
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



0

Non-Linear Radiative-Conductive Heat Transfer
in a Heterogeneous Gray Plane-Parallel

Participating Medium

Marco T.M.B. de Vilhena, Bardo E.J. Bodmann and Cynthia F. Segatto
Universidade Federal do Rio Grande do Sul

Brazil

1. Introduction

Radiative transfer considers problems that involve the physical phenomenon of energy
transfer by radiation in media. These phenomena occur in a variety of realms (Ahmad
& Deering, 1992; Tsai & Ozişik, 1989; Wilson & Sen, 1986; Yi et al., 1996) including optics
(Liu et al., 2006), astrophysics (Pinte et al., 2009), atmospheric science (Thomas & Stamnes,
2002), remote sensing (Shabanov et al., 2007) and engineering applications like heat transport
by radiation (Brewster, 1992) for instance or radiative transfer laser applications (Kim &
Guo, 2004). Furthermore, applications to other media such as biological tissue, powders,
paints among others may be found in the literature (see ref. (Yang & Kruse, 2004) and
references therein). Although radiation in its basic form is understood as a photon flux
that requires a stochastic approach taking into account local microscopic interactions of a
photon ensemble with some target particles like atoms, molecules, or effective micro-particles
such as impurities, this scenario may be conveniently modelled by a radiation field, i.e.
a radiation intensity, in a continuous medium where a microscopic structure is hidden in
effective model parameters, to be specified later. The propagation of radiation through a
homogeneous or heterogeneous medium suffers changes by several isotropic or non-isotropic
processes like absorption, emission and scattering, respectively, that enter the mathematical
approach in form of a non-linear radiative transfer equation. The non-linearity of the equation
originates from a local thermal description using the Stefan-Boltzmann law that is related to
heat transport by radiation which in turn is related to the radiation intensity and renders the
radiative transfer problem a radiative-conductive one (Ozisik, 1973; Pomraning, 2005). Here,
local thermal description means, that the domain where a temperature is attributed to, is
sufficiently large in order to allow for the definition of a temperature, i.e. a local radiative
equilibrium.
The principal quantity of interest is the intensity I, that describes the radiation energy flow
through an infinitesimal oriented area dΣ̂ = n̂dΣ with outward normal vector n̂ into the solid
angle dΩ̂ = Ω̂dΩ, where Ω̂ represents the direction of the flow considered, with angle θ of
the normal vector and the flow direction n̂ · Ω̂ = cos θ = µ. In the present case we focus
on the non-linearity of the radiative-conductive transfer problem and therefore introduce
the simplification of an integrated spectral intensity over all wavelengths or equivalently all
frequencies that contribute to the radiation flow and further ignore possible effects due to
polarization. Also possible effects that need in the formalism properties such as coherence
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and diffraction are not taken into account. In general the Radiative-Conductive Transfer
Equation is difficult to solve without introducing some approximations, like linearisation or
a reduction to a diffusion like equation, that facilitate the construction of a solution but at
the cost of predictive power in comparison to experimental findings, or more sophisticated
approaches. The present approach is not different in the sense that approximations shall be
introduced, nevertheless the non-linearity that represents the crucial ingredient in the problem
is solved without resorting to linearisation or perturbation like procedures and to the best of
our knowledge is the first approach of its kind. The solution of the modified or approximate
problem can be given in closed analytical form, that permits to calculate numerical results
in principle to any desired precision. Moreover, the influence of the non-linearity can be
analysed in an analytical fashion directly from the formal solution. Solutions found in the
literature are typically linearised and of numerical nature (see for instance (Asllanaj et al., 2001;
2002; Attia, 2000; Krishnapraka et al., 2001; Menguc & Viskanta, 1983; Muresan et al., 2004;
Siewert & Thomas, 1991; Spuckler & Siegel, 1996) and references therein). To the best of our
knowledge no analytical approach for heterogeneous media and considering the non-linearity
exists so far, that are certainly closer to realistic scenarios in natural or technological sciences.
A possible reason for considering a simplified problem (homogeneous and linearised) is that
such a procedure turns the determination of a solution viable. It is worth mentioning that
a general solution from an analytical approach for this type of problems exists only in the
discrete ordinate approximation and for homogeneous media as reported in reference (Segatto
et al., 2010).
Various of the initially mentioned applications allow to segment the medium in plane parallel
sheets, where the radiation field is invariant under translation in directions parallel to that
sheet. In other words the only spatial coordinate of interest is the one perpendicular to the
sheet that indicates the penetration depth of the radiation in the medium. Frequently, it is
justified to assume the medium to have an isotropic structure which reduces the angular
degrees of freedom of the radiation intensity to the azimuthal angle θ or equivalently to
its cosine µ. Further simplifications may be applied which are coherent with measurement
procedures. One the one hand measurements are conducted in finite time intervals where the
problem may be considered (quasi-)stationary, which implies that explicit time dependence
may be neglected in the transfer equation. On the other hand, detectors have a finite
dimension (extension) with a specific acceptance angle for measuring radiation and thus set
some angular resolution for experimental data. Such an uncertainty justifies to segment the
continuous angle into a set of discrete angles (or their cosines), which renders the original
equation with angular degrees of freedom a set of equations known as the SN approximation
to be introduced in detail in section 3.
Our chapter is organised as follows: in the next section we motivate the radiative-conductive
transfer problem. Sections 3 and 4 are dedicated to the hierarchical construction procedure
of analytical solutions for the heterogeneous radiative-conductive transfer problem from its
reduction to the homogeneous case, using two distinct philosophies. In section 4.3 we apply
the method to specific cases and present results. Last, we close the chapter with some remarks
and conclusions.

2. The radiative conductive transfer problem

In problems of radiative transfer in plane parallel media it is convenient to measure linear
distances normal to the plane of stratification using the concept of optical thickness τ which
is measured from the boundary inward and is related through the density ρ, an attenuation
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coefficient κ and the geometrical projection on the direction perpendicular to that plane, say
along the z-axis, so that dτ = −κρdz. Further the temperature is measured in multiples of a
reference temperature T(τ) = Θ(τ)Tr, typically taken at τ = 0.
Based on the photon number balance and in the spirit of a Boltzmann type equation one
arrives at the radiative transfer equation in a volume that shall be chosen in a way so that no
boundaries that separate media with different physical properties cross the control volume.
To this end, five photon number changing contributions shall be taken into account which
may be condensed into the four terms that follow. The first term describes the net rate of
streaming of photons through the bounding surface of an infinitesimal control volume, the
second term combines absorption and out-scattering from µ to all possible directions µ′ in
the control volume. The third term contemplates in-scattering from all directions µ′ into the
direction µ, and last not least a black-body like emission term according to the temperature
dependence of Stefan-Boltzmann’s law for the control volume.

dI(τ, µ)

dτ
+

1

µ
I(τ, µ) =

ω(τ)

2µ

∫ 1

−1
P(µ′)I(τ, µ′) dµ′ +

1 − ω(τ)

µ
Θ4(τ) (1)

Here, ω is the single scattering albedo and P(µ) signifies the differential scattering coefficient
or also called the phase function, that accounts for the rate at which photons are scattered into
an angle dµ′ and with inclination µ with respect to the normal vector of the sheet. Note, that
the phase function is normalized 1

2

∫
P(µ) dµ = 1.

Upon simplifying the phase function in plane geometry one may expand the angular
dependence in Legendre Polynomials Pn(µ),

P(µ, µ′) =
∞

∑
ℓ=0

βnPn(µ
′ − µ) ,

with βn the expansion coefficients that follow from orthogonality. Further one may employ
the addition formula for Legendre polynomials using azimuthal symmetry (hence the zero
integral)

Pℓ(µ
′ − µ) = Pℓ(µ)Pℓ(µ

′) + 2
n

∑
m=1

(n − m)!

(n + m)!
Pm

n (µ)Pm
n (µ′)

∫ 2π

0
cos(m(φ − φ′)) dφ′

︸ ︷︷ ︸

=0

,

and write the integral on the right hand side of side of equation (1) as

∫ 1

−1
P(µ, µ′)I(τ, µ′) dµ′ =

∞

∑
ℓ=0

βℓ

∫ 1

−1
Pℓ(µ)Pℓ(µ

′)I(τ, µ′) dµ′ ,

where the summation index refers to the degree of anisotropy. For practical applications only
a limited number of terms indexed with ℓ have to be taken into account in order to characterise
qualitatively and quantitatively the anisotropic contributions to the problem. Also higher ℓ

terms oscillate more significantly and thus suppress the integral’s significance in the solution.
The degree of anisotropy may be indicated truncating the sum by an upper limit L. The
integro-differential equation (1) together with the afore mentioned manipulations may be cast
into an approximation known as the SN equation upon reducing the continuous angle cosine
to a discrete set of N angles. This procedure opens a pathway to apply standard vector algebra
techniques to obtain a solution from the equation system, discussed in detail in section 3.
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In order to define boundary conditions we have to specify in more details the scenario
in consideration. In the further we analyse non-linear radiative-conductive transfer in
a grey plane-parallel participating medium with opaque walls, where specular (mirror
like) as well as diffuse reflections occur besides thermal photon emission according to the
Stefan-Boltzmann law (see (Elghazaly, 2009) and references therein). If one thinks the medium
being subdivided into sheets of thickness ∆τ with sufficiently small depth so that for each
sheet a homogeneous medium applies, than for each face or interface the condition for the top
boundary (at τ = τi) is

I(τ, µ) = ǫ(τ)Θ4(τ) + ρs(τ)I(τ,−µ) + 2ρd(τ)
∫ 1

0
I(τ,−µ′)µ′ dµ′ , (2)

with ρs and ρd the specular and diffuse reflections at the boundary, which are related to the
emissivity ǫ by ǫ + ρs + ρd = 1. For the limiting bottom boundary (τ = τi + ∆τ) µ and µ′

change their sign in the argument of I(τ, µ(′)) in equation (2). Suppose we have NS sheets
and NS + 1 boundaries, one might think that for a first order differential equation (1) in τ the
supply of NS + 1 boundary conditions results in an ill-posed problem with no solutions at all.
However, we still have to set up an equation that uniquely defines the non-linearity in terms
of the radiation intensity.
The relation may be established in two steps, first recognizing that the dimensionless radiative
flux is expressed in terms of the intensity by

q∗r = 2π

∫ 1

−1
I(τ, µ)µ dµ , (3)

and the energy equation for the temperature that connects the radiative flux to a temperature
gradient is

d2

dτ2
Θ(τ) =

1

4πNc

d

dτ
q∗r (τ) =

1

4πNc

d

dτ

(

2π

∫ 1

−1
I(τ, µ)µ dµ

)

. (4)

HereNc is the conduction-radiation parameter, defined as

Nc =
kβext

4σn2T3
r

, (5)

with k the thermal conductivity, βext the extinction coefficient, σ the Stefan-Boltzmann
constant and n the refractive index. Note that the radiative flux results from the integration
of the intensity over angular variables, so that the thermal conductivity is considered here
isotropic. Equation (4) is subject to prescribed temperatures at the top- and bottommost
boundary

Θ(0) = ΘT and Θ(τ0) = ΘB . (6)

3. The SN approximation for the heterogeneous problem

The set of equations (1) and (4), that are continuous in the angle cosine, may be simplified
using an enumerable set of discrete angles following the collocation method, that defines the
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radiative convective transfer problem in the SN approximation

dIn(τ)

dτ
+

1

µn
In(τ) =

ω(τ)

2µn

L

∑
ℓ=0

βℓPℓ(µn)
N

∑
k=1

wkPℓ(µk)Ik(τ) +
1 − ω(τ)

µn
Θ4(τ) , (7)

dΘ(τ)

dτ
−

dΘ(τ)

dτ

∣
∣
∣
∣
τ=0

=
1

2Nc

N

∑
k=1

wk (Ik(τ)− Ik(0)) µk , (8)

for n = 1, . . . , N and are subject to the following boundary conditions.

In(0) = ǫ(0)Θ4(0) + ρs(0)IN−n+1(0) + 2ρd(0)

N
2

∑
k=1

wk IN−k+1(0)µk

IN−n+1(τ0) = ǫ(τ0)Θ
4(τ0) + ρs(τ0)In(τ0) + 2ρd(τ0)

N
2

∑
k=1

wk Ik(τ0)µk (9)

Note, that the integrals over the angular variables are replaced by a Gaussian quadrature
scheme with weight factors wk, where k refers to one of the discrete directions µk.

3.1 The SN approach in matrix representation

For convenience we introduce a shorthand notation in matrix operator form, where the
column vector

Φ(τ) = (I, Θ(τ))T = (I1(τ), · · · , IN(τ), Θ(τ))T

combines the anisotropic intensities and the isotropic temperature function, the non-linear
terms and boundary terms from integration (i.e. the temperature gradient and the conduction
radiation intensity at τ = 0) are absorbed in an inhomogeneity

Ψ =

(

1 − ω(τ)

µ1
Θ4(τ), · · · ,

1 − ω(τ)

µn
Θ4(τ),

dΘ

dτ
(0)−

1

2Nc

N

∑
k=1

wk Ik(0)µk

)T

which allows to cast the equation system (7) and (8) in compact form

d

dτ
Φ −LMΦ = Ψ (10)

where LM has the following elements.

(LM)nk = δnk(1 − δn,N+1)
1

µn
+ fnk for n, k = 1, . . . , N + 1 (11)

Here, δij is the Kronecker delta, θH the Heaviside functional

δij =

{

1 for i = j

0 else
, θH(x) =

{

1 for x > 0

0 else

and the factors fnk are

fnk = θH(N − n + 1/2)θH(N − k + 1/2)
ω(τ)

2µn

L

∑
ℓ=0

βℓPℓ(µn)wkPℓ(µk)

+(1 − δk,N+1)δn,N+1
µk

2Nc
. (12)
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Note, that the increment 1/2 in the Heaviside functional was introduced merely to make the
argument positive definite in the range of interest which otherwise could lead to conflicts with
possible definitions for θH(x) at x = 0.
The boundary conditions are combined accordingly, except for the limiting temperatures
(equation (6)) that are kept separately for simplicity because they would add only an
additional diagonal block leading to a reducible representation and thus this does not bring
any advantage.

BDI −BMI = Γ (13)

Equation (13) has a block form where one block represents forward angle contributions µ > 0
and the other one backward terms µ < 0 originating from the top and bottom boundary,
respectively. Here, BD is the N × N unit matrix, and

BM =

(

0 ρsCN/2 + 2ρdG−N/2

ρsCN/2 + 2ρdG+N/2 0

)

(14)

with CN/2 an N/2 × N/2 matrix which results from column reversion in the unit matrix, i.e.
after mapping column position k to position N/2− k + 1. The remaining matrices that control
the diffuse forward and backward reflection (G±N/2), respectively have the elements

(

G+N/2

)

nk
= θH(N/2 − n + 1/2)θH(k − N/2 − 1/2)µN−k+1wN−k+1

(

G−N/2

)

nk
= θH(n − N/2 − n − 1/2)θH(N/2 − k + 1/2)µkwk . (15)

In these expressions the Heaviside functions restrict the non-zero elements to the off-diagonal
blocks with row indices n ∈ {1, . . . , N/2} and column indices k ∈ {N/2+ 1, . . . , N} and with
row indices n ∈ {N/2 + 1, . . . , N} and column indices k ∈ {1, . . . , N/2}, respectively. The
vector representation for the intensity is

I = (I+, I−)
T with I+ = (I1(τ), . . . , IN/2(τ)) and I− = (IN/2+1(τ), . . . , IN(τ)) .

The inhomogeneity Γ has the same emission term in each component.

Γn = ǫ(τ)Θ4(τ) ∀n

3.2 Constructing the solution by the decomposition method

The principal difficulty in constructing a solution for the radiative conductive transfer
problem in the SN approximation (10) subject to the boundary conditions (13) and (6) is due
to the fact that the single scattering albedo ω(τ), the emissivity ǫ(τ) and the specular and
diffuse reflection (ρs(τ) and ρd(τ)) have an explicit dependence on the optical depth τ, that is
the heterogeneity of the medium in consideration. It is worth mentioning that the proposed
methodology is quite general in the sense that it can be applied to other approximations of
equation (1) that make use of spectral methods, as for instance the spherical harmonic PN-,
the Chebychev ChN- and the Walsi WN-approximation (Vilhena & Segatto, 1999; Vilhena et
al., 1999), among others.
In the sequel we report on two approaches to solve the heterogeneous problem (equations.
(10), (13), (6)). The principal idea of this techniques relies on the reduction of the Radiative
Conductive transfer problem in heterogeneous media to a set of problems in domains of
homogeneous media. In the first approach we consider the standard approximation of the

182 Convection and Conduction Heat Transfer
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τ1

τ2

τi−1

τi

τNS−1

τ0

ΘT

Θ1

Θ2

Θi−1
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ΘNS−1

ΘB

ω1, ρs
1, ρs

1, ǫ1

ω2, ρs
2, ρs

2, ǫ2

...

ωi, ρs
i , ρs

i , ǫi

...

ωNS
, ρs

NS
, ρs

NS
, ǫNS

Fig. 1. Schematic illustration of a heterogeneous medium in form of a multi-layer slab.

heterogeneous medium in form of a multi-layer slab (see figure 1). For each of the layers
the problem reduces to a homogeneous problem but with the same number of boundary
conditions as the original problem. The procedure that determines the solution for each slab
is presented in detail in section 4. In order to solve the unknown boundary values of the
intensities and the temperatures at the interfaces between the slabs, matching these quantities
using the bottom boundary values of the upper slab and the top boundary values of the lower
slab eliminates these incognitos.
In the second approach we introduce a new procedure to work the heterogeneity. To begin
with, we take the averaged value for the albedo coefficient ω(τ),

ω̄ =
1

τ0

∫ τ0

0
ω(τ) dτ (16)

and rewrite the problem as a homogeneous problem plus an inhomogeneous correction. Note
that LM as well as Ψ depend on the local albedo coefficient ω(τ). Since the terms containing
the coefficient are linear in ω permits to separate an average factor ω̄ and the difference ω(τ)−
ω̄.

d

dτ
Φ −LM(ω̄)Φ = Ψ(ω̄) +LM(ω(τ)− ω̄)Φ + Ψ(ω(τ)− ω̄) (17)

Now, following the idea of the Decomposition method proposed originally by Adomian
(Adomian, 1988), to solve non-linear problems without linearisation, we handle equation
(17), constructing the following recursive system of equations. Here, Ψ = ∑

∞
m=0 Ψm is a

formal decomposition and the non-linearity is written in terms of the so-called Adomian
polynomials Θ4(τ) = ∑

∞
m=0 Âm(τ). The first equation of the recursive system is the same

as in a homogeneous slab, and the influence of the heterogeneity is governed by the source
term. The homogeneous problem is explicitly solved in section 4 so that we concentrate here

183Non-Linear Radiative-Conductive Heat Transfer 
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on the inhomogeneity.

d

dτ
Φ0 −LM(ω̄)Φ0 = Ψ0(ω̄)

d

dτ
Φi −LM(ω̄)Φi = Ψi(ω̄) +LM(ω(τ)− ω̄)Φi−1 + Ψi−1(ω(τ)− ω̄) for i ≤ 1

with Ψi−1(ω(τ)− ω̄) = (ω̄ − ω(τ))Am(τ)(µ
−1
1 , . . . , µ−N

1 , 0)T (18)

Note, that the N + 1-th component of Ψ0(ω̄) contains the inhomogeneous term of the
temperature equation.

(Ψ0(ω̄))N+1 = ΨN+1 =
dΘ

dτ
(0)−

1

2Nc

N

∑
k=1

wk Ik(0)µk (19)

The determination of the Adomian polynomials Am(τ) in equation (18) in terms of the
temperature is shown in section 4.
To complete our analysis considering the boundary conditions, the first equation of the
recursive system satisfies the boundary condition, whereas the remaining equations satisfy
homogeneous boundary conditions. By this procedure we guarantee that the solution Φ

determined from the recursive scheme and truncated at a convenient limit M satisfies the
boundary conditions of the problem (13) and (6). Therefore we are now in a position to
construct a solution with a prescribed accuracy by controlling the number of terms in the
series solution given by equation (18). From the previous discussion it becomes apparent that
it is possible by the proposed procedure to obtain a solution of the heterogeneous problem by
a reduction to a set of homogeneous problems. To complete the construction of a solution for
the heterogeneous problem in the next section we present the derivation of the solution of the
SN radiative-conductive transfer problem in a homogeneous slab.

4. The solution for the homogeneous radiative conductive heat transfer problem

In this section we consider the non-linear radiative-conductive transfer problem in a grey
plane-parallel participating medium with combined specular and diffuse reflection (Siewert
& Thomas, 1991) and its solution in an analytical form using a composite method by
Laplace transform and the decomposition method (Adomian, 1988). Before the advent of the
decomposition method analytical solutions were restricted to a few special problems like the
Bernoulli and Ricatti equations, to mention only two. The basic idea of the decomposition
technique understands the following steps: The non-linear problem is interpreted as an
operator equation (as already introduced in section 3) and split into a sum of linear and
non-linear terms. Next, one expands the solution (in the present discussion the intensity I)
and the non-linear term (here the quartic dimensionless temperature term Θ4), respectively, as
a series I(τ) = ∑

∞
m=1 Um and Θ4 = ∑

∞
m=1 Âm, where Âm are to be determined self consistently

according to Adomian’s procedure (Adomian, 1988). Upon insertion of these expansions in
the split equation, one may construct a set of linear recursive problems that can be solved by
classical methods for linear problems.
Although the method is designed for general non-linear problems, it is not straight forward
to apply it to any given problem and to any desired precision. One specific equation
system which we solve in the sequel considers the SN problem equation (10) for non-linear
radiative-conductive heat transfer in plane parallel geometry as introduced in ref. (Ozisik,
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1973), the index N signifies here the number of the discrete directions of the angular space.
More specifically, we circumvent limitations that arose in the discussion of the same problem
in ref. (Vargas & Vilhena, 1999). Furthermore, differently than some iterative schemes found
in the literature (Abulwafa, 1999; Ozisik, 1973; Siewert & Thomas, 1991), we construct an
analytical solution sequence which in the limit of the truncation parameter M → ∞ converges
to the exact solution of the equation that characterises the SN problem.
For any arbitrary truncation and using Laplace transform (LT) the original SN problem may be
cast into LTSN form, which allows for matrix orthogonalisation and thus opens the advantage
of handling SN problems with N as large as for instance ∼ 1500; for further details see
references. (Segatto et al., 1999) and (Goncalves et al., 2000). Once the Âm polynomials are
known up to M the LTSN provides the sum up to M of the expanded solution.
The hybrid LTSN Adomian approach is not new, see references. (Vargas & Vilhena, 1999)
and (Brancher et al., 1999), but in the present discussion we present a procedure based on
the same reasoning but in a novel and optimised form. This progress is partially due to the
more effective handling of the boundary conditions. In a previous attempt (Vargas et al.,
2003) the boundary conditions entered in every step of recursion which posed limitations on
the solutions so that it was only possible to resolve angles with N = 30 and truncate the
expansion after the first term. As the following discussion will show, the present approach
henceforth denoted the DMLTSN approach circumvents these shortcomings (here DMLTSN

stands for Decomposition Laplace Transform SN approach).

4.1 The LTSN formalism

The dimensionless non-linear SN radiative transfer equation in a grey plane-parallel
homogeneous medium results from equation (7) upon substitution of the albedo coefficient
by its average value.

d

dτ
In(τ) +

1

µn
In(τ) =

ω̄

2µn

L

∑
ℓ=0

βℓPℓ(µn)
N

∑
k=1

Pℓ(µk)Ik(τ) +
1 − ω̄

µn
Θ4(τ) (20)

for n = 1, . . . , N and subject to the boundary conditions with constant emissivity and
reflectivity.

In(0) = ǫ1Θ4
1 + ρs

1 IN−n+1(0) + 2ρd
1

N/2

∑
k=1

wkµk IN−k+1(0) , (21)

IN−n+1(τ0) = ǫ2Θ4
2 + ρs

2 In(τ0) + 2ρd
2

N/2

∑
k=1

wkµk Ik(τ0) . (22)

Note, that βℓ are the expansion coefficients explicitly given in case study 4.3.1.
The equation for the temperature (8) may be solved by integrating twice from the boundary
τ = 0 to any τ ∈ [0, τ0].

Θ(τ) = Θ1 + (Θ2 − Θ1)
τ

τ0
−

1

4πNc

τ

τ0

∫ τ0

0
q∗r (τ

′)dτ′ +
1

4πNc

∫ τ

0
q∗r (τ

′)dτ′ (23)

Recalling, that equation (8) relates the intensity to the temperature, equation (23) shows the
connection between the temperature and the radiative flux that permits to cast the problem
into a form that depends only on the directional intensity I.
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In order to apply the decomposition method to the problem (20) and (23), we expand the
non-linear source term into a series of Adomian polynomials Adomian (1988), which are
determined in the next section.

Θ4(τ) =
∞

∑
m=0

Âm(τ) (24)

Upon inserting this ansatz in equation (20) yields a first order matrix differential equation:

d

dτ
I(τ)− AI(τ) =

∞

∑
m=0

Âm(τ)M. (25)

Here I(τ) = (I+(τ), I−(τ))T is the intensity radiation vector, where the sub-vectors I+(τ)
and I−(τ) are the intensity radiation for the positive (0 < µ < 1) and negative (−1 < µ < 0)
directions, respectively, and of order N/2 each. Further, M is a vector of order N with entries:

M = (1 − ω)

(
1

µ1
, . . . ,

1

µN

)T

(26)

Finally, the components of matrix A have the form:

Aij = −
1

µi
δij +

ω

2µi

L

∑
ℓ=0

βℓPℓ(µi)Pℓ(µj) , (27)

where δij is the Kronecker symbol. The radiation intensity can formally be written as a series:

I(τ) =
∞

∑
m=0

Um(τ) (28)

which upon substitution in equation (25) results in:

∞

∑
m=0

(
d

dτ
Um(τ)− AUm(τ)

)

=
∞

∑
m=0

Âm(τ)M (29)

One possibility of solving the equation system (29) starts with the initialisation

d

dτ
U0(τ)− AU0(τ) = 0 (30)

d

dτ
Um(τ)− AUm(τ) = Âm−1(τ)M , m = 1, 2, ..., ∞ (31)

which is then solved by the Laplace transform procedure (i.e. the LTSN method) for any
arbitrary but finite m ≤ M. Here, M is a truncation of the series which has to be chosen such
that the remaining dropped terms are only a small correction to the approximate solution.
Details of the method may be found in references. (Segatto et al., 1999) and (Goncalves et al.,
2000). In the further we make use of the results of the Laplace transformed equations (30)
and (31) and write Um in form of a Laplace inversion. The Adomian polynomials are given
explicitly in equation (36).
So far the LTSN solution to the first problem of the recursive system has the form:

U0(τ) = XE(Dτ)V(0) (32)
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where D and X are respectively the matrices of eigenvalues and eigenfunctions resulting from
the spectral decomposition of the matrix A. The components of the diagonal matrix E(Dτ)
are:

E(Dτ) =

⎧

⎨

⎩

ediiτ if dii < 0

edii(τ−τ0) if dii > 0
(33)

Note, that the matrix expression D, E and eigenvectors X are from the solution of the Laplace
transformed problem equations (30) and (31). In equation (33) dii are entries of the eigenvalue
matrix D. Further the general solution for the remaining problems are given by

Um(τ) = XE(Dτ)V(m) + Xe
Dτ

X
−1∗Âm−1(τ)M (34)

for m = 1, . . . ,M and (∗) denotes the convolution operator. The constant vectors V
(m) are

determined from the application of the inhomogeneous boundary conditions

U0(0) = I(0)

U0(τ0) = I(τ0)
for m = 0

and the homogeneous boundary conditions

Um(0) = 0

Um(τ0) = 0
for m = 1, . . . ,M

on the left hand side of equation (34). The effectiveness of this recursive scheme is due to the
fact that the boundary condition for the problem (20) is already absorbed in the first recursion
instruction whereas the remaining problems satisfy homogeneous boundary conditions only.
To complete the construction of the analytical solution of problem (20) by the decomposition
method, we present in the next section, a convergent scheme to generate the Adomian
polynomials Âm for m ∈ {1, . . . ,M}, for any generic M.

4.2 The determination of the Âm polynomials

The role of the Adomian polynomials is to constitute the non-linear term in equation (20),
i.e. the dimensionless non-linear temperature term Θ4. Using a finite functional expansion in

Tm(τ) for the dimensionless temperature Θ(τ) = ∑
M
m=0 Tm(τ) implies

Θ4 =
M

∑
m=0

Âm = T4
0 + 4T3

0

M

∑
i=1

Ti +
12T2

0

2!

(
M

∑
i=1

Ti

)2

+
24T0

3!

(
M

∑
i=1

Ti

)3

+
24

4!

(
M

∑
i=1

Ti

)4

, (35)

where one of the possible identifications of the Âm is to group together terms with Ti in the
right hand side of the equation (35) in a way, such that the index i of Ti ranges from 0 to
m. This can be seen explicitly in equation (36) where Â0 depends on T0 only, Â1 on T0, T1,
or generically, Âm = Âm(T0, . . . , Tm). Note, that the significance of the Tm becomes clear
further down in equation (39) and is used here merely as a term of a functional expansion. The
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resulting scheme for the Adomain polynomials reads then, which for later use we indicate in
factorized form:

Â0 = T4
0 = T0T0T2

0

Â1 = 4T3
0 T1 + 6T2

0 T2
1 + 4T0T3

1 + T4
1 = T1(2T0 + T1)(2T2

0 + 2T0T1 + T2
1 )

Â2 = 4T3
0 T2 + 12T2

0 T1T2 + 12T0T2
1 T2 + 4T3

1 T2 + 6T2
0 T2

2 + 12T0T1T2
2

+6T2
1 T2

2 + 4T0T3
2 + 4T1T3

2 + T4
2 (36)

= T2(2T0 + 2T1 + T2)(2T2
0 + 4T0T1 + 2T2

1 + 2T0T2 + 2T1T2 + T2
2 )

...

In shorthand notation the recursive scheme for the Adomian polynomials may be written as

Âm = TmSmRm (37)

where Sm and Rm are determined by the formulas for m = 1, . . . ,M.

Sm = Sm−1 + Tm + Tm−1 and Rm = Rm−1 + Sm−1Tm−1 + SmTm (38)

The recursive procedure according to equation (36) starts with S0 = T0 and R0 = T2
0 . From

equation (23), we construct then the recursive formulation for the temperature.

T0(τ) = Θ1 + (Θ2 − Θ1)
τ

τ0
(39)

Tm+1(τ) = −
1

2Nc

τ

τ0

〈

W,
∫ τ0

0
Um(τ

′)dτ′
〉

+
1

2Nc

〈

W,
∫ τ

0
Um(τ

′)dτ′
〉

Here m = 0, . . . ,M and the column vector W = (w1µ1, ...., wNµN)T contains as components
the discrete directions µi and the Gaussian quadrature weights wi. The bracket signifies
the vector inner product. Note, that equation (39) establishes the Adomian polynomials in
terms of the temperature at the boundaries and the expansion terms of the intensity, which in
principle could be determined until infinity.

4.3 Numerical results

In this section we present three cases that show the robustness and quantitative coincidence
of the DMLTSN approach with solutions of the SN radiative-conductive problem in a slab in
the literature. As results we evaluate the normalised temperature, conductive, radiative and
total heat fluxes.

Qr(τ) =
1

4πNc
q∗r (τ) Qc(τ) = −

d

dτ
Θ(τ) and Q(τ) = Qr(τ) + Qc(τ)

4.3.1 Case 1

In this case we determine the numerical values for M and N in order to get results with a
considerable accuracy. The numerical values of the parameters used in cases 1 to 2 are given
in table 1. The coefficient βℓ is defined considering a binomial scattering law which also
permits a comparison with the results of (Siewert & Thomas, 1991).

βℓ =

(
2ℓ+ 1

2ℓ− 1

)(
L + 1 − ℓ

L + 1 + ℓ

)

βℓ−1 0 ≤ ℓ ≤ L and β0 = 1
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ǫ1 ǫ2 ρs
1 ρs

2 ρd
1 ρd

2 Θ1 Θ2 ω τ0 Nc L

0.6 0.4 0.1 0.2 0.3 0.4 1.0 0.5 0.95 1.0 0.05 299

Table 1. Parameters of case 1.

M Θ(τ) Qc(τ) Qr(τ) Q(τ)

0 0.8177177955027018 0.5016457699309158 1.5158278540320405 2.0174736239629563

1 0.7698084721160902 0.4588373285860757 1.5859093685802235 2.0447466971662993

5 0.7775834780564881 0.4652872714487863 1.5788014097534921 2.0440886812022785

10 0.7775905224102305 0.4652925878442414 1.5787962534790447 2.0440888413232861

20 0.7775905213060152 0.4652925870115464 1.5787962542859926 2.0440888412975391

50 0.7775905213060152 0.4652925870115464 1.5787962542859926 2.0440888412975391

100 0.7775905213060152 0.4652925870115464 1.5787962542859926 2.0440888412975391

200 0.7775905213060152 0.4652925870115464 1.5787962542859926 2.0440888412975391

Table 2. The DMLTS300 results for M ranging from 0 to 200, assuming τ/τ0 = 0.5.

The numerical results for Θ, Qr(τ), Qc(τ) and Q(τ) are shown in table 2,3 and 4. The stability
and convergence of the method was tested for τ/τ0 = 0.5, varying M from 0 to 200, and using
for N the values 300, 350 and 400, respectively. The displayed precision with 16 digits was
adopted to show the smooth convergence with increasing M in the three cases for N.

M Θ(τ) Qc(τ) Qr(τ) Q(τ)

0 0.8177176602853717 0.5016457476711904 1.5158274669152312 2.0174732145864214

1 0.7698083890454525 0.4588373328783077 1.5859091448625833 2.0447464777408908

5 0.7775833829280683 0.4652872682514292 1.5788011774222819 2.0440884456737112

10 0.7775904272568637 0.4652925846297308 1.5787960211505467 2.0440886057802774

20 0.7775904261526551 0.4652925837970406 1.5787960219574921 2.0440886057545327

50 0.7775904261526551 0.4652925837970406 1.5787960219574921 2.0440886057545327

100 0.7775904261526551 0.4652925837970406 1.5787960219574921 2.0440886057545327

150 0.7775904261526551 0.4652925837970406 1.5787960219574921 2.0440886057545327

200 0.7775904261526551 0.4652925837970406 1.5787960219574921 2.0440886057545327

Table 3. The DMLTS350 results for M ranging from 0 to 200, assuming τ/τ0 = 0.5.

M Θ(τ) Qc(τ) Qr(τ) Q(τ)

0 0.8177175726732399 0.5016457333417628 1.5158272165190925 2.0174729498608555

1 0.7698083350919457 0.4588373357092782 1.5859090000727045 2.0447463357819826

5 0.7775833211907642 0.4652872662455577 1.5788010270489736 2.0440882932945312

10 0.7775903655034493 0.4652925826127813 1.5787958707789687 2.0440884533917498

20 0.7775903643992450 0.4652925817800941 1.5787958715859125 2.0440884533660064

50 0.7775903643992450 0.4652925817800941 1.5787958715859125 2.0440884533660064

150 0.7775903643992450 0.4652925817800941 1.5787958715859125 2.0440884533660064

200 0.7775903643992450 0.4652925817800941 1.5787958715859125 2.0440884533660064

Table 4. The DMLTS400 results for M ranging from 0 to 200, assuming τ/τ0 = 0.5.
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Fig. 2. Numerical results for D10LTS350 that exactly reproduce the results of reference
(Siewert & Thomas, 1991) within the adopted precision. The temperature profile Θ (left), the
conductive Qc, radiative Qr and total heat flux Q (right) against the relative optical depth τ

τ0
.

Comparing the corresponding lines in tables 2 to 4 for different N one observes that an
analytical expression with M = 10 and N = 300 is already close to the solution with M

as large as 200 or ideally in the limit M → ∞. However, in the subsequent problems we set
M = 10 and N = 350 in order to reproduce within the adopted precision the numerical results
of ref. (Siewert & Thomas, 1991) where the PN method was applied to the same problem.

4.3.2 Case 2

The numerical evaluation in case 1 may now be refined varying the optical depth which was
maintained fixed previously. To this end we determine Θ(τ), Qc(τ), Qr(τ) and Q(τ) for τ/τ0

ranging from 0 to 1. The numerical results are shown in figure 2 which coincide with the
findings in reference (Siewert & Thomas, 1991) beyond a six digit precision. In their work
Siewert and Thomas left open the question of convergence of their applied method, which
by virtue of numerical coincidence with the present approach may be positively answered.
Although not presented here with mathematical rigour, convergence of the decomposition
method is formally guaranteed (see references (Adomian, 1988; Cherruault, 1989; Pazos &
Vilhena, 1999a;b)) by the manifest exact solution in the limit M → ∞.

4.3.3 Case 3

A third comparison is elaborated making contact to a work by (Abulwafa, 1999), considering
a conductive radiative problem in a slab assuming isotropy (L = 0) and with thickness τ0,
which also serves as a unit length. The parameter set is with either ω = 0.9 or ω = 0.5, with
ǫ1 = ǫ2 = Θ1 = 1 and ρd

1 = ρd
2 = ρs

1 = ρs
2 = 0. In this article the author uses a variational

technique to solve the radiative problem, while an iterative method is implemented to include
the non-linearity effect of the temperature distribution of the medium from the conductive
energy equation. Figure 3 shows the numerical findings of D10LTS350 in comparison to results
from (Abulwafa, 1999) for two conduction-radiation parameters Nc = 0.5 and Nc = 0.1,
respectively.
The comparison of the DMLTSN results with the ones of reference (Abulwafa, 1999) shows
a fairly good agreement between the methods. It seems that a decrease in Nc opens slightly
the difference between the two solutions, whereas increase in ω closes the difference between
the solutions. Moreover, the larger Nc the closer one gets to a linear temperature profile. The
difference is probably due to the fact that the approach in reference (Abulwafa, 1999) makes
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Fig. 3. Numerical comparisons of the DMLTSN (solid line) and Abulwafa’s results (dotted
line) for the parameter combinations (ω, Nc) = {(0.5, 0.1), (0.5, 0.5), (0.9, 0.1), (0.9, 0.5)} from
top to bottom. The temperature profile Θ (left) and the conductive Qc, radiative Qr and total
heat flux Q (right) against the relative optical depth τ

τ0
. The total heat fluxes are the constant

curves, the conductive (radiative) heat fluxes show predominantly convex (concave)
behaviour in the considered range (see also figure 2).

191Non-Linear Radiative-Conductive Heat Transfer 
in a Heterogeneous Gray Plane-Parallel Participating Medium

www.intechopen.com



16 Will-be-set-by-IN-TECH

use of a trial function. In general in such type of approaches convergence depends crucially
on how close the trial function is to the true solution. The comparison of cases 2 and 3 and
the quantitative agreement with two different approaches shows the quality of the present
method, especially because of the fact that it reproduces the exact analytical solution in the
limit M → ∞ and thus allows to implement computationally a genuine convergence criterion.
Some further information concerning the computational issue, the three cases were calculated
on a Notebook computer with 64-bit Athlon 3200+ processor (1Ghz, 512kb Cache) and 1GB
RAM. All calculations terminated with less than a minute execution time (some examples
returned the result within seconds) and used typically between 10 and 20 iterations.

5. Conclusion

In the present work we discussed and compared an analytical approach to the non-linear
SN radiative-conductive transfer problem in plane-parallel geometry and a heterogeneous
medium using a composite method by the Laplace transform and the Adomian
decomposition (Adomian, 1988). We showed by two options how the heterogeneous problem
may be cast into a set of homogeneous problems, so that the general solution may be obtained
by a hierarchical algorithm. The Laplace technique opens pathways to resort to classical
methods for linear problems, whereas the decomposition procedure allows to disentangle
the non-linear contribution of the problem, that permits to solve the equations by a recursion
scheme. It is worth mentioning two limiting cases, i.e. with single scattering albedo either
ω = 0 or ω = 1. The latter case turns Adomian obsolete, because the non-linear term vanishes,
whereas ω = 0 diagonalizes the equation system and thus turns Laplace obsolete, since the
solution may be obtained directly by integration.
The decomposition method as originally introduced is designed for general non-linear
problems, but several ways are possible to construct a solution (Cardona et al., 2009; Segatto et
al., 2008). The present study may be considered a guideline on how to distribute the influence
of the boundary conditions and the non-linearity in order to solve the given problem. The
boundary condition is absorbed in the part of the solution that belongs to the inversion of the
differential operator without the non-linear contribution and the non-linear part simplifies to
a problem for homogeneous boundary conditions only. Since existence and uniqueness of the
solution for radiative-conductive transfer problems was discussed in references (Kelley, 1996;
Thompson et al., 2004; 2008) the only critical issue of the recursive scheme is convergence.
According to (Adomian, 1988; Cherruault, 1989; Pazos & Vilhena, 1999a;b) the resulting
scheme is manifest exact and converges in the limit M → ∞ to the exact analytical solution.
A genuine control of errors opens thus the possibility of model validation in comparison
to experimental findings. In numerical approaches it is not straight forward to distinguish
between model and numerical uncertainties, especially when non-linearities are present in the
problem. Moreover, in general error analysis in numerical procedures is based on a heuristic
basis, whereas the present approach permits a mathematical proof of convergence. This may
not be that crucial for homogeneous problems, or those that permit linear approximations,
but in the case of a heterogeneous problem in form of a multi-slab medium the question of
convergence certainly plays a major role, especially because of the matching of solutions at
the slab interfaces.
We are completely aware of the fact that the present procedure is limited by the convergence
relation between the optical depth and the convergence radius of the Adomian approximation.
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Nevertheless, we consider our work as an essential step for implementation of problems
considering heterogeneous media. Furthermore, for thick media were the total optical depth
lies outside the convergence radius a multi-slab treatment shall be used. In section 3 we
showed explicitly how dependencies of the Albedo, the emissivity and the reflectivity on the
optical depth are handled reducing partially the problem to a homogeneous one and including
corrections in form of source terms. As an additional task due to this particular procedure
matching of the partial solutions at the interfaces of the slabs has to be performed in addition,
as a consequence of the local character of the physical parameter in each slab. So far, our
findings show that for the SN problem the series truncated with M = 10 yields already a fairly
good solution in form of an analytical expression. One advantage in comparison to numerical
approaches lies in the fact that the dependence of the solution on the physical parameter may
be analytically explored from the resulting expressions.
In section 4.3 we solved a selection of cases that may constitute a partial problem in a
more complex medium and showed systematically, how a reliable solution may be obtained
following the construction steps of 4.1 and 4.2. The application given in case 1 indicates the
limits for M and N, and showed in case 2 that for a sequence of optical depths the same
numerical results appear as given in ref. (Siewert & Thomas, 1991). Since convergence in the
present approach is guaranteed one may elaborate a genuine convergence criterion depending
on a desired precision. As a third test we compared our results for an isotropic problem to
ref. (Abulwafa, 1999), where also agreement between the findings was verified. Since the
proposed method reproduces the exact analytical solution in the limit M → ∞, approximate
analytical expressions with finite M gain the character of benchmark results, which are of
special interest in applications considering heterogeneous media.
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