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1. Introduction 

Capillarity is a well known phenomenon in physics and engineering. Porous materials such 
as soil, sand, rocks, mineral building elements (cement stone or concrete, gypsum stone or 
plasterboards, bricks, mortar, etc.), biological products (wood, grains, fruit, etc.) have 
microscopic capillaries and pores which cause a mixture of transfer mechanisms to occur 
simultaneously when subjected to heating or cooling.  
In the most general case each capillary porous material is a peculiar system characterized by 
the extremely close contact of three intermixed phases: gas (air), liquid (water) and solid. 
Water may appear in them as physically bounded water and capillary water (Chudinov, 
1968, Twardowski, Richinski & Traple, 2006). Both the bounded water and the capillary 
water can be found in liquid or hard aggregate condition. 
Physically bounded water co-operates with the surface of a solid phase of the materials and 
has different properties than the free water. The maximum amount of bounded water in 
porous materials corresponds to the maximal hygroscopicity, i.e. moisture absorbed by the 
material at the 100% relative vapour pressure. The maximum hygroscopicity of the 
biological capillary porous bodies is known as fibre saturation point. Capillary water fills 
the capillary tube vessels, small pores or sharp, narrow indentions of bigger pores. It is not 
bound physically and is called free water. Free water is not in the same thermodynamic 
state as liquid water: energy is required to overcome the capillary forces, which arise 
between the free water and the solid phase of the materials. 
For the optimization of the heating and/or cooling processes in the capillary porous bodies, 
it is required that the distribution of the temperature and moisture fields in the bodies and 
the consumed energy for their heating at every moment of the process are known. The 
intensity of heating or cooling and the consumption of energy depend on the dimensions 
and the initial temperature and moisture content of the bodies, on the texture and micro-
structural features of the porous materials, on their anisotropy and on the content and 
aggregate condition of the water in them, on the law of change and the values of the 
temperature and humidity of the heating or cooling medium, etc. (Deliiski, 2004, 2009).  
The correct and effective control of the heating and cooling processes is possible only when 
its physics and the weight of the influence of each of the mentioned above as well as of 
many other specific factors for the concrete capillary porous body are well understood. The 
summary of the influence of a few dozen factors on the heating or cooling processes of the 
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capillary porous bodies is a difficult task and its solution is possible only with the assistance 
of adequate for these processes mathematical models.  
There are many publications dedicated to the modelling and computation of distribution of 
the temperature and moisture content in the subjected to drying capillary porous bodies at 
different initial and boundary conditions. Drying is fundamentally a problem of simulta-
neous heat and mass transfer under transient conditions. Luikov (1968) and later Whitaker 
(1977) defined a coupled system of non-linear partial differential equations for heat and 
mass transfer in porous bodies. Practically all drying models of capillary porous bodies are 
based on these equations and include a description of the specific initial and boundary 
conditions, as well as of thermo- and mass physical characteristics of the subjected to drying 
bodies (Ben Nasrallah & Perre, 1988, Doe, Oliver & Booker, 1994, Ferguson & Lewis, 1991, 
Kulasiri & Woodhead 2005, Murugesan et al., 2001, Zhang, Yang & Liu 1999, etc.). 
As a rule the non-defective drying is a very long continuous process, which depending on 

the dimensions of the bodies and their initial moisture content can last many hours, days or 

even months. However there are a lot of cases in the practice where the capillary porous 

bodies are subjected to a relatively short heating and/or cooling, as a result of which a 

significant change in their temperature and a relatively small change in their moisture 

content occurs. A typical example for this is the change in temperature in building elements 

under the influence of the changing surrounding temperature during the day and night or 

during fire.  

Widely used during the production of veneer, plywood or furniture parts technological 

processes of thermal treatment of wood materials (logs, lumber, etc.) with the aim of 

plasticizing or ennoblement of the wood are characterized by a controlled change in the 

temperature in the volume of the processed bodies, without it being accompanied by 

significant changes in their moisture content. In these as well as in other analogous cases of 

heating and/or cooling of capillary porous bodies the calculation of the non-stationary 

change in the temperature field in the bodies can be carried out with the assistance of 

models, which do not take into account the change in moisture content in the bodies. The 

number of such published models is very limited, especially in comparison to the existing 

large variety of drying models. 

Axenenko (1995) presents and uses a 1D model for the computation of the temperature 

change in the exposed to fire gypsum plasterboards. According to the author, after 

obtaining the temperature fields inside the plasterboard, changes in the material properties 

and temperature deformations can be calculated and used as initial data for the study of the 

structural behaviour of the entire plasterboard assembly. 

Considerate contribution to the calculation of the non-stationary distribution of the 

temperature in frozen and non-frozen logs and to the duration of their heating has been 

made by H. P. Steinhagen. For this purpose, he, alone, (Steinhagen, 1986, 1991) or with co-

authoring (Steinhagen, Lee & Loehnertz, 1987), (Steinhagen & Lee, 1988) has created and 

solved a 1-dimensional, and later a 2-dimensional (Khattabi & Steinhagen, 1992, 1993) 

mathematical model, whose application is limited only for u ≥ 0,3 kg.kg-1. The development 

of these models is dominated by the usage of the method of enthalpy, which is rather more 

complicated than its competing temperature method.  

The models contain two systems of equations, one of which is used for the calculation of the 
change in temperature at the axis of the log, and the other – for the calculation of the 
temperature distribution in the remaining points of its volume. The heat energy, which is 
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needed for the melting of the ice, which has been formed from the freezing of the 
hygroscopically bounded water in the wood, although the specific heat capacity of that ice is 
comparable by value to the capacity of the frozen wood itself (Chudinov, 1966), has not been 
taken into account. These models assume that the fibre saturation point is identical for all 
wood species and that the melting of the ice, formed by the free water in the wood, occurs at 
0ºC. However, it is known that there are significant differences between the fibre saturation 
point of the separate wood species and that the dependent on this point quantity of ice, 
formed from the free water in the wood, thaws at a temperature in the range between -2°C 
and -1°C (Chudinov, 1968). 
This paper presents the creation and numerical solutions of the 3D, 2D, and 1D 
mathematical models for the transient non-linear heat conduction in anisotropic frozen and 
non-frozen prismatic and cylindrical capillary porous bodies, where the physics of the 
processes of heating and cooling of bodies is taken into account to a maximum degree and 
the indicated complications and incompleteness in existing analogous models have been 
overcome. The solutions include the non-stationary temperature distribution in the volume 

of the bodies for each u ≥ 0 kg.kg-1 at every moment of their heating and cooling at 
prescribed surface temperature, equal to the temperature of the processing medium or 
during the time of convective thermal processing. 

2. Nomenclature 

а = temperature conductivity (m2.s-1) 
b = width (m) 
c = specific heat capacity (W.kg-1.K-1) 
d = thickness (m) 
D = diameter (m) 
L = length (m) 
q = internal source of heat, W.m-3.s-1 

R = radius (m) 

r  = radial coordinate: 0 ≤  r ≤ R (m) 
T = temperature (К) 
t = temperature (°C): t = T – 271,15 
u = moisture content (kg.kg-1 = %/100) 

x = coordinate on the thickness: 0 ≤  x ≤ d/2 (m) 

y = coordinate on the width: 0 ≤  y ≤ b/2 (m) 

z = longitudinal coordinate: 0 ≤  z ≤ L/2 (m)  

α = heat transfer coefficient between the body and the processing medium  
                   (W.m-2.K-1) 

ǃ = coefficients in the equations for determining of λ 

Ǆ = coefficients in the equations for determining of λ 
λ = thermal conductivity (W.m-1.K-1) 
ρ = density (kg.m-3) 
τ = time (s) 
φ = angular coordinate (rad) 
Δr  = distance between mesh points in space coordinates for the cylinders (m) 
Δx  = distance between mesh points in space coordinates for the prisms (m) 
Δτ = interval between time levels (s) 
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Subscripts: 

a = anatomical direction 

b = basic (for density, based on dry mass divided to green volume) 

bw = bound water 

c = center (of the body) 

cr = cross sectional to the fibers 

d = dimension 

e = effective (for specific heat capacity) 

fsp = fiber saturation point 

fw = free water 

i = nodal point in radial direction for the cylinders: 1, 2, 3, …, (R/Δr)+1 

 or in the direction along the thickness for the prisms: 1, 2, 3, …, [d/(2Δx)]+1 

j = nodal point in the direction along the prisms’ width: 1, 2, 3, …, [b/(2Δx)]+1 

k = nodal point in longitudinal direction: 1, 2, 3, …, [L/(2Δr)]+1 for the cylinders 

 or 1, 2, 3, …, [L/(2Δx)]+1 for the prisms 

m = medium 

nfw = non-frozen water 

0 = initial (at 0°C for λ) 

p = parallel to the fibers 

p/cr = parallel to the cross sectional 

p/r = parallel to the radial 

r = radial direction (radial to the fibers) 

t = tangential direction (tangential to the fibers) 

w = wood 

x = direction along the thickness 

y = direction along the width 

z = longitudinal direction 

Superscripts: 

n = time level 0, 1, 2, … 

20 = 20°С 

3. Mechanism of heat distribution in capillary porous bodies  

During the heating or cooling of the capillary porous materials along with the purely 

thermal processes, a mass-exchange occurs between the processing medium and the 

materials. The values of the mass diffusion in these materials are usually hundreds of times 

smaller than the values of their temperature conductivity. These facts determine a not so big 

change in defunding mass in the materials, which lags significantly from the distribution of 

heat in them during the heating or cooling. This allows to disregarding the exchange of 

mass between the materials and the processing medium and the change in temperature in 

them to be viewed as a result of a purely thermo-exchange process, where the heat in them 

is distributed only through thermo-conductivity.  

Because of this the mechanism of heat distribution in capillary porous bodies can be 

described by the equation of heat conduction (also known as the equation of Fourier-

Kirchhoff). Its most compact form is as follows:  
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 div( grad )
T

c T qρ λ
τ
∂

= − ±
∂

. (1) 

This form holds for each coordinate system and for each processing medium – both for 
immobile and mobile.  
In the most general case с, ρ and λ of the capillary porous bodies depend on Т and u, i.e. in 
equation (1) the functional dependencies participate с(Т,u), ρ(Т,u) and λ(Т,u).  
As it was described in the introduction, the water contained in these bodies can be found in 
liquid or hard aggregate condition. It is known that the specific heat capacity of the liquid 
(non-frozen) water at 0°С is equal to 4237 J.kg-1.K-1, and the specific heat capacity of ice is 
2261 J.kg-1.K-1, i.e. almost two times smaller (Chudinov, 1966, 1984). Because of this, the 
frozen water in capillary porous bodies causes smaller values of c in comparison to the case, 
when the water in them is completely liquid. 
The ice in capillary porous bodies can be formed from the freezing of higroscopically 
bounded water or of the free water in them.  It is widely accepted that the phase transition 
of water into ice and vice versa to be expressed with the help of the so-called “latent heat” in 
the ice of the frozen body. When solving problems, connected to transient heat conduction 
in frozen bodies, it makes sense to include the latent heat in the so-called effective specific 
heat capacity ce (Chudinov, 1966), which is equal to the sum of the own specific heat 
capacity of the body с and the specific heat capacity of the ice, formed in them from the 
freezing of the hygroscopically bounded water and of the free water, i.e.  

 e bw fwc c c c= + + . (2) 

When solving the problems, it must be taken into consideration that the formation and 
thawing of both types of ice in these bodies takes place at different temperature ranges. 
Because of this for each of the diapasons in equation (2) the sum of с with bwc  and/or fwc   
(shown below as an example) participates. When modeling processes of transient heat 
conduction in anisotropic capillary porous bodies it is also necessary to take into 
consideration that the thermal conductivity of these bodies λ apart from Т and u depends 
additionally on the direction of the influencing heat flux towards the anatomic directions of 
the body – radial, tangential and longitudinal to the fibers.  

4. Mathematical models for transient heat conduction in prismatic bodies 

If it is assumed, that the anatomical directions of a prismatic capillary porous body coincide 
with the coordinate axes, in the absence of an internal source of heat q in equation (1), the 
following form of this equation in the Cartesian coordinate system is obtained: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e

, , , , , ,
, ( , ) ,

, , , , , ,
, ,

x

y z

T x y z T x y z
c T u T u T u

x x

T x y z T x y z
T u T u

y y z z

τ τ
ρ λ

τ

τ τ
λ λ

⎡ ⎤∂ ∂∂
= +⎢ ⎥∂ ∂ ∂⎣ ⎦

⎡ ⎤ ⎡ ⎤∂ ∂∂ ∂
+ +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

. (3) 

After the differentiation of the right side of equation (3) on the spatial coordinates x, y, and z, 
excluding the arguments in the brackets for shortening of the record, the following 
mathematical model of the process of non-stationary heating or cooling (further calling  
thermal processing) of the capillary porous bodies with prismatic form is obtained: 
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22
r

e r 2

2 22 2
pt

t p2 2

T T T
c

T xx

T T T T

T y T zy z

λρ λ
τ

λλλ λ

∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠

∂⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂ ⎝ ⎠⎝ ⎠

 (4) 

with an initial condition 

 ( ) 0, , ,0T x y z T=  (5) 

and boundary conditions: 

• during the time of thermal processing of the prisms at their prescribed surface 
temperature, equal to the temperature of the processing medium:  

 ( ) ( ) ( ) ( )m0, , , ,0, , , ,0,T y z T x z T x y Tτ τ τ τ= = = , (6) 

• during the time of convective thermal processing of the prisms:  

 [ ]r
m

r

(0, , , ) (0, , , )
(0, , , ) ( )

(0, , , )

T y z y z
T y z T

x y z

τ α τ
τ τ

λ τ
∂

= − −
∂

, (7) 

 [ ]t
m

t

( ,0, , )( ,0, , )
( ,0, , ) ( )

( ,0, , )

x zT x z
T x z T

y x z

α ττ τ τ
λ τ

∂
= − −

∂
, (8) 

 [ ]p
m

p

( , ,0, )( , ,0, )
( , ,0, ) ( )

( , ,0, )

x yT x y
T x y T

z x y

α ττ
τ τ

λ τ
∂

= − −
∂

. (9) 

The system of equations (4) ÷ (9) presents a 3D mathematical model, which describes the 

change in temperature in the volume of capillary porous bodies with prismatic form during 

the time of their thermal processing at corresponding initial and boundary conditions.  

When the length of the subjected to thermal processing body exceeds its thickness by at least 

( ) p

r t

2
2 2,5

λ
λ λ

÷
+

 times, then the heat transfer through the frontal sides of the body can be 

neglected, because it does not influence the change in temperature in the cross-section, 

which is equally distant from the frontal sides. In these cases for the calculation of the 

change in T in this section (i.e. only along the coordinates x and y) the following 2D model 

can be used: 

 

222 2
tr

e r t2 2

T T T T T
c

T x T yx y

λλρ λ λ
τ

⎛ ⎞∂∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠
 (10) 

with an initial condition  

 ( ) 0, ,0T x y T=  (11) 

and boundary conditions: 
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• for thermal processing of the prisms at their prescribed surface temperature:  

 ( ) ( ) ( )m0, , ,0,T y T x Tτ τ τ= = , (12) 

• for convective thermal processing of the prisms:  

 [ ]r
m

r

(0, , ) (0, , )
(0, , ) ( )

(0, , )

T y y
T y T

x y

τ α τ
τ τ

λ τ
∂

= − −
∂

,  (13) 

 [ ]t
m

t

( ,0, )( ,0, )
( ,0, ) ( )

( ,0, )

xT x
T x T

y x

α ττ τ τ
λ τ

∂
= − −

∂
.  (14) 

When the thickness of the body is smaller than its width by at least 2 ÷ 3 times, and than its 

length by at least ( ) p

r

2 2,5
λ
λ

÷  times, then the non-stationary change in T, for example along 

the radial direction x of the body, coinciding with its thickness in the section, equally distant 
from the frontal sides, can be calculated using the following 1D model:  

 
22

r
e r 2

T T T
c

T xx

λρ λ
τ
∂ ∂ ∂ ∂⎛ ⎞= + ⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠

 (15) 

with an initial condition 

 ( ) 0,0T x T=  (16) 

and boundary conditions: 

• for thermal processing of the prisms at their prescribed surface temperature:  

 ( ) ( )m0,T Tτ τ= , (17) 

• for convective thermal processing of the prisms:  

 [ ]r
m

r

(0, ) (0, )
(0, ) ( )

(0, )

T
T T

x

τ α τ τ τ
λ τ

∂
= − −

∂
. (18) 

5. Mathematical models for transient heat conduction in cylindrical bodies 

The mechanism of the heat distribution in the volume of cylindrical capillary porous bodies 
during their thermal processing can be described by the following non-linear differential 
equation with partial derivatives, which is obtained from the equation (3) after passing in it 
from rectangular to cylindrical coordinates (Deliiski, 1979) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

e r 2 2 2

2 2 22
pr

p2 2

, , , , , , , ,1 1
, , ,

,, , , , , , , , ,1
,

T r z T r z T r z T r z
c T u T u T u

r rr r

T uT u T r z T r z T r z T r z
T u

T r T zr z

τ τ τ τ
ρ λ

τ φ

λλ τ τ τ τ
λ

φ

⎡ ⎤∂ ∂ ∂ ∂
= + + +⎢ ⎥

∂ ∂∂ ∂⎢ ⎥⎣ ⎦
⎧ ⎫ ∂∂ ⎡∂ ⎤ ⎡∂ ⎤ ∂ ⎡∂ ⎤⎪ ⎪+ + + +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

. (19) 
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If heating or cooling cylindrical bodies of material, which is homogenous in their cross 

section, the distribution of T in their volume does not depend on φ, but only depends on r 

and z. Consequently, when excluding the participants in the equation (19), containing φ and 

when also omitting the arguments in the brackets for the shortening of the record, the 

following 2D mathematical model is obtained, which describes the change of temperature in 

the volume of capillary porous bodies with cylindrical form: 
 

 

22
r

e r 2

22
p

p 2

1T T T T
c

r r T rr

T T

T zz

λρ λ
τ

λ
λ

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠⎝ ⎠
∂∂ ∂⎛ ⎞+ + ⎜ ⎟∂ ∂∂ ⎝ ⎠

 (20) 

 

with an initial condition  

 ( ) 0, ,0T r z T=  (21) 

 

and boundary conditions: 

• for thermal processing of the bodies at their prescribed surface temperature:  
 

 ( ) ( ) ( )m0, , ,0,T z T r Tτ τ τ= = , (22) 

 

• for convective thermal processing of the bodies:  
 

 [ ]r
m

r

(0, , ) (0, , )
(0, , ) ( )

(0, , )

T z z
T z T

r z

τ α τ τ τ
λ τ

∂
= − −

∂
, (23) 

 [ ]p
m

p

( ,0, )( ,0, )
( ,0, ) ( )

( ,0, )

rT r
T r T

z r

α ττ τ τ
λ τ

∂
= − −

∂
. (24) 

 

When the length of the body exceeds its diameter by at least ( ) p

r

2 2,5
λ
λ

÷  times, then the 

heat transfer through the frontal sides of the body can be neglected, because it does not 

influence the change in temperature of its cross section, which is equally distant from the 

frontal sides. In such cases, for the calculation of the change in T only along the coordinate r 

of this section, the following 1D model can be used: 

 
22

r
e r 2

1T T T T
c

r r T rr

λρ λ
τ

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠⎝ ⎠
 (25) 

with an initial condition  

 ( ) 0,0T r T=  (26) 

and with boundary conditions, which are identical to the ones in equations (17) and (18), but 

with derivative of T along r instead of along x in (18).   
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6. Transformation of the models for transient heat conduction in suitable 
form for programming  

Analytical solution of mathematical models, which contain non-linear differential equations 
with partial derivatives in the form of (4) and (20), is practically impossible without 
significant simplifications of these equations and of their boundary conditions.  
For the numerical solution of models with such equations the methods of finite differences 
or of the finite elements can be used. When the bodies have a correct shape – prismatic or 
cylindrical, the method of finite differences is preferred, because its implementation requires 
less computational resources from the computers. 

For the numerical solution of the above presented models for transient heat conduction it 
makes sense to use the explicit form of the finite-difference method, which allows for the 
exclusion of any simplifications. The large calculation resources of the contemporary 
computers eliminate the inconvenience, which creates the limitation for the value of the step 
along the time coordinate τΔ  by using the explicit form (refer to equation (47)). 
According to the main idea of the finite-difference method, the temperature, which is a 
uninterrupted function of space and time, is presented using a grid vector, and the 

derivatives 
T

x

∂
∂

, 
T

y

∂
∂

, 
T

z

∂
∂

 and 
T

τ
∂
∂

 are approximated using the built computational mesh 

along the spatial and time coordinates through their finite-difference (discrete) analogues. 

For this purpose the subjected to thermal processing body, or 1/8 of it in the presence of 
mirror symmetry towards the other 7/8, is “pierced” by a system of mutually perpendicular 
lines, which are parallel to the three spatial coordinate axes. The distances between the lines, 
also called as the step of differentiation, is constant for each coordinate direction (Fig. 1). The 
knots from 0 to 6 with temperatures accordingly from 0T  to 6T  are centers for the presented 
and neighboring it volume elements. The length of the sides of the volume element xΔ , yΔ  
and zΔ  are steps of differentiation, the size of which determines the distance between the 
separate knots of the mesh. The entire time of thermal processing of the body is also 
separated into definite number n intervals (steps) with equal duration τΔ . A volume 
element of a subjected to thermal processing body used for the solution of equation (4) is 
shown on Fig. 1, together with its belonging part from the rectangular calculation mesh. 
 

 

Fig. 1. A volume element of the body with a built on it calculation mesh for the solution of 
equation (4) using the explicit form of the finite-difference method  
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As a result of the described procedures, the process for the solution of the non-linear 

differential equation with partial derivatives (4) is transformed to the solution of the 

equivalent to it system of linear finite-difference equations, requiring the carrying out of 

numerous one-type, but not complicated algebraic operations. In the built in the body 3D 

rectangular mesh, the heat transfer is taken into consideration only along its gradient lines. 

For each cross point of three mesh lines, called a knot, a finite-difference equation is derived, 

using which the temperature of this knot is calculated.  

Finite-difference equations are obtained by substituting derivatives in the differential 

equation (4), with their approximate expressions, which are differences between the values 

of the function in selected knots of the calculation mesh. The temperature in knot 0 with 

coordinates ( ix , jy , kz , nτ ) on Fig. 1 is designated as n
kjiTT ,,0 = , and the temperature in 

neighboring knots accordingly as 1 1, ,
n
i j kT T +=  (knot 1), 2 1, ,

n
i j kT T −=  (knot 2), 3 , 1,

n
i j kT T +=  

(knot 3), 4 , 1,
n
i j kT T −=  (knot 4), 5 , , 1

n
i j kT T +=  (knot 5), and 6 , , 1

n
i j kT T −=  (knot 6). For the 

calculation of temperature 0T  in each following moment of time ( 1)n τ+ Δ  the values of the 

temperatures from 1T   to 6T  in the preceding moment n τΔ  need to be known.  

6.1 Discrete analogues of models for transient heat conduction in prismatic bodies 

The transformation of the non-linear differential equation with partial derivatives (4) in its 

discrete analogue with the help of the explicit form of the finite-difference method is carried 

out using the shown on Fig. 2 coordinate system for the positioning of the knots of the 

calculation mesh, in which the distribution of the temperature in a subjected to thermal 

processing capillary porous body with prismatic form is computed. 

 

 

Fig. 2. Positioning of the knots in the calculation mesh on 1/8 of the volume of a subjected to 

thermal processing prismatic capillary porous body 

For the carrying out of the differentiation of λ along Т in equation (4), it is necessary to have 

the function ( )Tλ  in the separate anatomical directions of the capillary porous body. For 

the purpose of determination of subsequent transformations of the models, we accept that 
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the functions ( )r Tλ ,  ( )t Tλ  and ( )p Tλ  are linear both for containing ice, as well as for not 

containing ice bodies and are described with an equation of the kind:  

 [ ]0 1 ( 273,15)Tλ λ γ β= + − . (27) 

Then after carrying out the differentiation of λ along Т in equation (4) and substituting in it 
with finite differences of the first derivative along the time and the first and second 
derivatives along the spatial coordinates, the following system of equations is obtained: 

( )
1 2

, , , , 1, , 1, , , , , , 1, ,
e 0r , , 2 2

2
, 1, , 1, , , , , , 1.

0t , , 2 2

2 ( )
1 273,15

2 ( )
1 ( 273,15)

n n n n n n n
i j k i j k i j k i j k i j k i j k i j kn

i j k

n n n n n
i j k i j k i j k i j k i j kn

i j k

T T T T T T T
c T

x x

T T T T T
T

y y

ρ λ γ β β
τ

λ γ β β

+
+ − −

+ − −

⎧ ⎫− + − −⎪ ⎪⎡ ⎤= + − + +⎨ ⎬⎣ ⎦Δ Δ Δ⎪ ⎪⎩ ⎭
⎧ + − −
⎡ ⎤+ + − +⎣ ⎦ Δ Δ

2
, , 1 , , 1 , , , , , , 1

0p , , 2 2

2 ( )
1 ( 273,15)

n n n n n
i j k i j k i j k i j k i j kn

i j k

T T T T T
T

z z
λ γ β β+ − −

⎫⎪ ⎪ +⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫+ − −⎪ ⎪⎡ ⎤+ + − +⎨ ⎬⎣ ⎦ Δ Δ⎪ ⎪⎩ ⎭

 (28) 

After transformation of the equation (28) it is obtained, that the value of the temperature in 
whichever knot of the built in the volume of a subjected to thermal processing body 3D 
mesh at the moment ( 1)n τ+ Δ  is determined depending on the already computed values 
for the temperature in the preceding moment n τΔ  using the following system of finite 
differences equations: 

( ) ( ) ( )

( ) ( ) ( )

1
, , , ,

2
0r

, , 1, , 1, , , , , , 1, ,2

2
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, , , 1, , 1, , , , , , 1,2
e
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2

1 273,15 2

1 273,15 2

1

n n
i j k i j k

n n n n n n
i j k i j k i j k i j k i j k i j k

n n n n n n
i j k i j k i j k i j k i j k i j k
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x
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c y

z

λ β β

λγ τ β β
ρ

λ
β

+

+ − −

+ − −

= +

⎡ ⎤⎡ ⎤+ − + − + − +⎢ ⎥⎣ ⎦⎣ ⎦Δ
Δ ⎡ ⎤⎡ ⎤+ + + − + − + − +⎢ ⎥⎣ ⎦⎣ ⎦Δ

+ +
Δ

( ) ( ) ( )2

, , , , 1 , , 1 , , , , , , 1273,15 2n n n n n n
i j k i j k i j k i j k i j k i j kT T T T T Tβ+ − −

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪

⎡ ⎤⎡ ⎤⎪ ⎪− + − + −⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

. (29) 

The initial condition (5) in the 3D mathematical model is presented using the following 
finite differences equation: 

 0
0

,, TT kji = . (30) 

The boundary conditions (6) ÷ (9) get the following easy for programming form: 

• for thermal processing of the prisms at their prescribed surface temperature: 

 1
m

1
1,,

1
,1,

1
,,1

++++ === nn
ji

n
ki

n
kj TTTT , (31) 

• for convective thermal processing of the prisms: 

 
1

2, , 1, , m1
1, ,

1, ,1

n n
j k j kn

j k
j k

T G T
T

G

+
+ +

=
+

  where  

( )
r

1, ,

0r 1, ,[1 273,15 ]
j k n

j k

x
G

T

α
λ γ β

Δ
=

+ −
, (32) 
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( )
1

,2, ,1, m1 t
,1, ,1,

,1, 0t ,1,

  where  
1 [1 273,15 ]

n n
i k i kn

i k i k n
i k i k

T G T x
T G

G T

α
λ γ β

+
+ + Δ

= =
+ + −

, (33) 

 

( )
1

, ,2 , ,1 m p1
, ,1 , ,1

, ,1 0p , ,1

  where  
1 [1 273,15 ]

n n
i j i jn

i j i j n
i j i j

T G T x
T G

G T

α

λ γ β

+
+ + Δ
= =

+ + −
. (34) 

In the boundary conditions (31) ÷ (34) is reflected the requirement for the used for the 
solution of the models computation environment of FORTRAN, that the knots of the mesh, 
which are positioned on the corresponding surface of the subjected to thermal processing 
prism, to be designated with number 1, i.e. 1 ≤ i ≤ M; 1 ≤ j ≤ N; 1 ≤ k ≤ KD (Dorn & 
McCracken 1972). Using the system of equations (29) ÷ (34) the distribution of the tempera-
ture in subjected to thermal processing prismatic materials can be calculated, whose radial, 
tangential and parallel to the fibers direction coincide with its coordinate axes х, у and z. 
Since the subjected to thermal processing in the practice prismatic materials usually do not 
have a clear radial or clear tangential sides, but are with partially radial or partially 
tangential, then in equation (29) instead of the coefficients λ0 in the observed two anatomical 
directions their average arithmetic value can be substituted, which determines the thermal 
conductivity at 0°С cross sectional to the body’s fibers λ0cr : 

 0r 0t
0cr

2

λ λλ +
= . (35) 

Also the thermal conductivity at 0°С in the direction parallel to the fibers λ0p can be 
expressed through λ0cr using the equation  

 0p p/cr 0crKλ λ= , (36) 

where the coefficient 0p
p/cr

0cr

K
λ
λ

=  depends on the type of the capillary porous material. 

For the unification of the calculations it makes sense to use one such step of the calculation 
mesh along the spatial coordinates ∆x = ∆y = ∆z (refer to Fig. 2). Taking into consideration 
this condition, and also of equations (35) and (36), the system of equations (29) becomes 

1
, , , ,

, ,
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1, , 1, , , 1, , 1, p/cr , , 1 , , 1 p/cr , ,2

e
2 2

, , 1, , , , , 1, p/cr , ,

1 ( 273,15)
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⎡ ⎤+ −⎣ ⎦
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+ − + − + 2
, , 1)n n

i j kT −

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪

⎡ ⎤⎪ ⎪−⎣ ⎦⎩ ⎭

. (37) 

In this case in equations (32) and (33) instead of rα and tα , crα  must be used, and instead of 

0rλ and 0tλ , 0crλ  must be used. 
The discrete analogue of the 2D model, in which equations (10) ÷ (14) participate, becomes 

 
( ) ( )

( ) ( )
, 1, 1, , 1 , 1 ,

1 0cr
, , 2 22

e , 1, , , 1

1 273,15 4n n n n n n
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n n
i j i j
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i j i j i j i j
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T T
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λ γ τ
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⎧ ⎫⎡ ⎤+ − + + + − +⎣ ⎦⎪ ⎪Δ
= + ⎨ ⎬⎡ ⎤Δ ⎪ ⎪+ − + −⎢ ⎥⎣ ⎦⎩ ⎭

 (38) 
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with an initial condition 

 
0

0
, TT ji =  (39) 

and boundary conditions: 

• for thermal processing of the prisms at their prescribed surface temperature: 

 1
m

1
1,

1
,1

+++ == nn
i

n
j TTT , (40) 

• for convective thermal processing of the prisms: 

 

( )
1

2, 1, m1 cr
1, 1,

1, 0cr 1,
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i i n
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T G T x
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λ γ β

+
+ + Δ
= =

+ + −
. (42) 

The discrete analogue of the 1D model, in which equations (15) ÷ (18) participate, becomes 

 ( ) ( ) ( ){ }21 0cr
1 1 12

e

1 273,15 2n n n n n n n n
i i i i i i i iT T T T T T T T

c x

λ γ τ
β β

ρ
+

+ − −
Δ ⎡ ⎤= + + − + − + −⎣ ⎦Δ

 (43) 

with an initial condition 

 
0

0 TTi =  (44) 

and boundary conditions: 
• for thermal processing of the prisms at their prescribed surface temperature: 

 1
m

1
1

++ = nn TT , (45) 

• for convective thermal processing of the prisms: 

 

( )
1

1 cr2 1 m
1 1

1 0cr 1

   where   
1 [1 273,15 ]

n n
n

n

xT G T
T G

G T

α
λ γ β

+
+ Δ+
= =

+ + −
. (46) 

Using the system of equations (37) and (30) ÷ (36) of the 3D case, (38) ÷ (42) of the 2D case 
and (43) ÷ (46) of the 1D case, the integration of the differential equation (4) and of its 
reduced along the spatial coordinates analogues, is transformed to a consequent 
determination of the values of T in the knots of the calculation mesh, built in the subjected to 
thermal processing prismatic material, where during the computations the distribution of T 
is used in the preceding moment, distanced from the current by τΔ . 
The value of the step τΔ  is determined by the requirement for stability of the solution of the 
corresponding system of equations. It must not exceed the smaller of the two values 
obtained from the equations 

 ( )
( )

( )
( )

22
e max maxe min min

d min d max

, ( , ), ( , )
  and  

, ,

c T u T u xc T u T u x

K T u K T u

ρρ
τ τ

λ λ
ΔΔ

Δ = Δ = ,  (47) 
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in which minT and maxT are correspondingly the smallest and biggest of all values of the 
temperatures, encountered in the initial and boundary conditions of the heat transfer when 
solving the mathematical model, and dK is a coefficient, reflecting the dimensioning of the 
heat flux when calculating the step τΔ : for a 3D heat flux d p/cr6K K= ; for a 2D heat flux 

d 4K =  and for a 1D heat flux d 2K = . 

6.2 Discrete analogues of models for transient heat conduction in cylindrical bodies 

For the obtaining of a discrete analogues of equations (20) ÷ (24) the explicit form of the 
finite-difference method has been used in a way comparable to the reviewed above case of 
2D thermal processing of prismatic bodies. The transformation of the non-linear differential 
equation with partial derivatives (20) in its discrete analogue is carried out using the shown 
on Fig. 3 coordinate system for the positioning of the knots from the calculation mesh, in 
which the distribution of temperature in the longitudinal section of subjected to thermal 
processing cylindrical body is calculated. The calculation mesh for the solution of the 2D 
model with the help of the finite-differences method is built on ¼ of the longitudinal section 
of the cylindrical body due to the circumstance that this ¼ is mirror symmetrical towards 
the remaining ¾ of the same section.  
 

 

Fig. 3. Positioning of the knots of the calculation mesh on ¼ of the longitudinal section of a 
subjected to thermal processing cylindrical body 

Taking into consideration equations (2) and (27) and using the coefficient 0p
p/r

0r

K
λ
λ

= , after 

applying the explicit form of the finite-differences method to equations (20) ÷ (24), they are 
transformed into the following system of equations:  
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 (48) 
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with an initial condition 

 0
, 0i kT T=  (49) 

and boundary conditions: 

• for heating or cooling of the bodies at their prescribed surface temperature: 

 1
m

1
1,

1
,1

+++ == nn
i

n
k TTT , (50) 

• for convective heating or cooling of the bodies in the processing medium: 
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1
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1, 1,
1, 0r 1,
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. (52) 

The discrete analogue of the 1D model, in which equations (25), (26), (17) and (18) 

participate, takes the form 
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e 1 1 1 1
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⎧ ⎫⎡ ⎤+ −⎣ ⎦⎪ ⎪Δ ⎪ ⎪= + ⎨ ⎬⎡ ⎤Δ ⎪ ⎪+ − + − + −⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

 (53) 

with an initial condition presented through equation (44) and boundary conditions, 

presented through equations (45) and (46), where in (46) instead of crα  and 0crλ , rα  and 

0rλ  are used. The value of the τΔ , which guarantees the obtaining of robust solutions for 

the presented models, is determined by the condition for stability, described by equation 

(47). When solving the 2D model d p/r4K K= , and when solving the 1D model d 2K = in 

(47).  

7. Mathematical description of the thermo-physical characteristics of the 
capillary porous bodies 

The mathematical description of the thermo-physical characteristics of the capillary porous 

bodies consists of the deduction of summarized dependencies as a function of the factors 

which have an influence on them, which with maximum precision correspond to the their 

experimentally determined values in the interesting for the practice sufficiently wide ranges 

for the change in the factors. It is necessary to have such a description when solving the 

above presented mathematical models of the transient heat conduction in capillary porous 

bodies.  

The following thermo-physical characteristics are present in these models: specific heat 

capacity, thermal conductivity and density of the capillary porous bodies. 

The mathematical description of the above mentioned characteristics of the wood, which is a 

typical representative of the studied bodies, is shown as an example below. 
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7.1 Mathematical description of the specific heat capacity of the wood 

The mathematical description of ec  is done according to equation (2) and is based on an 

analysis of the physics of the wood frosting and defrosting process. The description reveals 

the facts determined by Chudinov (1966, 1984), which state that the thawing of the ice from 

the situated in the wood free water occurs in the temperature range between 271,15 and 

272,15 K, and the thawing of the ice from the situated in the wood hygroscopically bounded 

water depends on the temperature, which is Т < 271,15 К. 

Besides this, at Т < 271,15, a certain portion, nfwu , from the hygroscopically bounded water 

is found in a non-frozen state, where the value of nfwu  is calculated by equation (58). 

The own specific heat capacity of the wood c is described mathematically using the shown 

on Fig. 4 experimentally determined in the dissertations of Kanter (1955) and Chudinov 

(1966) data for its change as a function of t and u. In the description apart from t and u, the 

independent parameter fspu  has been input, which is different for the separate wood species 

and reflects the influence of the anatomic characteristics of the wood on c.  

From the analysis on Fig. 4 it can be seen that at t = -2°C and all values for the content of 

water 0,3u >  kg.kg-1 during the thawing of wood a jump in the values of c is observed. This 

jump is explained by the phase transition of the frozen free water in the wood at the given 

values for t and u, when the influence on c of a significant difference in the specific heat 

capacity of the water in a liquid and hard aggregate condition is observed.  

On Fig. 4 the jump of c for 0,2u = kg.kg-1 occurs at a temperature around –17°С. It is 

characterized by the phase transition of the frozen part of the hygroscopically bounded 

water in the wood at these values for t and u. Both at 0u = , and at 0,1u =  kg.kg-1 there is a 

lack of a jump in the values for c, because even at –40°С there is no ice in the wood. 
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Fig. 4. Change in the specific heat capacity of the wood c depending on t and u  
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The following equations for fsp( , , )c T u u  have been derived, which are valid for all wood 
species for the intervals 0 ≤ u ≤ 1,2 kg.kg-1 and 223 ≤ Т ≤ 373 К (Deliiski 1990, 2003b, 2004): 
• When Т > 271,15 К, or when Т ≤ 271,15 К and simultaneously with this nfwu u≤ : 
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0002,0
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1

8262097
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+
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• When Т ≤ 271,15 К and simultaneously with this nfwu u> : 

 
u

uuTT
Kc c +

++++
=

1

197622610022,095,2526 nfw
2

, (56) 

 ( )
c

nfw

0,00075 271,15
1,06 0,04

T
K u

u

−
= + + , (57) 

where the content of non-frozen water in the wood nfwu  is equals to 

 ( ) ( )nfw fsp0,12 0,12 exp 0,0567 271,15u u T= + − ⎡ − ⎤⎣ ⎦ . (58) 

The calculated according to equation (58) change in nfwu  depending on t at fsp 0,2u = kg. kg-1, 

fsp 0,3u =  kg. kg-1 and fsp 0,4u = kg. kg-1 is shown on Fig. 5. 
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Fig. 5. Change in the content of non-frozen water in the wood nfwu  depending on t and fspu  

Taking into consideration the latent heat in the phase transition (crystallization) of the 
water, equal to 53,34.10  J.kg-1 (Chudinov, 1966) the following equation has been obtained 
for the calculation of fwc  (Deliiski, 2003b, 2004, 2009, Dzurenda & Deliiski, 2010):  

 fsp5
fw fsp3,34.10   @   271,15 272,15  &  

1

u u
c T u u

u

−
= < ≤ >

+
. (59) 
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The change in the calculated according to equation (59) values for fwc  depending on u 
and fspu  of the wood is shown on Fig. 6. It can be seen that the decrease in fspu  at a given u 
causes a proportional increase of the capacity fwc  due to the increase in the numerator in 
equation (59). The increase of u causes an increase of fwc , which is caused by the increase of 
the quantity of ice in the more humid wood, which was formed from the free water. 
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Fig. 6. Change in the specific heat capacity fwc depending on u and fspu  
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Fig. 7. Change in bwc of beech wood depending on T and u at fsp 0,31u = kg.kg-1 
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For the calculation of bwc  the following equation (Deliiski 2003b, 2009) has been obtained: 

 ( ) ( )4
bw fsp

exp 0,0567 271,15
1,8938.10 0,12

1

T
c u

u

⎡ − ⎤⎣ ⎦= −
+

   @   nfwu u> . (60) 

The change in the calculated according to equation (60) values for bwc  depending on T and 
u is shown on Fig. 7 for the comparatively more often subjected to thermal processing beech 
wood with fsp 0,31u =  kg.kg-1. 
When Т and u are outside of the indicated in equations (59) and (60) ranges, the values of 

fwc  and bwc  have been assumed to be equal to zero during the solution of the models. 

7.2 Mathematical description of the thermal conductivity of the wood  

A mathematical description of the thermal conductivity of the wood λ has been done using 
the shown on Fig. 8 experimentally determined in the dissertation by Kanter (1955) and 
Chudinov (1966) data for its change as a function of t and u. The graphs of this figure relate 
to the change in the thermal conductivity cross sectional to the fibers crλ  of birch wood, 
having bρ  = 515 kg.m-3 and fsp 0,3u =  kg.kg-1. 
The data for cr( , )t uλ  shown on Fig. 8, as well as the data for ( , )c t u  on Fig. 4 find a wide use 
in both the European (Shubin, 1990, Trebula, 1996, Videlov, 2003, etc.) and the American 
specialized literature (Steinhagen, 1986, 1991, etc.) when calculating various processes of 
thermal processing of wood. From the analysis on Fig. 8 it can be seen that at fspu u>  the 
temperature t = -2°C for the defrosting of the wood is critical, because at this temperature a 
jump in the values of crλ  is observed. This jump increases with the increase in u. It is 
explained by a significant difference in the thermal conductivity of the water in liquid and in 
hard aggregate condition. 
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Fig. 8. Change in the thermal conductivity cross sectional to the fibers crλ  of birch wood 
with b 515ρ =  kg.m-3 and fsp 0,30u = kg.kg-1 depending on t and u  
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In the description of crλ , as well as in that of ec , fspu  has been introduced as an independent 
variable for different wood species, instead of the ordinarily used averaged value of 

fsp 0,30u =  kg.kg-1 for all wood species. The following equations for the calculation of the 
coefficients of λ in equation (27) for the ranges 0 1,2u≤ ≤ kg.kg-1 and 223 373T≤ ≤  К have 
been derived (Deliiski, 1994, 2003b, Dzurenda & Deliiski, 2010): 

  ( )( )7 2 3
0 a b b0,165 1,39 3,8 3,3.10 1,015.10K uλ ν ρ ρ− −⎡ ⎤= + + +⎣ ⎦

, (61) 

  uv 07,015,0 −=   @  fsp 0,1u u≤ + kg.kg-1, (62) 

  uv 013,01284,0 −=  @ fsp 0,1u u> + kg.kg-1. (63) 

The equations, which have been suggested by Chudinov (1966, 1968) and shown in (Deliiski, 
1977) can be used for the determining of the values of the coefficient aK  in equation (61), 
which takes into account the influence on 0λ  of the heat flux towards the separate anatomic 
directions of the wood, i.e. for the determining of rλ , tλ  and pλ . The coefficients Ǆ and β in 
equation (27) are calculated by the following equations: 
• When Т > 271,15 К or when Т ≤ 271,15 К and simultaneously with this nfwu u< : 

 0,1=γ , (64) 

 ( ) 310.124,0
579

405,2 −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ρ
+=β

y

u   @  fsp 0,1u u≤ +  kg.kg-1, (65) 

 310.124,0
579

65,3 −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ρ
=β

y

 @  fsp 0,1u u> +  kg.kg-1. (66) 

• When Т ≤ 271,15 К and simultaneously with this fspu u≥ or when nfwT T≤ and 
simultaneously with this fsp0,125 u u≤ < : 

 ( )]15,1[34,01 fspuu −+=γ , (67) 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ρ
−−=β 124,0

579
0038,0)(002,0

b

fspuu , (68) 

 
0567,0

12,0

12,0
ln

15,271
fsp

nfw

nfw

−
−

+=
u

u

T .  (69) 

For the calculation of λ in the cases, when nfwT T≤ and simultaneously with this 

fsp0,125 u u≤ < , the value of  nfwλ  is initially determined by substituting nfwT T=  in 
equation (27) as well as the values of Ǆ from equation (64) and of  ǃ from equation (65). After 
this, with the usage of the coefficient ǃ from equation (68), the values of λ are calculated 
with the following equation:    

 ( )]1[ nfwnfw TT −β+λ=λ  @ nfw fsp& 0,125T T u u≤ ≤ ≤ . (70) 
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Equation (70), together with equation (27), make the calculation of λ applicable for all 
temperatures larger than –50°С (i.e. 223,15T =  К), because only at 223,15T = К and the 
minimum possible for the wood species fsp 0,2u = kg.kg-1, the value of nfwu  is nfw 0,125u =  
kg.kg-1 (Fig. 5). 

7.3 Mathematical description of the wood density  

The mathematical description of the wood density ρ depending on the moisture content u 
and basic wood density bρ which influence it has been carried out using the shown on Fig. 9 
experimental values set by (Sergovski, 1975) and shown in (Deliiski, 1977, 2003b). The 
following equations, which are applicable to all wood species, have been derived: 

 ( )uu

u

−ρ−
+

ρ=ρ
−

fspb
4b

10.3,91

1    @  fspu u≤ , (71) 

 )1(b u+ρ=ρ  @ fspu u> , (72) 

where according to (Siau 1984) 

 20
fsp fsp 0,001( 293,15)u u T= − − . (73) 

The values for 20
fspu  are given in the specialized literature (Siau, 1984, Videlov, 2003, etc.). 
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Fig. 9. Change in ρ of all wood species depending on u and bρ  

8. Computer solution of the models for transient heat conduction in the 
bodies 

For the numerical solution of the above presented models for transient heat conduction in 
prismatic and cylindrical capillary porous bodies a software package has been prepared in 
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FORTRAN (Dorn & McCracken, 1972), which has been input in the developed by Microsoft 
calculation environment of VISUAL FORTRAN PROFESSIONAL (Deliiski 2003b).  
The software package can be used for the calculation and colour visualization (either as 
animation of the whole process or as 3D, 2D, 1D graphs of each desired moment of the 
process) of the non-stationary distribution of the temperature fields in the materials 
containing or not containing ice during their thermal processing. The computation of the 
change in the temperature field in the volume of materials containing ice in the beginning of 
their thermal processing is interconnected for the periods of the melting of the ice and after 
that, taking into account the flexible spatial boundary of the melting ice.  
The computation of the temperature fields is done interconnectedly and for the processes of 
heating and consequent cooling of the materials, i.e. the calculation of the non-stationary 
change in temperatures in the volume of the materials during the time of their cooling 
begins from the already reached during the time of calculations distribution of temperature 
in the end of the heating. Based on the calculations it can be determined when the moment 
of reaching in the entire volume of the heated wood has occurred for the necessary optimal 
temperatures needed for bending of the parts or for cutting the veneer, as well as the stage 
of the ennoblement of the wood desired by the clients.  

8.1 Non-stationary thermal processing of prismatic wood materials 

With the help of the 3D model the change in t in the volume of non-frozen beech prisms 
with 0

0 0t C= and frozen beech prisms with 0
0 10t C= −  with d = 0,4 m, b = 0,4 m,  L = 0,8 m, 

b 560ρ =  kg.kg-1, u = 0,6 kg.kg-1 and 20
fsp 0,31u =  kg.kg-1 has been calculated during the time 

of thermal processing during 20 hours at a prescribed surface temperature 0
m 80 Ct = .  

The change in mt and t is shown on Fig. 10 in 6 characteristic points of the volume of the 
prisms with coordinates, which are given in the legend of the graphs. The increase in 

mt from 0
m0 0 Ct =  to 0

m 80 Ct =  is done exponentially with a time constant equal to 1800 s. 
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Fig. 10. 3D heating at 0
m 80 Ct = of frozen (left) and non-frozen (right) beech prisms with 

dimensions 0,4 x 0,4 x 0,8 m,  b 560ρ =  kg.kg-1, u = 0,6 kg.kg-1 and 20
fsp 0,31u =  kg.kg-1 

With the help of the 2D model the change in temperature in 5 characteristic points of cross 
section of non-frozen oak prisms with 0

0 0 Ct =  and frozen oak prisms with 0
0 10 Ct = −  has 

been calculated during the time of their thermal processing with prescribed surface 
temperature 0

m 60 Ct =  and during the time of the consequent cooling with surface 
convection at 0

m 20 Ct = .  
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The prisms have the following characteristics: d = 0,25 m, b = 0,40 m,  L > 1,0 m, bρ = 670 

kg.kg-1, u = 0,6 kg.kg-1 and 20
fsp 0,29u =  kg.kg-1. The heating of the prisms continues until the 

reaching of the minimally required for cutting of veneer temperature in their centre, equal to 
0

c 50 Ct = .  
During the time of cooling of the heated prisms a redistribution and equalization of t in their 
cross section takes place, which is especially appropriate for the obtaining of quality veneer.  
The change in mt and t is shown on Fig. 11 in 5 characteristic points from the cross section of 
the prisms with coordinates, which are given in the legend of the graphs. 
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Fig. 11. 2D heating at 0
m 60 Ct = and consequent cooling at 0

m 20 Ct = of frozen (left) and 
non-frozen (right) oak prisms with cross section 0,25 x 0,40 m, bρ = 670 kg.kg-1 and u = 0,6 
kg.kg-1  

8.2 Non-stationary thermal processing of cylindrical wood materials 

With the help of the 2D model the change in the t in the longitudinal section of non-frozen 

beech prisms with 0
0 0 Ct =  and frozen beech prisms with 0

0 2 Ct = −  with D = 0,4 m, L = 0,8 

m, b 560ρ =  kg.kg-1, u = 0,6 kg.kg-1 and 20
fsp 0,31u =  kg.kg-1 has been calculated during the 

time of thermal processing during 20 hours at a prescribed surface temperature 0
m 80 Ct = . 

The change in mt and t is shown on Fig. 12 in 4 characteristic points of the longitudinal 

section of the logs with coordinates, which are given in the legend of the graphs.  
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Fig. 12. 2D heating at 0
m 80 Ct = of frozen (left) and non-frozen (right) beech logs with    

R=0,2 m, L=0,8 m, bρ = 560 kg.kg-1, u = 0,6 kg.kg-1 and 20
fspu = 0,31 kg.kg-1 
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The change in t in the longitudinal section of non-frozen beech logs with 0
0 0 Ct =  and in 

frozen beech logs with 0
0 10 Ct = −  has been also calculated with the given above parameters 

during the time of a 3-stage high temperature thermal processing in autoclave and during 
the time of the consequent cooling with surface convection at 0

m 20 Ct =  (Fig. 13). 
 

-20

0

20

40

60

80

100

120

140

0 4 8 12 16

Time τ, h

T
e
m

p
e
ra

tu
re

 t
, 

0
С

tm

R=0, L=0

R/2, L/4

R/2, L/2

R, L/4

R, L/2

   

0

20

40

60

80

100

120

140

0 4 8 12

Time τ, h

T
e

m
p

e
ra

tu
re

 t
, 

C

tm

R=0, L=0

R/2, L/4

R/2, L/2

R, L/4

R, L/2

 

Fig. 13. 2D high temperature heating in autoclave and consequent cooling of frozen (left) 
and non-frozen (right) beech logs with R=0,2 m, L=0,8 m, bρ = 560 kg.kg-1 and u = 0,6 kg.kg-1  

Using 3D graphs and 2D diagrams a part of the results is shown on Fig. 14 from the 
simulation studies on the heat transfer in the radial and longitudinal direction of the frozen 
beech logs with t0 =  -2°C, whose temperature field is shown on the left side on Fig. 12. The 
non-stationary temperature distribution during specific time intervals of the thermal 
processing is clearly observed from the 3D graphs (left columns on Fig. 14). The 2D 
diagrams which show in more detail the results from the simulations can be used rather for 
qualitative than quantitative analysis of the thermal processing of the materials (right 
columns on Fig. 14).    
On the left parts of Fig. 10, Fig. 11, Fig. 12 and Fig. 13 the characteristic non-linear parts can 
be seen well, which show a slowing down in the change in t in the range from -2°С to      -
1°С, in which the melting of the ice takes place, which was formed in the wood from the 
freezing of the free water in it. This signifies the good quality and quantity adequacy of the 
mathematical models towards the real process of heating of ice-containing wood materials. 
The calculated with the help of the models results correspond with high accuracy to wide 
experimental data for the non-stationary change in t in the volume of the containing and not 
containing ice wood logs, which have been derived in the publications by (Schteinhagen, 
1986, 1991) and (Khattabi & Steinhagen, 1992, 1993). 
The results presented on the figures show that the procedures for calculation of non-
stationary change in t in prepared software package, realizing the solution of the 
mathematical models according to the finite-differences method, functions well for the cases 
of heating and cooling both for frozen and non-frozen materials at various initial and 
boundary conditions of the heat transfer during the thermal processing of the materials. 
The good adequacy and precision of the models towards the results from numerous own 
and foreign experimental studies allows for the carrying out of various calculations with the 
models, which are connected to the non-stationary distribution of t in prismatic and 
cylindrical materials from various wood species and also to the heat energy consumption by 
the wood at random encountered in the practice conditions for thermal processing. 

www.intechopen.com



 
Transient Heat Conduction in Capillary Porous Bodies   

 

173 

            
 

        
 

         
 

Fig. 14. 3D graphs and 2D contour plots for the temperature distribution with time in ¼      

of longitudinal section of beech log with R = 0,2 m, L = 0,8 m, u = 0,6 kg⋅kg−1 and t0 = -2°C 
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9. Conclusion 

This paper describes the creation and solution of non-linear mathematical models for the 
transient heat conduction in anisotropic frozen and non-frozen capillary porous bodies with 

prismatic and cylindrical shape and at any u ≥ 0 kg.kg-1. The mechanism of the heat 
distribution in the entire volume of the bodies is described only by one partial differential 
equation of heat conduction. For the first time the own specific heat capacity of the bodies 
and the specific heat capacity of the ice, formed in them from the freezing of the 
hygroscopically bounded water and of the free water are taken into account in the models. 
The models take into account the physics of the described processes and allow the 3D, 2D 
and 1D calculation of the temperature distribution in the volume of subjected to heating 
and/or cooling anisotropic or isotropic bodies in the cases, when the change in their 
moisture content during the thermal processing is relatively small. For the solution of the 
models an explicit form of the finite-difference method is used, which allows for the 
exclusion of any simplifications in the models. 
For the usage of the models it is required to have the knowledge and mathematical 
description of several properties of the subjected to thermal processing frozen and non-
frozen capillary porous materials. In this paper the approaches for mathematical description 
of thermo-physical characteristics of materials from different wood species, which are 
typical representatives of anisotropic capillary porous bodies, widely subjected to thermal 
treatment in the practice are shown as examples.  
For the numerical solution of the models a software package has been prepared in 
FORTRAN, which has been input in the developed by Microsoft calculation environment of 
Visual Fortran Professional. The software allows for the computations to be done for heating 
and cooling of the bodies at prescribed surface temperature, equal to the temperature of the 
processing medium or during the time of convective thermal processing. The computation 
of the change in the temperature field in the volume of materials containing ice in the 
beginning of their thermal processing is interconnected for the periods of the melting of the 
ice and after that, taking into account the flexible boundary of the melting ice. The 
computation of the temperature fields is done interconnectedly and for the processes of 
heating and consequent cooling of the materials, i.e. the calculation of the change in 
temperatures in the volume of the materials during the time of their cooling begins from the 
already reached during the time of calculations distribution of temperature in the end of the 
heating. It is shown how based on the calculations it can be determined when the moment 
of reaching in the entire volume of the heated and after that cooling body has occurred for 
the necessary optimal temperatures needed, for example, for bending of wood parts or for 
cutting the veneer from plasticised wooden prisms or logs.  
The models can be used for the calculation and colour visualization (either as animation of 
the whole process or as 3D, 2D, 1D graphs of each desired moment of the process) of the 
distribution of the temperature fields in the bodies during their thermal processing. The 
development of the models and algorithms and software for their solution is consistent with 
the possibility for their usage in automatic systems with a model based (Deliiski 2003a, 
2003b, 2009) or model predicting control of different processes for thermal treatment.  
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