2.65P, 2.75P and 2.85P. The maximum velocity

near the ceiling occurs at t = 2.75P when the cooling is at its maximum. After that it decreases

and the flow reverses completely at t = 3.0P. The corresponding temperature profiles for the

night-time condition are shown in Fig. 4(d). It is seen that the temperature lines are not as

smooth as those observed for the daytime condition. At t = 2.55P, the temperature near the

bottom surface decreases first and then increases slowly with the height and again decreases

near the inclined surface. This behaviour near the bottom surface is due to the presence of a

rising plume. Similar behaviour has been seen for t = 2.75P and 2.85P. However, at t = 2.65P

it decreases slowly after rapidly decreasing near the bottom surface. At t = 3.00P again the

bottom and top surface temperatures are the same with a lower temperature in the interior

region.

5.2 Heat transfer across the attic

The Nusselt number, which has practical significance, is calculated as follows:

Nu =
heffh

k
(13)

where the heat transfer coefficient heff is defined by

heff =
q

TA
(14)

Here q is the convective heat flux through a boundary. Since the bottom surface temperature

is fixed at 295K and the sloping wall surface temperature cycles between 290K and 300K

(refer to Figure 1), a zero temperature difference between the surfaces occurs twice in a cycle.

Therefore, the amplitude of the temperature fluctuation (TA) is chosen for calculating the

heat transfer coefficient instead of a changing temperature difference, which would give an

undefined value of the heat transfer coefficient at particular times.

Fig. 5 shows the calculated average Nusselt number on the inclined and bottom surfaces of

the cavity. The time histories of the calculated Nusselt number on the inclined surfaces exhibit

certain significant features. Firstly, it shows a periodic behaviour in response to the periodic

thermal forcing. Secondly within each cycle of the flow response, there is a time period
with weak heat transfer and a period with intensive heat transfer. The weak heat transfer

corresponds to the daytime condition when the flow is mainly dominated by conduction

and the strong heat transfer corresponds to the night-time condition. At night, the boundary

layers adjacent to the inclined walls and the bottom are unstable. Therefore, sinking and rising

plumes are formed in the inclined and horizontal boundary layers. These plumes dominate
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Fig. 5. Average Nusselt number on the top and bottom surfaces of the cavity for three full
cycles where Ra = 1.5 × 106 and A = 0.5

the heat transfer through the sloping walls of the cavity. Finally the calculated maximum

Nusselt number on sloping surfaces is 8.72, occurring during the night-time period, whereas

the maximum value during the day time is only 3.48, for the selected Rayleigh number and

aspect ratio. The corresponding Nusselt number calculated on the bottom surface shows

similar behavior as that of top surfaces. Note that the Nusselt number calculated using (13)

is based on the total heat flux across the surfaces. Since the surface area of the top surface is

larger (0.595m2) than the bottom surface (0.532m2), therefore the total surface heat flux on the

top surfaces will be lower than that of the bottom surface. However, the integral of the heat

transfer rate for a cycle on both surfaces has been calculated and it is found that both are the

same.

5.3 Effects of the aspect ratio on the flow response

The flow responses to the periodic thermal forcing for the other two aspect ratios are shown

in Figs. 6 and 7, which are compared with the flow response for A = 0.5 shown in Fig. 3. It is

found that the aspect ratio of the enclosure has a great influence on the flow response as well

as heat transfer. The residual effect of the previous cycle on the current cycle has been found

similar for all aspect ratios (see at t = 2.0P in Figs. 3, 6, 7) and the flow and temperature

structures during the heating process is qualitatively the same for A = 1.0 and A = 0.2 as

those for A = 0.5 for Ra = 1.5 × 106. However, during the cooling phase there are significant

changes of flow and heat transfer among these aspect ratios. For the night-time the high

velocity area of these three aspect ratios exists between the two cells where the stream function

gradient is higher. Therefore, the buoyancy drives the warm air upwards from the bottom of

the geometry and at the same time the gravitational force acts on the cold air downwards from

the top. This upward and downward movement can be seen in the temperature contours as a

form of rising and sinking plumes.
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Fig. 6. A series of snapshots of stream function and temperature contours of the third cycle at
different times for A = 1.0 and Ra = 1.5 × 106. Left: streamlines; right: isotherms.

It has been revealed that the flow remains symmetric about the geometrical centreline

throughout the cycle for aspect ratio A = 0.2, whereas, it is asymmetric during the cooling

phase for the other two aspect ratios for Ra = 1.5 × 106. It is also anticipated that the

asymmetric solution is one of two possible mirror images of the solutions. Another noticeable

variation with different aspect ratios is the formation of a circulation cell near the top of the

enclosure. It is seen for A = 1.0 that there is an extra vortex (Fig. 6 at t = 2.95P) on the top

of the cavity, which is completely absent for A = 0.5 and A = 0.2. The flow and temperature

fields for the smallest aspect ratio A = 0.2 are more complex, with several circulation cells on

either side of the central line and many plumes alternately rising and falling throughout the

domain, as seen in Fig. 7. These cells and plumes are the result of flow instability described

earlier.

Fig. 8 illustrates the horizontal velocity and temperature profiles for aspect ratio A = 1.0

along the line DE as shown in Fig. 2 for Ra = 1.50 × 106. Since the flow is stable and stratified

during the day (the heating phase), the structures of the velocity and temperature profiles are

qualitatively the same as those for other aspect ratios.
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Fig. 7. A series of snapshots of stream function and temperature contours of the third cycle at
different times for A = 0.2 and Ra = 1.5 × 106. Left: streamlines; right: isotherms.

Fig. 8. Horizontal velocity profile (left) and temperature profile (right) along DE for A = 1.0
with Ra = 1.50 × 106.
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At the night-time the velocity and temperature profiles for A = 1.0 are more complicated than

that for A = 0.5. As seen in Fig. 8, at time t = 2.55P when the upper surface temperature

is lower than the bottom surface, the velocity near the bottom surface is slightly higher than

that near the inclined surfaces. After that the velocity increases near both the surfaces until
t = 2.75P. Since a plume-type instability dominates the flow during the cooling phase and

the flow has an asymmetric behaviour for a certain period of time, the horizontal velocity is

in the same direction near both surfaces and is in an opposite direction in the middle (see

t = 2.8875P). As the flow transits into the next thermal cycle, it becomes very weak. The

corresponding temperature contours are plotted in Fig. 8(b). It is seen that the temperature

profiles near the bottom surface show a wave shaped for almost the whole cooling phase due

to the rising plumes (see Fig. 3). At the time t = 2.8875P, when three layers of the velocity

structure is seen, the corresponding temperature profile also shows a wave structure.

Fig. 9. Comparison of the average Nusselt number of three aspect ratios for Ra = 1.5 × 106

Fig. 9 shows the calculated average Nusselt number on the inclined surfaces of the cavity

for three different aspect ratios. The time histories of the calculated Nusselt number exhibit

certain common features. Within each cycle of the flow response, there is a time period with

weak heat transfer and a period with intensive heat transfer for each aspect ratio. The weak

heat transfer corresponds to the day time condition when the heat transfer is dominated

by conduction and the strong heat transfer corresponds to the night-time condition when

convection dominates the flows and the instabilities occur in the form of rising and sinking

plumes. During the day time the heat transfer rate is almost the same for all three aspect

ratios. However, at the night time the heat transfer rate for A = 1.0 is much smaller than that

for the other two aspect ratios, and there is a fluctuation of the Nusselt number for a certain

period of time. This fluctuation is absent in the other two aspect ratios. This may be due to

the fact that less convective cells are present in the streamlines for A = 1.0 than those for the

other two aspect ratios. Moreover, the movement of the dominating cell for A = 1.0 is faster

than those for other two. In addition to this, an extra cell appears on the top of the cavity for

the aspect ratio A = 1.0. It is also noticed that there is not much difference in heat transfer for
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the aspect ratios A = 0.5 and 0.2. The highest average Nusselt numbers for A = 1.0, 0.5 and

0.2 are 6.55, 8.72 and 8.76 respectively.

5.4 Effects of Rayleigh number on the flow response and heat transfer

Fig.10 shows snapshots of stream function and temperature contours for the aspect ratio 0.5

with three different Rayleigh numbers, Ra = 1.5 × 106, 7.2 × 104 and 7.2 × 103. The contours

for Ra = 7.2 × 104 are qualitatively the same as for Ra = 1.5 × 106. It is found that in the

heating phase (i.e. when the upper wall temperature is higher than the temperature of the

bottom) the flow structures are qualitatively similar for all Rayleigh numbers. However, in

the cooling phase the flow behaviour is strongly dependent on the Rayleigh numbers. Stream

function and temperature contours are presented at two different times, t = 2.70P and 2.95P

for each Rayleigh number in Fig. 10. In the isotherms, rising and sinking plumes are visible for

Ra = 1.5× 106 and 7.2× 104 at both times. A cellular flow pattern is seen in the corresponding

stream function contours for Ra = 1.5 × 106. However, only two convective cells are present

for Ra = 7.2 × 104. If the Rayleigh number is decreased further (Ra = 7.2 × 103), the flow

becomes weaker. Only two cells are seen in the stream function contours and the temperature

field is horizontally stratified (see the corresponding isotherms). At t = 2.95P, the flow seems

to be asymmetric along the centre line for Ra = 1.5 × 106. However, for the lower Rayleigh

numbers the asymmetric behaviour is not visible.

Fig.11 shows the comparison of the Nusselt number among four Rayleigh numbers for a fixed

aspect ratio 0.5. It is seen clearly that during the heating phase the heat transfer rate is weaker,

whereas it is much stronger in the cooling phase. With the increase of the Rayleigh number,

the Nusselt number increases throughout the thermal cycle, but the rate of increase is much

higher in the cooling phase compared to that in the heating phase. The maximum Nusselt

number in the cooling phase for Ra = 1.5 × 106 is about 2.5 times of the maximum Nusselt

number during the heating phase. It is noticeable that for the lowest Rayleigh number Ra =
1.5 × 103, the heat transfer rate during the heating and cooling phases are almost the same.

The maximum Nusselt number for the four different Rayleigh numbers, Ra = 1.5 × 106, 7.2 ×

105, 7.2 × 104 and 7.2 × 103 for the aspect ratio 0.5 are 8.65, 7.34, 4.26 and 3.11 respectively.

5.5 Transition between symmetric and asymmetric flows

The highest Rayleigh number considered in this study for the three aspect ratios is 1.5 × 106.

Except for A = 0.2, the flow in the cavity for the other two aspect ratios is observed to

undergo a supercritical pitchfork bifurcation for this Rayleigh number, in which case one of

two possible mirror image asymmetric solutions is obtained. This asymmetric behaviour was

first reported numerically and experimentally by Holtzmann et al. (2000) in their study of the

case of a sudden cooling boundary condition. If the flow is asymmetric, the horizontal velocity

along the midplane of the isosceles triangle would be nonzero. Based on this hypothesis,

Fig.12 illustrates the absolute value of maximum horizontal velocity along the geometric

center line for A = 1.0 and 0.5. It is seen in this figure that, for both aspect ratios, the maximum

horizontal velocity is zero up to approximately t = 0.70P in each cycle, suggesting that the

flow is symmetric during this time. However, after this time the maximum horizontal velocity

starts to increase, indicating that the flow becomes asymmetric. The asymmetry remains until

shortly before the end of each cycle when the flow returns to symmetric again. The same

asymmetric behaviour of the flow is seen for the Rayleigh number 7.2 × 105 for the aspect

ratios 0.5 and 1.0.
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Fig. 10. Snapshots of stream function contours (left) and isotherms (right) of the third cycle at
different times and different Rayleigh numbers with fixed A = 0.5.
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Fig. 11. Comparison of the average Nusselt number of four Rayleigh numbers for A = 0.5

Fig. 12. The maximum horizontal velocity along the symmetry line for (a) A = 1.0 and (b)
A = 0.5 with Ra = 1.5 × 106.

The same results have been found when the average Nusselt numbers obtained for both

inclined surfaces are compared for the aspect ratios 1.0 and 0.5, which are shown in Fig.13
(a) and (b) respectively. It is seen that at about t = 0.70P, the calculated Nusselt numbers at

the left and right inclined surfaces start to diverge, but later they meet again before the end of

each cycle.
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Fig. 13. Comparison of the average Nusselt number on two inclined surfaces of the enclosure
for (a) A = 1.0 and (b) A = 0.5 with Ra = 1.5 × 106

6. Conclusions

Natural convection in an attic-shaped building with the effect of periodic thermal forcing

has been carried out in this study based on numerical simulations. An attempt has also been

taken to predict the period of the model attic using scaling analysis. Three aspect ratios of A =
1.0, 0.5 and 0.2 with four Rayleigh numbers of Ra = 1.5 × 106, 7.2 × 105, 7.2 × 104 and 7.2 ×

103 for each aspect ratio have been considered here. Many important features are revealed

from the present numerical simulations. It is found that the flow response to the temperature

variation on the external surface is fast, and thus the start-up effect is almost negligible. The

occurrence of sinking cold-air plumes and rising hot-air plumes in the isotherm contours and

the formation of cellular flow patterns in the stream function contours confirm the presence of

the Rayleigh-Bénard type instability. It is also observed that the flow undergoes a transition
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between symmetry and asymmetry about the geometric symmetry plane over a diurnal cycle

for the aspect ratios of A = 1.0 and 0.5 with the Rayleigh numbers 1.5× 106 and 7.2× 105. For

all other cases the flow remains symmetric. A three-layer velocity structure has been found

along the line at DE as shown in Fig. 2 in both the daytime heating phase (due to local cooling
effect in the upper sections of the inclined walls) and night-time cooling phase when the flow

becomes asymmetric. Furthermore, the flow response in the daytime heating phase is weak,

whereas the flow response in the night-time cooling phase, which is dominated by convection,

is intensive. At lower Rayleigh numbers the flow becomes weaker for all aspect ratios, and no

asymmetric flow behaviour has been noticed.

7. Nomenclature

A slope of the attic

g acceleration due to gravity

h height of the attic

heff heat transfer coefficient

K Kelvin

k thermal conductivity

l half horizontal length of the attic

Nu Nusselt number

p pressure

P period of the cycle

Pr Prandtl number

q convective heat flux

Ra Rayleigh number

t time

T temperature of the fluid

T0 temperature of the ambient fluid

TA the amplitude

u, v velocity components along the x- and y- axes respectively

x, y cartesian coordinates

Greek letters

β Volumetric coefficient of thermal expansion

ν Kinematic viscosity
ρ Density of the fluid

κ thermal diffusivity

∆T temperature difference between the surface and the ambient
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