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1. Intorduction 

Arboreal locomotion – traveling on the branches, twigs, and trunks of trees and woody 

shrubs – is very common among mammals. Most primates, many rodents, marsupials, 

carnivores, and even an occasional artiodactyl travel on arboreal substrates to forage, escape 

predators, and acquire shelter. Arboreal supports are usually far enough from the ground 

that a slip or fall could cause serious injury or death, or deprive the animal of a mate, food, 

or energy. Thus, stability is of great importance for an animal traveling on arboreal 

supports. The considerable variation among arboreal supports makes stability during 

locomotion a mechanical challenge. Supports vary in diameter, slope, compliance, texture, 

direction (that is, bends or curves in a branch), and number and distribution. Furthermore 

there may be interaction among these variables; for example, compliance varies with 

diameter – thinner branches are more compliant than thick branches. Also, the thin branches 

frequently have leaves that act like sails in the wind, causing even more movement in the 

substrate. Substrate texture often varies with diameter, where narrow twigs have smoother 

bark than large branches or trunks. Therefore one might expect a considerable number of 

morphological, behavioral, and biomechanical mechanisms to enhance stability on arboreal 

supports. 
Stability can be divided into two categories: static and dynamic. Static stability is the 
process by which objects at rest remain stable, i.e., neither move (translation) nor rotate 
about a point or axis. For example, a table is statically stable because the forces and 
moments (torques) produced by gravity (weight) are balanced by ground reaction forces 
and the moments generated by them. One way an animal might remain stable is by not 
moving and adhering to or gripping the support; this definition is the ultimate example of 
static stability in an animal. Although this strategy allows no movement, it is nevertheless 
a valid locomotor strategy for an animal attempting to travel on an arboreal support 
subjected to a sudden gust of wind or other disturbance (Stevens, 2003). This analysis also 
applies when the animal walks very slowly, but fails when it walks or runs at 
considerable speed. Because the distribution of the mass is changing from one instant to 
the next, the forces and torques necessary to maintain static stability would also change 
with time. That is, it requires an active control by the nervous system. Because stability is 
critical, it is very likely that the animal employs both active and passive control (Full et al., 
2002). Passive control can be due to dynamic processes of the animal’s body, and is 
referred to as dynamic stability. For example, a hiker might cross a stream or river by 
running across a fallen log; the rotation of the limbs around the hips and shoulder 
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generates a gyroscopic effect. This gyroscopic effect helps prevent the hiker from toppling 
off the log. In this chapter we will review the mechanics of static stability during arboreal 
locomotion. We will then expand on the mechanics of dynamic stability and its 
importance in arboreal locomotion. 

2. Static stability 

Slow lorises, as their name implies, usually move very slowly (although see Nekaris and 
Stevens, 2007). One of the mechanisms these primates use to avoid toppling from narrow 
arboreal supports is the same method used by the table. At all times the center of mass of 
the table or slow loris is supported by three or four legs, making toppling less likely (Fig. 1; 
Hildebrand, 1980).  
 

Left hindlimb 

at touchdown

Right hindlimb 

close to liftoff

Right forelimb 

at midstance

Left forelimb is in 

swing phase, not 

supporting weight

Center  

of mass

 

Fig. 1. Base of support (blue triangles) generated by the limbs in contact with the ground or 
substrate (based on Hildebrand, 1980). The footfall pattern illustrated here is a lateral 
sequence singlefoot gait (left hind, left fore, right hind, right fore, with footfalls spaced fairly 
evenly in time). The duty factor is approximately 75%. Note that the center of mass (black 
and white circle) is supported by three limbs at all times. 

Footfall pattern can affect whether the center of gravity passes through the polygon of 

support. First, at slow speeds, the duty factor usually increases (Fig. 2). Duty factor is the 

duration of time that a foot or hand contacts a substrate divided by the total stride cycle 

time. A duty factor of 100% indicates a hand or foot that never leaves the substrate 

(therefore no movement occurs); a zero duty factor means the animal is flying. Intermediate 

duty factors indicate how much time within each stride a hand or foot is in contact with the 

substrate. At slow speeds, when duty factor is high (Fig. 2), the likelihood is higher that 

three or four limbs are in contact with the substrate at any given moment. Three or four 

limbs create a support polygon through which the center of gravity may pass, maintaining 

stability against toppling due to the acceleration of gravity on the animal’s mass. However if 

the branch the animal travels on is very narrow, then the support polygon may be so narrow 
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that the center of mass is frequently outside the polygon. When this occurs, the weight of the 

animal will create a torque that can make the animal topple. 
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Fig. 2. Duty factor versus speed for gray short-tailed opossums walking and running on 
branches (red circles) and a flat trackway (blue Xs). 

The sequence of footfalls can also affect where the center of gravity falls within a support 
polygon (Fig. 1). The variation in footfall patterns among taxa, the possible adaptive benefits 
of different footfall patterns, and the relationship of footfall patterns and walking/running 
mechanics are elaborated upon by Hildebrand (1976, 1980), Cartmill et al., (2002, 2007), and 
Reilly and Biknevicius (2003). When animals walk, trot, or pace, the right and left hindlimbs 
and right and left forelimbs are perfectly out of phase (Fig. 3). For example: assume a stride 
begins at the time of right lower extremity touchdown, and ends just before the next 
touchdown of the same limb. At the time the person’s right lower extremity touches down 
while walking, the left lower extremity is halfway through the stride cycle. This also occurs 
with the right/left hindlimbs and forelimbs of quadrupeds. The phase relationship (limb 
phase) between the right hindlimb and right forelimb (or left hind and left fore) can be 
compared as a percentage of synchronization (Fig. 3). For example, if the right hindlimb and 
forelimb are synchronized (footfall and liftoff occur at the same time), the limb phase is 0%, 
and the animal is pacing. During a trot, the limb phase is 50% and the right forelimb is 50% 
ahead or behind whatever the right hindlimb is doing. During a lateral-sequence gait, the 
limb phase is between 0-50%. (Note: in this chapter, the word gait means footfall pattern, 
which is the definition typically used for non-human locomotor biomechanics. For human 
locomotor biomechanics, gait is any locomotion). After a right hindlimb lands, the right 
forelimb is the next limb to land. During this gait the center of gravity always passes 
through the support polygon (as long as three or four limbs are in contact with the ground. 
The diagonal-sequence gait features a limb phase between 50-100%. After a right hindlimb 
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lands, the left forelimb is the next to land. This gait has frequently been observed among 
arboreal primates, the marsupials Monito del Monte and woolly opossum, and the carnivore 
kinkajou (Pridmore, 1994; Schmitt and Lemelin, 2002; Lemelin and Cartmill, 2010), although 
not in the arboreal sugar glider (Petaurus breviceps; Shapiro and Young, 2010). The 
prevalence of diagonal-sequence gaits among arboreal quadrupeds, and the strong lack of 
prevalence among terrestrial animals, demands an explanation. Cartmill et al. (2002, 2007) 
suggest that the diagonal sequence gait is an adaptation for increasing stability while 
walking on narrow arboreal supports. They demonstrate that the diagonal sequence 
diagonal-couplets gait increases the likelihood that opposing limbs will simultaneously 
grip the narrow arboreal support (Cartmill et al., 2002, 2007) instead of ipsilateral limbs 
(limbs on the same side of the body). An animal using this gait will follow a hindlimb 
contact with a forelimb contact on the opposite side (thus, diagonal sequence). If the 
hindlimb and diagonal forelimb strike the substrate closely in time, the diagonal sequence 
gait is also a diagonal couplet gait. Furthermore, Lemelin and Cartmill (2010) point out 
that the diagonal sequence diagonal couplet gait maximizes the spatial distance between 
contralateral limbs, which might limit the vertical oscillation of the center of mass. When 
the opposing limbs of a diagonal sequence diagonal couplet gait (or a trot) apply 
medially-directed force (Schmitt, 2003; Lammers and Biknevicius, 2004; Schmidt and 
Fischer, 2010), they squeeze the branch and increase normal force. Friction force is 
therefore increased, which makes slipping less likely. Furthermore, opposing mediolateral 
impulses and angular impulses generated by opposing limbs might reduce the 
mediolateral deviation from the long axis of the branch (Shapiro and Raichlen, 2007). It is 
also possible, however, that the prevalence of diagonal sequence gaits among many 
arboreal taxa results from differences in duty factor and stance durations between fore- 
and hindlimbs (Stevens, 2006).  
It is also possible that the stability of an arboreal animal could be affected by the running 
gait it uses. During bounding locomotion, the forelimbs land simultaneously, followed by 
simultaneous contact of the hindlimbs (or vice-versa). If hindlimbs land simultaneously, but 
the forelimbs land at separate times, such a gait is referred to as a half-bound. A gallop is 
where forelimbs and hindlimbs land at different times; it differs from the gaits described in 
previous paragraphs (e.g., lateral sequence gait) because although the right and left 
hindlimbs (or right and left forelimbs) do not land at the same time, the hindlimb footfall 
contacts both occur before the forelimb contacts occur (or forelimbs can both land before 
hindlimbs; Bertram and Gutmann, 2008). During any footfall, energy is transmitted from the 
body of the animal to the substrate. If the animal runs on a narrow branch, the transfer of 
energy could cause the branch to oscillate, which could destabilize the running animal. 
Bertram and Gutmann (2008) suggest that a gallop, with its four separate footfalls, can 
reduce the amount of energy imparted to the ground or branch. We therefore predict that 
when an arboreal animal’s mass relative to branch diameter is substantial enough to cause a 
branch to oscillate and destabilize the animal, that animal will run with a gallop or half-
bound instead of a bounding gait. This prediction is supported by data presented by Young 
(2009), who showed that running marmosets and squirrel monkeys increase the lead time 
between right and left limb pairs when running on a narrow cylindrical trackway. For 
example, if the left forelimb lands first, the time interval (relative to stride duration) between 
left forelimb and right forelimb touchdowns is greater on the arboreal trackway. It appears 
that increasing duty factor and crouching during walking gaits has a similar effect of 
decreasing the vertical oscillation of a narrow arboreal support. Schmitt (1999) found that a 
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wide variety of arboreal primates crouch and walk with a large duty factor, which reduces 
the peak vertical force and vertical oscillation of the branch; Young (2009) found similar 
results among running marmosets and squirrel monkeys. 
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Pace

Trot

Lateral sequence 

singlefoot

Diagonal sequence 

singlefoot

RH+RF, LH+LF

RH, RF, LH, LF

RH+LF, LH+RF

RH/RF, LH/LFLateral sequence, lateral couplet

Lateral sequence, diagonal couplet RH, LF/LH, RF/

Diagonal sequence, diagonal couplet RH/LF, LH/RF 

RH, LF, LH, RF

RH, LF/LH, RFDiagonal sequence, lateral couplet

 

Fig. 3. Limb phase. Note that the configuration of the hindlimbs is the same in each drawing, 
and that the timing of the forelimb footfalls differs. Right limbs are shown as light gray and 
left limbs are dark gray. To the right of the quadruped drawings are footfall sequences (R = 
right, L = left, H = hindlimb, F = forelimb; + indicates footfalls occurring simultaneously, / 
indicates footfalls occurring close together in time, and a comma designates footfalls 
occurring relatively far apart in time. In the lateral sequence and diagonal sequence 
singlefoot gaits, all four footfalls are more or less evenly spaced in time. Each of the eight 
footfall patterns is defined by a limb phase (e.g., 25%) ± 6.25%. See Hildebrand (1976, 1980) 
for further detail. 

Many arboreal primates, the wooly opossum, and the kinkajou reduce the vertical 
oscillation of the center of mass while walking on branches (Schmitt, 1999; Schmitt and 
Lemelin, 2002; Schmitt et al., 2006; Young, 2009; Lemelin and Cartmill, 2010). A gait 
frequently employed to reduce vertical oscillation is the amble, first termed by Schmitt et al. 
(2006). During ambling locomotion, the duty factor is less than 50% and the footfall pattern 
is trot-like or diagonal sequence, but there is no aerial phase. In other words, at least one 
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foot is always in contact with the substrate. The lack of an aerial phase means that the center 
of mass is limited in its dorsal and ventral accelerations, which reduces peak vertical force, 
which in turn should reduce the vertical oscillation of thin branches (Young, 2009). The 
effects of branch oscillation or compliance on locomotor kinematics or kinetics are largely 
unexplored. Stevens (2003) demonstrated that primates change the movements of the limbs 
very little when a horizontal artificial branch trackway was oscillated in dorsoventral or 
mediolateral directions. However when the branch underwent twisting (rotating around the 
long axis), the quadrupedal primates stopped walking and appeared to freeze while branch 
movement was occurring (Stevens, 2003). Such rotational movement in thin branches could 
occur during strong winds, with the foliage acting like a sail. 
The height of the center of mass over the substrate only matters when the gravitational 
acceleration vector passing through the center of mass (that is, the center of gravity) falls 
outside the base of support created by the limbs. The probability of this occurring decreases 
if the animal crouches. If the center of gravity does leave the base of support, then 
gravitational acceleration acts on the mass, creating a force. The horizontal distance between 
the center of mass and the outside of the base of support multiplied by the force is a torque 
that could cause the animal to topple from the support. There are at least three possible 
solutions (Cartmill, 1985): 
1. Generate an opposing torque or other compensation; this requires a strong grip using 

opposable digits or opposing limbs. The tail may also contribute to reducing the total 
moment at any given instant (Larson and Stern, 2006). 

2. Hang upside-down under the branch; in doing so, the animal will not fall as long as its 
grip on the branch (via opposable digits, opposable limbs, or both) does not give out. 
But now the world appears upside down, and the animal must either exert constant 
force with its musculature, or possess anatomy that allows the grip to be maintained 
with claws and/or a locking mechanism.  

3. Reduce the length of the moment arm by crouching. (Cartmill, 1985, also points out that 
toppling moment can be reduced over evolutionary time by decreasing overall body 
size). 

Many arboreal taxa grip the supports with long fingers and toes, including an opposable 
thumb and/or hallux (Cartmill, 1972, 1974, 1985). Strong gripping allows the animal to 
exert powerful torques on the branch, and the reaction torques stop the animal from 
toppling off the sides of the branch (Cartmill, 1985). (Strong gripping and exerting torques 
to keep the center of mass within the base of support formed by the limbs could also be 
classified as dynamic stability because the torque and gripping forces may need to be 
adjusted as the animal moves). To avoid slipping, arboreal taxa must increase friction 
force or generated some form of adhesion. Many arboreal taxa have claws to create  
new contact surfaces that allow normal force to be more efficiently generated (Cartmill, 
1985). Some increase friction via pads that possess dermatoglyphic ridges (fingerprints) or 
other complex micro-structures that interact with the substrate to increase friction  
force (Cartmill, 1974; Hamrick, 2001)  Suction, capillary action, or dry adhesion are other 
ways that an arboreal animal can make slipping less likely (Cartmill, 1985; Autumn et  
al., 2006). 
The condition of static equilibrium depends on the details of the footfall pattern, details of 
the anatomy, and the direction and magnitude of the substrate reaction force and torque. 
This means that the force and torque components necessary for the condition of static 
stability at one instant during a stride would not provide stability at any other instant. 
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Therefore the condition of static stability will, in general, be violated except at very slow 
speeds. Thus another mechanism – dynamic stability – is responsible for the animal’s 
stability when the forces and torques are not fully balanced.  

3. Dynamic stability 

Dynamic stability can be divided into two categories for analysis: the interaction of the 
whole, moving body with the substrate, and the internal movements of the various body 
parts (rotation of the hindlimbs around the hip joints or flexion and extension of the torso, 
for example). As the whole body moves over an arboreal substrate, the substrate reaction 
forces act to rotate the body around the center of mass (except during the instances where 
the substrate reaction force passes directly through the center of mass). Thus the body 
rotates around the roll, yaw, and pitch axes (Lammers and Zurcher, 2011). Any rotation of 
the body will increase the likelihood of toppling from a narrow support, especially rotation 
around the roll axis (around the anteroposterior or craniocaudal axis). Therefore it is 
necessary that a moment rotating the body in one direction (rolling to the left, for example) 
is balanced by a moment rolling the body back to the right. This can be quantified by 
integrating torque or moment during step time (angular momentum or angular impulse). 
As long as the angular impulse averaged over a stride is zero (or nearly zero), the rotational 
dynamics prevents the toppling of the animal and it will remain stable. Some data suggest 
that net zero angular impulses are often not maintained within a single stride, and that two 
or more strides are necessary to maintain dynamic stability (Belli et al, 1995; Forner-Cordero 
et al., 2006; Lammers and Zurcher, 2011). Another caveat with maintaining net zero angular 
impulses is that at any instant, it is necessary that moment is non-zero (positive or negative). 
The condition that the sum of the forces and moments about the center of mass over a stride 
is tiny or zero is not sufficient to maintain stability because the equilibrium configuration 
can either be stable, unstable, or indifferent/neutral (Fig. 4; Full et al., 2002). In an unstable 
equilibrium condition, non-zero moments must be applied to maintain stability. An example 
of this condition is riding a bicycle. 
 

Equilibrium

Stable

Unstable

Indifferent 

or neutral

Unstable 

equilibrium

 

Fig. 4. In the stable configuration, a ball always rolls toward the equilibrium point at the 
bottom of the valley. In the indifferent or neutral configuration, the ball can roll anywhere 
and remain equally stable or unstable. In the unstable equilibrium condition, the ball is 
stable only if it remains perfectly balanced at the top of the hill. (See Full et al., 2002, for 
further detail). 

www.intechopen.com



   
Theoretical Biomechanics 

 

326 

In the static case, a person sitting on a bicycle will not topple if the person and bicycle are 
perfectly aligned along the vertical. However the person will fall if he/she and bicycle 
deviate even slightly from the upright position. On the other hand, a person riding a bicycle 
does not have any difficulty navigating even a rough terrain. This dynamic stability of the 
bicycle originates from the angular momentum of the wheels. The wheels rotate about their 
axis so that their angular momenta are approximately horizontal and perpendicular to the 
forward motion. If the bicycle is tilted away from the vertical position, the weight exerts a 
non-zero moment in the horizontal plane and directed in the forward direction. This 
moment drives the system back towards the equilibrium position. This is sometimes 
referred to as the “gyroscope effect.” The vector of the angular motion of the wheels rotates, 

or precesses, about the vector of the angular momentum with the angular frequency Ω (Fig. 
5). The spinning of the wheel provides a constant angular momentum for the bicycle. There is, 
of course, no analogue of a spinning wheel for animal locomotion. For dynamic stability 
during arboreal locomotion, the non-zero angular momentum stems from small distortions 
 

 

Fig. 5. A., a non-spinning bicycle wheel falls around axis y because mg exerts torque τ. B. 
When the bicycle wheel spins, it precesses around the z axis because of angular momentum 
L. (Adapted from Goldenstein, 2001). 
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of the animal’s body. This includes the rotation of the limbs around the hip joint or center of 

rotation of the scapula; it is possible that the flexion and extension of the animal’s trunk 

during galloping or bounding locomotion can also be included as a source of angular 

momentum. In human locomotion the angular momentum is due largely to the pendulum 

motion of legs and arms so the angular momentum must be different in the first and second 

half of a stride. In this manner, the average angular momentum during a stride is 

(approximately) zero. Indeed, Herr and Popovic (2008) analyzed the role of angular 

momentum in human walking, and found it to be highly regulated during a stride. The 

average angular momentum is nearly zero in all three spatial dimensions, but follows a 

distinct pattern during different phases that contributes to the stability. They found that 

angular momentum is important for the dynamic stability of human locomotion. Because 

the mass of the limbs of many quadrupedal arboreal animals (relative to their overall body 

mass) is small, the pendulum-like motion of the limbs might produce only a small angular 

momentum. For example, each forelimb of the Siberian chipmunk comprises about 4% of 

the total body mass, and hindlimbs are each about 6%. However many quadrupedal 

arboreal primates do possess relatively massive fore- and hind limbs, with much of the mass 

concentrated at the distal ends (Raichlen, 2006). Arboreal primates rely heavily on grasping 

hands and feet (Cartmill, 1972), and Raichlen (2006) suggests that the distal concentration of 

muscle mass contributes to the ability of primates’ grasping ability. We agree with Raichlen 

(2006), but we suggest that the distal mass concentration also has the effect of increasing 

arboreal stability via increased angular momentum of the limbs.   

4. Modeling 

In the following, we use the convention that vector quantities, e.g., velocity, are printed in 

bold face. To use our model, we collected kinematic data from Siberian chipmunks (Tamias 

sibiricus) running on a cylindrical trackway 2 cm in diameter. The chipmunks were 

videotaped using two high-speed video cameras (210 Hz). Each camera captured a different 

view, and we then used the APAS motion analysis system to digitize 14 points on the head, 

body, tail, and the right forelimb and hindlimb. Thus we obtained a dataset of 14 three-

dimensional points which described the position of the head, body, tail, and limbs every 

210th of a second. We chose trials where the chipmunks bounded so that right and left limb 

pairs were moving more or less synchronously, and their position and movement is 

symmetrical on either side of the sagittal plane. Using estimates of segment masses obtained 

from a dead specimen, each segment is assigned a mass ( im ) with coordinate vectors r ( )i n at 

the time nt . Thus the motion of each segment (e.g., body segments, limb segments, etc,) can 

be described. The digitized coordinates between consecutive video frames determine the 

coordinate vectors. The velocity vectors are then obtained: v r 1 r( ) [ ( ) ( )]/i i in n n t= + − ∆ , 

where 1n nt t t+∆ = − . 
The center of mass [ R ( )CM n ] is then found: 

r r

R

( ) ( )

( )
i i i i

i i
CM

i
i

m n m n

n
m M

= =

 


, 
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where M is the total mass. In the following notations, we suppress the discrete time 
dependence [that is, we eliminate the term n to make the expressions less cumbersome; e.g., 

RCM  rather than R ( )CM n ]. The total linear momentum ( P ) is: 

P V v ,CM i i
i

M m= =  

where VCM  is the velocity of the center of mass. The relative coordinates and velocities are 

defined, 

r R r

v V v

,

,
i CM i

i CM i

δ

δ

= +

= +
 

where riδ  and viδ  are coordinate and velocity vectors with respect to the center of mass. 

The total angular momentum ( L ) has a contribution from the center of mass motion and the 

relative motion of the body segments (Goldstein et al., 2001). 

L R V r vCM CM i i i
i

M mδ δ= × + ×  

When the center of pressure falls beyond the substrate, the animal is less likely to topple if 

the angular momentum around the mediolateral axis induces a precession-like rotation of 

the animal around the vertical axis.  

Our preliminary data from Siberian chipmunks running on a narrow (2 cm diameter) 

cylinder (Fig. 6) suggest that the movement of the head and torso generates very little 

rolling angular momentum, and that it is largely centered around the zero axis (that is, 

above the central axis of the cylindrical trackway). Pitch and yaw momentum are relatively 

large. The pitch momentum results from the flexion and extension of the body, which 

should contribute to the gyroscopic effect. The yaw momentum is quite unexpected. We 

noticed that the chipmunks often ran on the left side of the branch trackway, perhaps to 

avoid the lights or experimenters. The large pitch angular momentum observed here is 

supported by data from Lammers and Zurcher (2011), which were obtained via a force pole 

and digitized 240 Hz videography (Fig. 7). Our data show that pitch angular momentum 

(the area enclosed by the pitch torque versus step time plot) is considerably greater than 

yaw and rolling angular momenta. 

Full et al (2002) argue that neural control best enhances stability when it works with the 

natural, passive dynamics of the mechanical system. Our preliminary results show that the 

relative motion of the head, body, and limbs of the chipmunk generate the angular 

momentum, and thereby replace, partially at least, the role of legs and arms for human 

locomotion. We believe that the gyroscope effect associated with a non-zero angular 

momentum is critical for the initial response to a sudden external perturbation (e.g., sway or 

jerking of a branch) before the hands and feet have a chance to change their grip. Such a 

passive control is essential for the stability of the animal because it prevents the center of 

mass from deviating too much outside the base of support. Otherwise the body weight 

could produce a torque that is too large to be balanced by torques produced by substrate 

reaction forces and torques generated by the limb musculature. 
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Fig. 6. Torque around three axes during one stride of the Siberian chipmunk. A, right 
forelimb; B, right hindlimb. Blue triangles represent pitch torque (around a mediolateral 
axis); red squares represent yaw, and black diamonds are rolling torque. The data points are 
smoothed by using a moving average; points 1 and 2 are averaged, then 2 and 3, etc. The 
portions of the stride where yaw torque is large are the swing phases of the limbs, where the 
limb most likely moves laterally and medially more than during stance phase. Pitch torque 
reflects the flexion and extension of the limbs and body. Rolling torque remains relatively 
small. 
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Fig. 7. Torques (MGH = mass · acceleration of gravity · center of mass height) around the 
center of mass versus percent of step time during forelimb contacts (A, C, and E) and 
hindlimb contacts (B, D, and F). 
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5. Dynamic stability analysis 

We discuss two different methods of stability analysis. First, we consider only the angular 
momentum of the center of mass without considering the mass and velocities of the 
individual parts (L'):  

L R V' CM CMM= × . 

Some aspects of the dynamic stability of a bicycle can be used to understand stability during 

arboreal locomotion. Replacing total angular momentum L  with the term L '  from the 
center of mass motion would correspond to a bicycle sliding on a frictionless surface. The 
wheels do not spin, and the bicycle is mechanically unstable. The body is easily perturbed – 
if the center of pressure of the hand or foot of the animal or the wheel of the bicycle falls 
outside the support, a fall or stumble will probably occur. The system (arboreal mammal or 
bicycle) is dynamically stable if all internal degrees of freedom are included (that is, the 
mass, positions, and movements of each segment). Here we can add or subtract different 
modeled parts of the animal to determine their contributions to the angular momentum 
(and hence, to the dynamic stability): 

L R V r v''

, , ...
CM CM i i i

i k l m

M mδ δ

≠

= × + × . 

In the expression above, the angular momentum of the center of mass and the angular 
momenta of individual parts are taken into account, but we can remove body segments, tail 
segments, limbs, etc. to determine their contribution. The second term 

L r v
, , ...

i i i
i k l m

mδ δ δ

≠

= ×  provides the necessary angular momentum so that the animal’s 

center of mass precesses around the vertical axis, and thereby prevents the animal from 
falling from the branch.  

The second type of stability analysis uses tools to investigate the stability of dynamic 

systems for which the underlying equations of motion are not known (Strogatz, 1994). This 

method is based on the time-dependence of the dynamic variable Q at discrete times 

nt , ( )Q Q n= . For the present study, either the craniocaudal or mediolateral component of 

the angular momentum are useful choices for the quantity Q . In the phase portrait, the 

quantity 1( )Q n +  at time 1nt + is plotted versus the same quantity ( )Q n  at time nt . If we 

choose CCQ L=  (angular momentum around the craniocaudal axis), the phase portrait will 

consist of approximate circles, which is the signature of oscillatory motion. Circles in the 

phase portrait are referred to as “limit cycles” in the mathematical description of dynamic 

systems. Because the angular momentum (in this example, around the craniocaudal axis of 

the animal and the branch trackway) maintains a cycle, dynamic stability is maintained. 

Mathematical tools have been developed to quantify the stability of the system from limit 

cycles. This method has been used by Blickhan and coworkers (e.g., Seyfarth et al., 2002) to 

quantify the dynamic stability of human locomotion.  

6. The impact of understanding stability during arboreal locomotion 

Understanding how arboreal animals utilize static and dynamic stability during arboreal 
locomotion can provide insights to engineers attempting to build robots with legs. 
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Biologically-inspired robots might use dynamic stability strategies rather than static 
stability (Ritzmann et al., 2004). Also, the evolution of an arboreal animal’s morphology, 
behavior, and central nervous system probably assumes dynamic stability mechanisms 
are used at high speed. This is especially true among animals whose center of mass is 
relatively far from the ground or substrate. The limb posture of primitive tetrapods was 
considerably less upright than many modern mammals (including humans); thus we 
expect that dynamic stability mechanisms were less important to such sprawling animals. 
A thorough grounding in the importance of dynamic stability during locomotion might 
help to understand the anatomy and function of motor control systems and brains in 
general.  
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