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1. Introduction 

Natural convection is a phenomenon where fluid motion is generated by density changes 
due to the temperature or concentration variations in a gravity field. The computational 
modelling of systems with natural convection (Bejan, 2004) has become a highly popular 
research subject due to its pronounced influence in better understanding of nature as well as 
in the development of the advanced technologies. Melting of the polar ice caps, the global 
oceans dynamics, various weather systems, water transport, soil erosion and denudation, 
magma transport and manufacturing of nano-materials, improving casting processes, 
energetic studies, exploitation of natural resources, welding, casting and advanced 
solidifications are two typical contemporary example groups where natural convection 
plays an important role. This chapter deals with the numerical approach towards solution of 
this type of problems by a meshless technique.  
The main part of the solution procedure is focused on the general transport equation 
treatment and the pressure velocity coupling strategy. The transport phenomena are solved 
by a local meshless method and explicit time stepping. The local variant of Radial Basis 
Function Collocation Method (LRBFCM) has been previously developed for diffusion 
problems (Šarler and Vertnik, 2006), convection-diffusion solid-liquid phase change 
problems (Vertnik and Šarler, 2006) and subsequently successfully applied in industrial 
process of direct chill casting (Vertnik, et al., 2006).  
The fluid flow, which is generally a global problem, is treated by the proposed local iterative 
method. Instead of solving the pressure Poisson equation or/and pressure correction 
Poisson equation (Divo and Kassab, 2007) a more simplified local pressure-velocity coupling 
(LPVC) (Kosec and Šarler, 2008a) algorithm is proposed where the pressure-correction is 
predicted from the local mass continuity violation similar to the SOLA algorithm (Hong, 
2004).  
The presented solution procedure represents a variant of already developed global 
approach (Šarler, et al., 2004a, Šarler, 2005). In this chapter, such a local solution procedure is 
tested with the standard free fluid flow benchmark test (de Vahl Davis natural convection 
test (de Vahl Davis, 1983)). The test is especially convenient for benchmarking purposes as 
there are several numerical solutions published in the literature (Divo and Kassab, 2007, 
Hortmann, et al., 1990, Manzari, 1999, Prax, et al., 1996, Sadat and Couturier, 2000, Šarler, 
2005, Wan, et al., 2001).  
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In addition to the basic test, the proposed local solution procedure is tested on the tall 
cavity, natural convection in the porous media and melting of a pure material (Gobin - Le 
Quéré test) driven by a natural convection tests. Numerous analyses and comparisons with 
the published data are performed in order to assess the characteristics of the proposed 
numerical approach in details. The comprehensive verification procedure shows excellent 
agreements with the previously published data, based on different numerical methods. 

2. Governing equations  

2.1 De Vahl Davis test 

The de Vahl Davis natural convection benchmark problem is described by three coupled 
partial differential equations (PDEs). The PDEs are mass, momentum and energy 
conservation equations where all material properties are considered to be constant. The 
Boussinesq approximation is used for density hypothesis and the phenomena is thus 
described by the following system of equations  

 0∇ ⋅ =v , (1) 

 ( )( ) P
t

ρ ρ μ∂
+ ∇ ⋅ = −∇ +∇ ⋅ ∇ +

∂
v

vv v b , (2) 

 ( )( )p p

T
c c T T

t
ρ ρ λ∂

+ ∇ ⋅ = ∇ ⋅ ∇
∂

v , (3) 

 [ ]ref1 ( )T T Tρ β= − −b g , (4) 

where ( ), , , , , , , , , andx y T reft v v P Tρ μ λ βv b g  stand for time, velocity, density, pressure, 
viscosity, body force, thermal conductivity, thermal expansion coefficient, reference 
temperature and gravitational acceleration, respectively. The south and the north sides of 
the domain are thermally insulated while the east and the west sides are set to different 
temperatures. Due to the consideration of the viscous fluid within enclosure, the no-slip and 
impermeable velocity boundary conditions are used (Figure 1). The boundary conditions are 
formulated as follows   

 ( ), 0tΓ =v p ### , (5) 

 ( )0, 1xT p t= =# ## , (6) 

 ( )1, 0xT p t= =# ## , (7) 

 ( ) ( )0, 1, 0y y
y y

T p t T p t
p p

∂ ∂
= = = =

∂ ∂
# ## ## #

# #
, (8) 

and the initial conditions as follows 

 ( ), 0 0tΩ = =v p ### , (9) 
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 ( ), 0 0.5T tΩ = =p# ## , (10) 

where Ω  and Γ  stand for interior and boundary nodes indexes, respectively. 
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Fig. 1. The natural convection benchmark test schematics 

The introduced dimensionless quantities (embellishment ~) are defined as  

                yx
x y

W H

pp
p p= =

Ω Ω
# # , (11) 

 x W p y H p
x y

v c v c
v v

ρ ρ

λ λ

Ω Ω
= =# # , (12) 

 C

H C

T T
T

T T

−
=

−
# , (13) 

 2
p H

t t
c

λ
ρ

=
Ω

# , (14) 

where WΩ  and  HΩ  stand for domain width and height, respectively. The problem is 
characterized by three dimensionless numbers; the thermal Rayleigh number ( )RaT , the 
Prandtl number ( )Pr  and the domain aspect ratio ( )AR  defined as 

 
( ) 3 2

Ra = T H C H p
T

T T cβ ρ

λμ

− Ωg
, (15) 

 Pr pcμ

λ
= , (16) 

 RA W

H

Ω
=
Ω

, (17) 
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where the ratio between the Prandtl and the Rayleigh number is known as the Grashof 
number 

 
Ra

Gr=
Pr

T . (18) 

The de Vahl Davis benchmark is limited to the natural convection of the air in a rectangular 
cavity with aspect ratio RA 1=  and Pr 0.71.=  In this work additional tests are done for 
lower Prandtl number and higher aspect ratio in order to test the method in regimes similar 
to those in the early stages of phase change simulations of metal like materials where the 
oscillatory “steady-state” develops. 

2.2 Porous media natural convection 

A variant of the test, where instead of the free fluid, the domain is filled with porous media, 
is considered in the next test. Similar to the de Vahl Davis benchmark test, the porous 
natural convection case is also well known in the literature (Chan, et al., 1994, Jecl, et al., 
2001, Ni and Beckermann, 1991, Prasad and Kulacky, 1984, Prax, et al., 1996, Raghavan and 
Ozkan, 1994, Šarler, et al., 2000, Šarler, et al., 2004a, Šarler, et al., 2004b) and therefore a good 
quantitative comparison is possible.  
The only difference from de Vahl Davis case is in the momentum equation, and the 
consecutive velocity boundary conditions. Instead of the Navier-Stokes the Darcy 
momentum equation is used to describe the fluid flow in the porous media  

 ( ) P
t K

μρ ρ∂
+ ∇ ⋅ = −∇ − +

∂
v

vv v b , (19) 

where K stands for permeability. The main difference in the momentum equation is in its 
order. The Navier-Stokes equation is of the second order while the Darcy equation is of the 
first order and therefore different boundary conditions for the velocity apply. Instead of the 
no-slip boundary condition for velocity, the slip and impermeable velocity boundary 
conditions  are used. This is formulated as 

 ( ), 0tΓ ⋅ =v p n . (20) 

Instead of the thermal Rayleigh and Prandtl numbers, the filtration Rayleigh number 
defines ( )RaT  the problem 

 
( ) 2

Ra = T H C H p
F

K T T cβ ρ

λμ

− Ωg
. (21) 

2.3 Phase change driven by natural convection 

The benchmark test is similar to the previous cases with an additional phase change 
phenomenon added. The solid and the liquid thermo-physical properties are assumed to be 
equal. In this case the energy transport is modelled through enthalpy (h) formulation. The 
concept is adopted in order to formulate a one domain approach. The phase change 
phenomenon is incorporated within the enthalpy formulation with introduction of liquid 
fraction (fL). The problem is thus defined with equations (1), (2), (4) and     
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 ( )( )
h

h T
t

ρ ρ λ∂
+ ∇ ⋅ = ∇ ⋅ ∇

∂
v , (22) 

 ( ) Lph T c T f L= + , (23) 

with  

 

; 1

( ) ;

; 0

F L

F
L F L F

L

F

T T T

T T
f T T T T T

T

T T

δ

δ
δ

⎧ ≥ +
⎪

−⎪= + > >⎨
⎪
⎪ ≤⎩

. (24) 

The phase change of the pure material occurs exactly at the melting temperature which 
produces discontinues in the enthalpy field due to the latent heat release. The constitutive 
relation (24) incorporates a smoothing interval near the phase change in order to avoid 
numerical instabilities.  
 

 
Fig. 2. The pure phase change test schematics 

The boundary conditions are set to 

 ( ), 0tΓ =v p ### , (25) 

 ( )0, 1xT p t= =# ## , (26) 

 ( )1, 0x FT p t T= = =# ### , (27) 

 ( ) ( )0, 1, 0y y
y y

T p t T p t
p p

∂ ∂
= = = =

∂ ∂
# ## ## #

# #
, (28) 

and initial state to 

 ( ), 0 0tΩ = =v p ### , (29) 
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 ( ), 0 0T tΩ = =p# ## . (30) 

Velocity in the solid state is forced to zero by multiplying it with the liquid fraction. This 
approach introduces additional smoothing in the artificial “mushy” zone. This smoothing 
produces an error of the same magnitude as smoothing of the enthalpy jump at the phase 
change temperature. The problem is schematically presented in Figure 2. 
Additional dimensionless number to characterize the ratio between the sensible and latent 
heat, the Stefan number, is introduced   

 
( )

Ste= p H Cc T T

L

−
. (31) 

3. Solution procedure 

There exist several meshless methods such as the Element free Galerkin method, the 
Meshless Petrov-Galerkin method, the point interpolation method, the point assembly 
method, the finite point method, the smoothed particle hydrodynamics method, the 
reproducing kernel particle method, the Kansa method (Atluri and Shen, 2002a, Atluri and 
Shen, 2002b, Atluri, 2004, Chen, 2002, Gu, 2005, Kansa, 1990a, Kansa, 1990b, Liu, 2003), etc. 
However, this chapter is focused on one of the simplest classes of meshless methods in 
development today, the Radial Basis Function (Buhmann, 2000) Collocation Methods 
(RBFCM) (Šarler, 2007). The meshless RBFCM was used for the solution of flow in Darcy 
porous media for the first time in (Šarler, et al., 2004a). A substantial breakthrough in the 
development of the RBFCM was its local formulation, LRBFCM. Lee at al. (Lee, 2003) 
demonstrated that the local formulation does not substantially degrade the accuracy with 
respect to the global one. On the other hand, it is much less sensitive to the choice of the RBF 
shape and node distribution. The local RBFCM has been previously developed for diffusion 
problems (Šarler and Vertnik, 2006), convection-diffusion solid-liquid phase change 
problems (Vertnik and Šarler, 2006) and subsequently successfully applied in industrial 
process of direct chill casting (Vertnik, et al., 2006).  
In this chapter a completely local numerical approach is used. The LRBFCM spatial 
discretization, combined with local pressure-correction and explicit time discretization, 
enables the consideration of each node separately from other parts of computational 
domain. Such an approach has already been successfully applied to several thermo-fluid 
problems (Kosec and Šarler, 2008a, Kosec and Šarler, 2008b, Kosec and Šarler, 2008c, Kosec 
and Šarler, 2008d, Kosec and Šarler, 2009) and it shows several advantages like ease of 
implementation, straightforward parallelization, simple consideration of complex physical 
models and CPU effectiveness. 
An Euler explicit time stepping scheme is used for time discretization and the spatial 
discretization is performed by the local meshfree method. The general idea behind the local 
meshless numerical approach is the use of a local influence domain for the approximation of 
an arbitrary field in order to evaluate the differential operators needed to solve the partial 
differential equations. The principle is represented in Figure 3.  
Each node uses its own support domain for spatial differential operations; the domain is 
therefore discretized with overlapping support domains. The approximation function is 
introduced as    
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1

( ) ( )
BasisN

n n
n

θ α
=

= Ψ∑p p , (32) 

where , , andBasis n nNθ α Ψ  stand for the interpolation function, the number of basis 
functions, the approximation coefficients and the basis functions, respectively. The basis 
could be selected arbitrarily, however in this chapter only Hardy’s Multiquadrics (MQs) 

 ( ) ( ) ( ) 2/ 1n n
n CσΨ = − ⋅ − +p p p p p , (33) 

with σC standing for the free shape parameter of the basis function, are used. By taking into 
account all support domain nodes and equation (32), the approximation system is obtained. 
In this chapter the simplest possible case is considered, where the number of support 
domain nodes is exactly the same as the number of basis functions. In such a case the 
approximation simplifies to collocation. With the constructed collocation function an 
arbitrary spatial differential operator (L) can be computed  

 ( )
1

( )
BasisN

n n
n

L Lθ α
=

= Ψ∑p p . (34) 

In this work only five node support domains are used and therefore a basis of five MQs is 
used as well.  
 

Influence domain nodes

Calculated node

Compute

 
Fig. 3. The local meshless principle 

The implementation of the Dirichlet boundary condition is straightforward. In order to 
implement Neumann and Robin boundary conditions, however, a special case of interpolation 
is needed. In these boundary nodes the function directional derivative instead of the 
function value is known and therefore the equation in the interpolation system changes to 

 
1

( )
BasisN

BC n n
n

α
=

∂
Θ = Ψ

∂∑ p
n

, (35) 

in the Neumann boundary nodes and to  

 
1

( ) ( )
BasisN

BC n n n
n

a bα
=

∂⎛ ⎞Θ = Ψ + Ψ⎜ ⎟∂⎝ ⎠
∑ p p

n
, (36) 

in the Robin boundary nodes. 
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With the defined time and spatial discretization schemes, the general transport equation 
under the model assumptions can be written as  

 ( )21 0
0 0 0 0D S

t

θ θ θ θ ρ−
= ∇ −∇ ⋅ +

Δ
v , (37) 

where 0,1 0, , andD t Sθ Δ stand for the field value at current and next time step, general 
diffusion coefficient, time step and for source term, respectively.  
To couple the mass and momentum conservation equations a special treatment is required. 
The intermediate velocity ( v̂ ) is computed by 

 ( )( )0 0 0 0 0 0ˆ ( )
t

P μ ρ
ρ
Δ

= + −∇ +∇ ⋅ ∇ + −∇ ⋅v v v b v v . (38) 

The equation (38) did not take in account the mass continuity. The pressure and the velocity 
corrections are added  

 1ˆ ˆm m+ = +v v v
&

   1ˆ ˆm mP P P+ = +
&

, (39) 

where , andm v P
&&

 stand for pressure velocity iteration index, velocity correction and 
pressure correction, respectively. By combining the momentum and mass continuity 
equations the pressure correction Poisson equation emerges 

 2ˆ m t
P

ρ
Δ

∇ ⋅ = ∇v
&

. (40) 

Instead of solving the global Poisson equation problem, the pressure correction is directly 
related to the divergence of the intermediate velocity 

 2 ˆ mP
t

ρ
= ∇ ⋅

Δ
v

&
` , (41) 

where `  stands for characteristic length. The proposed assumption enables direct solving of 
the pressure velocity coupling iteration and thus is very fast, since there is only one step 
needed in each node to evaluate the new iteration pressure and the velocity correction. With 
the computed pressure correction the pressure and the velocity can be corrected as  

 1 1ˆ ˆˆ ˆ   and  m m m mt
P P P Pζ ζ

ρ
+ +Δ
= − ∇ = +v v

& &
,   (42) 

where ζ  stands for relaxation parameter. The iteration is performed until the criterion 
ˆ· Vε∇ <v  is met in all computational nodes.  

4. Results 

The results of the benchmark tests are assessed in terms of streamfunction ( )Ψ# , cavity 
Nusselt number ( )Nu  and mid-plane velocity components.  

 ( )
1

0

( ) x yv dpψ = ∫p p# ## # # , (43) 
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( )

Nu( ) ( ) ( )x
x

T
v T

p

∂
=− +

∂
p

p p p
# # ## # ##
#

. (44) 

The Nusselt number is computed locally on five nodded influence domains, while the 
streamfunction is computed on one dimensional influence domains each representing  an x  
row, where all the nodes in the row are used as an influence domain. The streamfunction is 
set to zero in south west corner of the domain ( )0,0 0ψ =# . 
The de Vahl Davis test represents the first benchmark test in the series and therefore some 
additional assessments regarding the numerical performance as well as the computational 
effectiveness are done. One of the tests is focused on the global mass continuity 
conservation, which indicates the pressure-velocity coupling algorithm effectiveness. The 
global mass leakage is analysed by implementing 

 
avg avg avg

1

avg

1
( ) ( ) ; ( 0)

( )

DN

n
D n

t

t t t t t
N

N t

ρ ρ ρ ρ ρ

ρ ρ ρ
=

+ Δ = + Δ ∇ ⋅ = =

Δ = − Δ

∑ v
, (45) 

where avg , andDNρ ρΔ  stand for average density, number domain nodes and density 
change. 
The pressure-velocity coupling relaxation parameter ζ  is set to the same value as the 
dimensionless time-step in all cases. The reference values in the Boussinesq approximation 
are set to the initial values.  

4.1 De Vahl Davis test 

The classical de Vahl Davis benchmark test is defined for the natural convection of air 
( Pr 0.71= ) in the square closed cavity ( RA 1= ). The only physical free parameter of the test 
remains the thermal Rayleigh number. In the original paper (de Vahl Davis, 1983) de Vahl 
Davis tested the problem up to the Rayleigh number 610 , however in the latter publications, 
the results of more intense simulations were presented with the Rayleigh number up to 810 . 
Lage and Bejan (Lage and Bejan, 1991) showed that the laminar domain of the closed cavity 
natural convection problem is roughly below 9Gr<10 . It was reported (Janssen and Henkes, 
1993, Nobile, 1996) that the natural convection becomes unsteady for 8Ra 2 10= ⋅ . This section 
deals with the steady state solution and therefore regarding to the published analysis, a 
maximum 8Ra 10T =  case is tested.  
A comparison of the present numerical results with the published data is stated in Table 1 
where the mid (0.5,0.5)ψ ψ=# # , avgNu , max(0.5, )x yv p# #  and max( ,0.5)x yv p# #  stand for mid-point 
streamfunction, average Nusselt number and maximum mid-plane velocities, respectively. 
The results of the present work are compared to the (de Vahl Davis, 1983) (a), (Sadat and 
Couturier, 2000) (b), (Wan, et al., 2001) (c) and (Šarler, 2005) (d). The specifications of the 
simulations are stated in Table 2. 
The temperature contours (yellow-red continuous plot) and the streamlines are plotted in 
Figure 4 with the streamline contour plot step 0.05 for 3Ra=10 , 0.2 for 4Ra=10 , 0.5 for 

5Ra=10 , 1 for 6Ra=10 , 1.5 for 7Ra=10  and 2.5 for 8Ra=10 .  The Nusselt number time 
development is  plotted in Figure 5 in order to characterize the system dynamics.  
Due to the completely symmetric problem formulation ( ( ), 0 0.5T tΩ = =p# ## ) the cold side and 
the hot side average Nusselt numbers should be the same at all times and therefore the 
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difference between the two can be understood as a numerical error of the solution 
procedure. A simple relative error measure is introduced as 

 
( ) ( )

( )

avg avg

max

Nu 1, Nu 0,
E=

Nu

x y x yp p p p= − =

p

# # # #

#
, (46) 

where avg maxNu and  Nu  stand for average and maximum Nusselt number. The Nusselt 
number as a function of time is presented in Figure 5. The hot-cold side errors ( )E  are 
plotted in Figure 6 and the mid-plane velocities are presented in Figure 7.  
 

 
 

 
 

 
 

Fig. 4. Temperature and streamline contour plots for de Vahl Davis benchmark test 

www.intechopen.com



 
Numerical Solution of Natural Convection Problems by a Meshless Method   

 

117 

 

Ra  
max
xv#  yp#  max

yv#  xp#  avgNu midψ# reference / DN  

3.679 0.179 3.634 0.813 1.116 1.174 (a) 
3.686 0.188 3.489 0.813 1.117  (c) 
3.566  3.544   1.165 (d) 
3.991 0.170 3.931 0.825 1.101 1.298 1677 
3.699 0.177 3.653 0.812 1.098 1.194 6557 

310  

3.695 0.179 3.645 0.820 1.089 1.196 10197 
410  19.51 0.120 16.24 0.823 2.234 5.098 (a) 

 19.79 0.120 16,17 0.823 2.243  (c) 
 19.04  15.80   4.971 (d) 
 19.81 0.120 16.24 0.825 2.075 5.155 1677 
 19.83 0.120 16.27 0.825 2.120 5.167 6557 
 20.03 0.120 16.45 0.830 2.258 5.240 10197 
510  68.22 0.066 34.81 0.855 4.510 9.142 (a) 

 68.52 0.064 34.63 0.852 4.534 9.092 (b) 
 70.63 0.072 33.39 0.835 4.520  (c) 
 67.59  32.51   8.907 (d) 
 67.65 0.070 33.67 0.850 4.624 8.896 1677 
 68.98 0.062 34.60 0.850 4.813 9.135 6557 
 69.69 0.069 35.03 0.860 4.511 9.278 10197 
610  216.75 0.038 65.33 0.851 8.798 16.53 (a) 

 219.41 0.038 64.43 0.852 8.832 16.29 (b) 
 227.11 0.04 65.4 0.86 8.8  (c) 
 211.67  61.55   15.91 (d) 
 195.98 0.045 63.73 0.850 6.1 15.15 1677 
 219.48 0.038 64.87 0.851 7.67 16.13 6557 
 221.37 0.039 65.91 0.860 8.97 16.51 10197 
710  687.43 0.023 145.68 0.888 16.59 28.23 (b) 

 714.48 0.022 143.56 0.922 16.65  (c) 
 632.60 0.020 127.70 0.925 10.43 24.93 1677 
 654.803 0.035 143.55 0.902 14.70 27.51 6557 
 687.20 0.021 149.61 0.900 16.92 28.61 10197 
810  2180.1 0.011 319.19 0.943 30.94 50.81 (b) 

 2259.08 0.012 296.71 0.93 31.48  (c) 
 2060.86 0.010 264.96 0.939 29.33 44.85 6557 
 2095.23 0.009 278.49 0.930 32.12 47.12 10197 

 

Table 1. A comparison of the results 
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Fig. 5. The Nusselt number as a function of time. The red plot stands for the domain average 
and the blue for the cold side average Nusselt number 
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Fig. 6. The Nusselt number hot-cold side error as a function of time 
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1677 nodes 6557 nodes 10197 nodes 
Ra  vε  

tΔ#  [s]ct PvN  tΔ# [s]ct PvN  tΔ#  [s]ct PvN  
/ρ ρΔ  

310  10e-4 1e-04 6 3208 1e-4 26 26837 5e-05 65 3662 3.37e-7 

410  10e-3 1e-04 5 3154 1e-4 15 3259 5e-05 51 3706 8.44e-6 

510  10e-2 1e-te04 5 1590 1e-4 14 1244 5e-05 43 4090 1.06e-5 

610  1 1e-04 4 5527 1e-4 14 5608 1e-05 283 144089 1.38e-4 

710  5 1e-05 6 18250 1e-5 85 71340 5e-06 270 184697 3.01e-4 

810  25    5e-6 192 193708 5e-06 387 219885 5.90e-4 

Table 2. Numerical specifications with time and density loss analysis 

 

 
 

 
 

Fig. 7. Velocity mid-plane profiles 

www.intechopen.com



 
Numerical Solution of Natural Convection Problems by a Meshless Method   

 

121 

4.2 Low Prandtl number - tall cavity test 

The next test is merely a generalization of de Vahl Davis with the same governing equations, 
initial state and boundary conditions, where the cold side of the domain is set to the initial 
temperature. The tall cavity with aspect ratio RA 1 / 4=  is filled with metal like (Al-
4.5%Cu) low Prandtl fluid Pr 0.0137=   at the Rayleigh number 5Ra 2.81 10= ⋅  is considered. 
The case is especially interesting due to its oscillating »steady-state« which is a result of a 
balance between the buoyancy and the shear forces. This case is also relevant for fluid flow 
behaviour at initial stages of melting of low Prandtl materials (metals), since it has a similar 
geometrical arrangement. The test case has been already computed by two different 
numerical methods (Založnik, et al., 2005) (spectral FEM and FVM) with good mutual 
agreement. Respectively, these solutions have been used for assessment of the present 
method as well.  
The temperature contours and the streamlines are plotted as continuous red to yellow fill 
and dotted lines with a contour step 0.2, respectively, in Figure 8.  
 

 
Fig. 8. The early stage time development and “steady-state“ oscillations of a tall cavity 
natural convection - streamline and temperature contour plots 

A comparison with the already published data is done on the analysis of the hot side 
Nusselt number time development ( )avgNu 0,x yp p=# # . To confirm the agreement of the 
results, the hot side Nusselt number frequency domains are compared, where the early 
stages of signal development are omitted. From Figure 9 one can see that the agreement 
with reference results is excellent. In Figure 9 the frequency domains for different node 
distributions are compared, as well. The Nu freq  stands for Nusselt number transformation 
to the frequency domain and f#  stands for dimensionless frequency. 
The presented case is highly sensitive; even the smallest changes in the case setup affect the 
results dramatically, for example, changing the aspect ratio for less than 1 % results in 
completely different flow structure. Instead of two there are three major oscillating vortices. 
On the other hand, the presented results are computed with the completely different 
numerical approach in comparison with the reference solutions (meshless spatial 
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discretization against FVM and Spectral method, explicit against implicit time discretization 
scheme and LPVC against SIMPLE pressure-velocity coupling) and still the comparison 
shows a high level of agreement. The presented comparison infers on a high level of 
confidence in the present novel meshless method and the local solution approach. 
 

    
Fig. 9. The hot side average Nusselt number time development comparison 

 

   
Fig. 10. The hot side average Nusselt number in the frequency domain 

4.3 Porous media test 

The next test is focused on the assessments of the solution procedure behaviour when 
working with fluid flow in the Darcy porous media. Again, a symmetrical differentially 
heated rectangular cavity is considered with impermeable velocity boundary condition. 
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FRa  RA  max
xv#  max

yv#  avgNu  midψ#  reference / DN  vε  tΔ#  

  1.979 2.863 (a)   

11.174 18.112 1.941 2.860 10197 0.01 1e-04 

11.214 17.928 1.962 2.853 40397 0.01 1e-05 
50  1 

11.236 17.845 1.975 2.848 160797 0.01 1e-05 

17.380 35.889 3.101 4.375 (a)   

  3.103  (b)   

  3.010  (c)   

17.500 37.454 3.040 4.510 10197 0.1 1e-04 

17.562 37.055 3.071 4.607 40397 0.1 1e-05 

210  1 

17.603 36.873 3.086 4.655 160797 0.1 1e-05 

  13.42  (b)   

72.560 441.771 13.044 17.062 10197 1 1e-04 

74.741 435.107 13.455 18.791 40397 1 1e-05 
310  1 

75.577 432.335 13.529 19.658 160797 1 1e-05 

257.394 4946.968 36.720 35.436 10197 1 5e-05 

287.375 4880.108 44.295 49.235 40397 5 5e-06 410  1 

287.375 4880.197 44.295 49.310 160797 5 1e-06 

  2.135 2.148 (a)   
50  0.5 

16.562 23.402 2.130 2.090 20297 0.1 1e-04 

210  0.5 27.109 52.136 3.720 3.509 20297 1 1e-05 

310  0.5 120.724 732.806 22.452 15.928 20297 1 1e-05 

  1.386 2.639 (a)   
50  2 

7.039 11.710 1.367 2.608 20297 0.1 1e-05 

210  2 10.779 23.283 11.944 4.630 20297 1 1e-05 

310  2 45.111 241.218 7.250 19.576 20297 1 1e-05 
 

Table 3. A comparison of the results and numerical parameters 

Three different aspect ratios are tested AR = [0.5,1,2] for filtration Rayleigh numbers up to 
104. The results are compared against (a) (Šarler, et al., 2000), (b) (Ni and Beckermann, 1991), 
and (c) (Prax, et al., 1996) with good agreement achieved (Table 3). In addition to the 
previously treated cases in quoted works, results for RaF = 103 and RaF = 104 are newly 
represented in this work. The pressure-velocity coupling algorithm was tested for up to 
160797 uniformly distributed nodes and it behaves convergent. The temperature and the 
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streamfunction contours are presented in Figure 11 for tall cavity, Figure 12 for low cavity 
and Figure 13 for square cavity with streamline steps 2, 5, 15 and 40 for RaF = 50, RaF = 102, 
RaF = 103 and RaF = 104, respectively. Additional comparison of the results with reference 
Finite Volume Method (FVM) solution, previously used in (Šarler, et al., 2000) for mid-plane 
velocities, hot side Nusselt number, mid-plane and top temperature profiles is done for case 
with AR = 1 and filtration Rayleigh number RaF = 100 (Figure 14). The comparison shows 
good agreement with the generally accepted solution. 
 

      
 

Fig. 11. Temperature and streamline contour plots for the test with RA 1 / 2=  

 

 
 

 
 

Fig. 12. Temperature and streamline contour plots for the test with, RA 2=  
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Fig. 13. Temperature and streamline contour plots for the test with RA 1=  
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Fig. 14. A comparison of cross-sections quantities. The mid-plane velocities, the mid-plane 
and top temperatures and hot side Nusselt number, respectively 

 

  
 

  
Fig. 15. Temperature and streamline contour plots for pure melting benchmark test 
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Fig. 16. The average liquid fraction as a function of time 

4.4 Melting 

All computations are performed on the 10197 uniformly distributed nodes with the pressure-
velocity relaxation parameter set to the same numerical value as the time-step. The organic-
like (high Prandtl Number) and metal-like (low Prandtl number) materials are subjected to 
the melting simulation in order to assess the method. The benchmark cases definitions 
together with the global mass continuity check and time-steps are presented in Table 4. The 
reference values in the Boussinesq approximation are set to the initial values. A comparison 
of the results or demonstration for all four cases is done at specific dimensionless time Ct# , 
stated in Table 4, unless stated otherwise. The streamfunction and temperature contour 
plots are shown in Figure 15 with streamline steps: 0.1, 0.5 and 4.0 for Cases 1,2 and 3,4, 
respectively. The phase change front comparison is demonstrated in Figure 17. 
The average liquid fraction ( avg

Lf ) time development for all four cases are presented in 
Figure 16 and the hot side average Nusselt number ( )avgNu ( 0, )x yp p=# #  in Figure 18. 
Additional node distribution convergence analysis is done for the Case 1 at time 10t =# . The 
results are presented for phase change front and mid-plane temperature profile in Figure 19. 
For mid-plane velocity profiles the results are shown in Figure 20. In Figure 21 the average 
cavity temperature ( )avgT#  and liquid fractions ( )avg

Lf  as a function of the number of 
computational nodes  shown. The results confirm convergent behaviour in all analyses. 
 

 Pr Ste Ra tΔ#  /
Ct

ρ ρΔ # Ct#

Case 1 0.02 0.01 2.5e4 1.0e-5 1.74e-6 10 

Case 2 0.02 0.01 2.5e5 5.0e-6 8.02e-6 10 

Case 3 50 0.1 1.0e7 1.0e-4 2.58e-5 0.1

Case 4 50 0.1 1.0e8 1.0e-5 1.31e-8 0.1
 

Table 4. The benchmark test definition 
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Fig. 17. The phase change front position comparison 
 

  
Fig. 18. The hot side average Nusselt number as a function of time 
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Fig. 19. The phase change front position (left) and mid-plane temperature (right) profile for 
Case 1 as a function of different discretizations at 10t =#  

 

 
Fig. 20. The mid-plane velocities profiles for Case 1 as a function of different discretizations 
at 10t =#  

 
Fig. 21. The cavity average temperature (left) and cavity average liquid fraction (right) as a 
function of domain nodes count 
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5. Conclusions 

In this chapter it is shown that the proposed numerical method as well as the proposed 
solution procedure performs well for the natural convection problems at different flow 
constitutive relations and regimes.  
A detailed analysis of the de Vahl Davis test has been performed in order to assess the 
method in details. The mass leakage test and the cold-hot side Nusselt number comparison 
both confirmed that the method is accurate when such type of problems are considered. 
Furthermore, a comparison with already published data shows good agreement as well. The 
test involving a tall cavity, where the method is compared to the two completely different 
approaches, gives excellent agreement in case of the oscillatory flow regimes. The time 
average hot side Nusselt number development shows good quantitative comparison with 
the benchmark data. To complete the tests, the natural convection in a Darcy momentum 
regime is performed. Again, good agreement with the published data is achieved.  
The final test is the phase change driven by a natural convection. The present results show 
good agreement with other approaches in terms of interphase boundary dynamics and 
complicated flow structures despite the simplest LRBFCM implementation. The Nusselt 
number oscillations in the Case 2 were already reported by Mencinger (Mencinger, 2003). 
The oscillations are a result of an unstable flow regime in the low Prandtl fluid, similar as in 
the tall cavity natural convection case, where the periodic solutions occur. The potential 
instabilities can occur in the natural convection in liquid metals, due to their low Prandtl 
number (Založnik, et al., 2005, Založnik and Šarler, 2006). Complex flow patterns and fast 
transients can occur already in laminar regimes at relatively low Rayleigh numbers. With 
another words; lowering the Prandtl number increases the nonlinearity of the natural 
convection. Generally, the main sources of instabilities for all presented cases stems from 
nonlinearities due to the complex liquid flow pattern and enthalpy behaviour at the phase 
change interphase. The enthalpy jump problem is partly resolved by introducing numerical 
smoothing of the phase change, at least enough to get stable results, but at the price of 
physical model accuracy. A detailed discussion on the parameter range with appearance of 
the flow physics based oscillations can be found in the work (Hannoun, et al., 2003). However, 
the results are in good agreement with the already known solutions (Gobin and Le Quéré, 
2000). There is a bit higher deviance in the Case 4, still the deviations of other authors for 
that case is very high and it is difficult to conclude which solution is more credible.  
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