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1. Introduction  

1.1 Articular cartilage 

Articular cartilage is a specialized connective tissue that covers the ends of the bones in the 
diarthrodial joints. The thickness of human articular cartilage is typically between 1-6 mm. 
The main functions of articular cartilage are to dissipate and distribute contact stresses 
during joint loading, and to provide almost frictionless articulation in diarthrodial joints. In 
order to accomplish these demanding tasks, articular cartilage has unique mechanical 
properties. The tissue is a biphasic material with an anisotropic and nonlinear mechanical 
behaviour. 
Articular cartilage is composed of two distinct phases. Fluid phase of the cartilage tissue 
consists of interstitial water and mobile ions. The water phase constitutes 68-85 % of  
the cartilage total weight and is an important determinant of the biomechanical properties 
of the tissue. Solid phase (or solid matrix) of the cartilage tissue consists mainly of collagen 
fibrils and negatively charged proteoglycans. The cell density is relatively small – in 
human adult tissue only ~2% of the total cartilage volume is occupied by the 
chondrocytes. Collagen molecules constitute 60-80% of the cartilage dry weight or 
approximately 10-20% of the wet weight. The collagen molecules assemble to form small 
fibrils and larger fibers that vary in organization and dimensions as a function of cartilage 
depth. The diameter of collagen fibers is approximately 20 nm in the superficial zone and 
70-120 nm in the deep zone, and it varies between different collagen types. The collagen 
fibrils of the cartilage tissue consist mainly of type II collagen, although small amounts  
of other collagen types can be also found in cartilage, e.g. collagen type VI is common 
form in the vicinity of cells (pericellular matrix). In addition to the collagen fibrils, 
proteoglycan macromolecules constitute 20-40% of the cartilage dry weight or 
approximately 5-10% of the wet weight. The proteoglycan aggrecan is composed of a 
protein core and numerous glycosaminoglycan (GAG) chains attached to the core. Many 
aggrecan molecules are further bound to a single hyaluronan chain to form a proteoglycan 
aggregate. 
The basic structure of the articular cartilage can be divided into four zones based on the 
arrangement of collagen fibril network (Benninghoff, 1925): 1) Superficial zone: here the 
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chondrocytes are flattened and aligned parallel to the cartilage surface. The collagen 
fibrils are relatively thin and run parallel to each other. The proteoglycan content is at its 
lowest and the water content is at its highest. 2) Middle zone: here the collagen fibrils have 
a larger diameter and they are oriented randomly. The cell density and water content is 
lower and proteoglycan content is higher than in the superficial zone. 3) Deep zone: here 
the diameter of the collagen fibrils is at its largest, and the collagen fibrils are oriented 
perpendicular to the articular surface. The cell density and water content are at their 
lowest, the proteoglycan content at its highest but the collagen content is variable. 4) 
Calcified cartilage: this thin layer is located between the deep zone and the subchondral 
bone and it joins the cartilage tissue to the subchondral bone. Here the chondrocytes 
usually express a hypertrophic phenotype. 
It is nowadays widely accepted that collagen fibrils are primarily responsible for the 

cartilage tensile stiffness and the dynamic compressive stiffness. In contrast, proteoglycans 

are primarily responsible for the equilibrium properties during compression, and fluid 

contributes to the dynamic and time-dependent properties of the tissue. For more 

comprehensive description of structure-function relationships of cartilage, the reader may 

consult e.g. the book by Mow et al. (2005). 

1.2 Meniscus 

Meniscus is a wedge-shaped fibrocartilaginous structure between femoral and tibial 

articular cartilage surfaces inside the knee joint capsule. The function of the meniscus is  

to bear and dissipate loads, provide stability to the knee joint, and protect articular 

cartilage from excessive loads by functioning as a shock absorber. Similarly as in articular 

cartilage, meniscus has complex mechanical properties in order to accomplish these  

tasks. 

Meniscus has also biphasic composition. Such as in cartilage, fluid phase of the meniscus 

consists of interstitial water and mobile ions. The water phase constitutes 60-70% of  

the meniscus total weight and is similarly important determinant of the biomechanical 

properties of the tissue. Solid phase of the meniscus consists of highly organized collagen 

fibril network, negatively charged proteoglycans and meniscal cells (fibrochondrocytes). 

Collagen molecules constitute 15-25 % of the meniscus wet weight. In contrast  

with articular cartilage, the collagen fibrils of meniscus consist mainly of type I collagen, 

i.e. also found in skin and bone tissues, although smaller amounts of types II, III, V, and 

VI can be also found in meniscus (McDevitt&Webber, 1990). Furthermore, meniscus 

contains significantly less proteoglycan than articular cartilage, only 1-2% of the wet 

weight. 

The basic structure of meniscus can be divided into different layers based on the 

arrangement of the collagen fibril network. Since the meniscus is located between femoral 

and tibial articular surfaces, it has two surface layers both in top and bottom. Below surface 

layers are intermediate layers and in the center of the meniscus is the central layer. At the 

femoral surface layer the collagen fibrils are relatively thick and run parallel to each other 

and the femoral surface. In contrast, at the tibial surface layer the collagen fibrils are 

oriented randomly. At inner layers, the arrangement of collagen fibrils is more variable. The 

central layer can be further divided into four zones in the axial plane: anterior and posterior 

parts of the central layer exhibit relatively parallelly organized collagen fibrils, middle part 

of the central layer exhibits irregular organization medially, wheras organization changes 
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more regular and circular-shaped at the lateral side. For a more comprehensive and 

graphical description of structure and organization of collagen fibril network in the different 

layers of meniscus, the reader is recommended to consult the study of human meniscus 

structure by Cui&Min (2007). 

Similarly as in cartilage, the collagen fibrils are mainly responsible for the tensile properties 

of meniscus and proteoglycans contribute strongly to the equilibrium response. Fluid has a 

significant role in carrying impact and dynamic loads. For more information of the general 

anatomical and functional properties of the meniscus, the reader may consult e.g. the review 

by Messner&Gao (1998). 

1.3 Ligaments and tendons 

Ligaments and tendons are soft tissues connecting bones to bones or bones to muscles, 

respectively. Their primary functions are to stabilize joints and transmit the loads, hold the 

joints together, guide the trajectory of bones, and control the joint motion area. Ligaments 

and tendons are also biphasic tissues having fluid and solid phases similarly as in articular 

cartilage and meniscus. Therefore, they also possess highly viscoelastic mechanical 

properties.  

The fluid phase constitutes 60-70% of the total weight of ligaments and tendons. Solid phase 

consists of highly organized longitudinal collagen fibril network (over 15 % of the wet 

weight), elastin network, and proteoglycans. Similarly than in meniscus, the collagen fibrils 

of ligaments and tendons consist mainly of type I collagen. Since ligaments and tendons 

have so tightly packed and organized long collagen fibril network they have extremely high 

tensile strength and nonlinear stress-strain behavior. 

For more information of the anatomical and functional properties of the ligaments and 

tendons, the reader may consult e.g. the book chapter by Woo et al. (2005). 

 

 
Collagen 

(wet weight) 

Proteoglycan 

(wet weight) 

Fluid 

(wet weight) 
Young’s modulus 

Articular 

cartilage 
10-20% (type II) 5-10% 68-85% 

~0.5 MPa 

(compression) 

Meniscus 15-25% (type I) 1-2% 60-70% 
~0.1 MPa 

(compression) 

Ligament 20-30% (type I) 
less than in 

cartilage 
60-70% 

>100 MPa 

(tension) 

Tendon 
more than in 

ligament (type I) 

less than in 

ligament 
60-70% 

>1000 MPa 

(tension) 

Table 1. Main compositional parameters and elastic properties of articular cartilage, 

meniscus, ligaments and tendons. 

2. Experimental mechanical characterization of skeletal soft tissues 

2.1 Introduction 

When skeletal soft tissues are mechanically tested, one can apply either force or deformation 

to it and then follow the other parameter. For example, constant or changing force may be 
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applied to a tissue and consequent change in the deformation is followed. Similarly, the 

change in force can be followed when constant or changing deformation is applied. 

Important parameter to describe the behavior of tissues under loading is strain (綱), defined 

as follows: 

香 = Δ健健待  (2.1)

where Δ健 is the change in thickness/length of a tissue sample, and 健待 is the original 

thickness/length. The normalization with the original thickness/length ensures that the 

deformation is comparable between tissue samples with different thickness or length. It is 

important to note that, according to the definition, the strain is a unitless quantity. 

Second important parameter in biomechanical testing is stress (購), which is defined as: 

購 = 繋畦待 (2.2)

where 繋 is the force applied to tissue, and 畦待 is the original cross-sectional area in which the 

force is acting. Again here, the normalization with the cross-sectional area ensures that the 

load is comparable between different cross-sectional areas. The unit of stress is Pa, and the 

definition of stress is fundamentally the same as for pressure.  

When both stress (購) and strain (綱) are defined as above, mechanical behavior/properties of 

different skeletal soft tissues can be compared regardless of the size and shape of the 

samples. If the relation between stress and strain is assumed linear, one obtains the Hooke’s 

linear model for solids from which the stiffness (elastic modulus) of the tissue can be calculated 

(see section 3.2). 

When the compressive or tensile stress is applied to, say, excised soft tissue sample, 

consequent strain occurs in the direction of the loading. However, when the strain occurs 

in one direction in a three-dimensional soft tissue sample, there is always corresponding 

strain in the perpendicular direction. For example, when a soft tissue sample is stretched 

in one direction it typically simultaneously compresses in perpendicular direction 

changing its shape. The change of shape is the third important parameter in 

biomechanical testing. It is quantified with the parameter called the Poisson‘s ratio (荒), 

defined as follows:  荒 = − 綱鎮銚痛綱  (2.3)

where 綱 is the strain in loading direction and 綱鎮銚痛 is the corresponding strain in horizontal 

direction. The Poisson’s ratio is the intrinsic parameter of a tissue, and it is unique for 

different materials. For example, an isotropic elastic material, e.g. rubber, has the 

Poisson’s ratio of 0.5 in compression which means that the volume of the material does 

not change during mechanical loading. Since the major component of all human soft tissues 

is interstitial water, mechanical loading causes water to flow out of the tissue. Finally, after 

the complete relaxation, i.e. in equilibrium state, no fluid flow or pressure gradients exist 

in a tissue and, consequently, the entire stress is carried by the solid matrix. Because of 

this time-dependent viscoelastic nature, all human soft tissues have typically lower 

Poisson’s ratios in compression than elastic materials, being in the range of 0.0 - 0.4 in 
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compression (Jurvelin et al., 1997; Korhonen et al., 2002a; Sweigart et al., 2004). On the 

other hand, Poisson’s ratios in tension, shown for anisotropic materials, can be even more 

than 1 (Hewitt et al., 2001; Elliott et al., 2002). 

It is also possible to apply load or deformation to a soft tissue sample parallel to the surface. 

This requires fixed contact between the tester and the surface of the sample. Then, so called 

shear strain (紘) is defined as follows: 

紘 = Δ健鎚朕勅銚追健待  (2.4)

where Δ健鎚朕勅銚追 is the deformation of a surface point parallel to the surface, and 健待 is the sample 

thickness (perpendicular to the surface). Similarly, shear stress (酵) is defined as follows: 

酵 = 繋鎚朕勅銚追畦待  (2.5)

where 繋鎚朕勅銚追 is the force applied parallel to the surface, and 畦待 is the cross-sectional area of 

the contact between the tester and the surface of the sample. 

2.2 Mechanical testing geometries 

Mechanical testing geometries for soft tissues can be divided into compression, tension, 

bending and torsion. We will now consider only compression and tension since they are the 

most relevant geometries for skeletal soft tissues. 

Compression testing is widely used especially for determination of mechanical properties 

of articular cartilage and meniscus. This is a relevant choice since also in vivo, e.g. during 

normal walking cycle, articular cartilage and meniscus experiences external compressive 

forces. When the tissue is mechanically tested in compression, three different 

measurement configurations can be used: unconfined compression, confined compression 

and indentation. In unconfined compression, a soft tissue sample is compressed between 

two smooth metallic plates to a predefined stress or strain. This geometry allows 

interstitial fluid flow out of the tissue only in the lateral direction (Fig. 1). In confined 

compression, a soft tissue sample is placed in a sealed chamber and, subsequently, 

compressed with a porous filter (Fig. 1). In this geometry the interstitial fluid can only 

flow axially through the tissue surface into the filter. In indentation geometry, a soft tissue 

is compressed with a cylindrical, typically plane-ended or spherical-ended indenter (Fig. 

1). In this geometry, fluid flow outside the indenter-tissue contact point is possible in both 

the lateral and axial directions. It should be emphasized that the indentation is the only 

compressive geometry which is not limited into the laboratory use. Since indentation 

testing does not require a preparation of separate tissue samples it can be also performed 

in vivo. For example, stiffness of femoral articular cartilage has been measured during 

arthroscopy in vivo (Vasara et al., 2005). 

Tensile testing is widely used especially for determination of mechanical properties of 

ligaments and tendons, while it is less used for the characterization of cartilage and 

meniscus properties. Again, this is a relevant choice for these tissues since they exhibit 

mainly tensile stresses in vivo. In tensile testing, a soft tissue sample is fixed with two 

ends, e.g. by using metallic clamps, and the sample is then streched to a predefined stress 

or strain. 
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Fig. 1. Unconfined, confined and indentation loading geometries for testing of mechanical 
properties of articular cartilage. 

2.3 Destructive and nondestructive testing protocols 

In all experimental mechanical testing geometries it is possible to conduct both destructive 
and non-destructive testing. In non-destructive protocol tissue is tested with small strains or 
loads and all the changes induced to the tissue are reversible. In contrast, destructive 
protocol involves larger strains or loads inducing non-reversible changes to a tissue. 
Most common non-destructive testing protocols are called creep and stress-relaxation. These 
tests can be conducted both in compression and tension geometries. In creep test, constant 
compressive or tensile stress is applied to a tissue and corresponding strain is followed as a 
function of time (Fig. 2). In stress-relaxation test, predefined compressive or tensile strain is 
applied and corresponding stress is followed as a function of time (Fig. 2). All biphasic and 
viscoelastic soft tissues exhibit first the relaxation phase in both testing protocols, and finally 
when the tissue reaches its equilibrium state, no fluid flow or pressure gradients exist. 
Consequently, after the relaxation phase, strain (in creep test) or stress (in stress-relaxation test) 
stabilizes at the constant level, and then the entire load is carried by the solid matrix of a tissue. 
Destructive testing is typically conducted for skeletal soft tissues only in tension geometry. 
Then it is common to follow the tissue mechanical behaviour from the stress-strain curve. At 
the beginning phase of tension test of skeletal soft tissue, one can observe so called toe 
region (Fig. 3). In this region, the relation between stress and strain is nonlinear and the 
slope is increasing with increased loading. The reason for the increasing slope is the 
straightening of the wavy-like collagen fibrils. After the collagen fibrils are completely 
straightened begins the elastic region (Fig. 3). In this region, the stress and strain are linearly 
related and the slope of the curve is called the Young’s modulus of tissue. In the elastic 
range, all changes of a tissue are still reversible, i.e. if the stress is removed tissue returns to 
the original strain. All non-destructive tests, such as creep and stress-relaxation tests 
mentioned above, should be conducted in this elastic region. It should be also noted that in 
human skeletal soft tissues the loading rate affects the slope of the elastic range, i.e. higher 
loading rate results to steeper slope and higher Young’s modulus value.  
When the stress is further increased from the elastic region, the slope of the curve changes 
and the plastic region begins. This is called the yield point (Fig. 3). After the yield point 
tissue begins to experience destructive changes, e.g. microfractures in the collagen fibril 
network. In the plastic region irreversible changes have occurred in a tissue and it does not 
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return to the original strain although the stress would be completely removed. The yield 
point is one typical parameter reported for soft tissues under destructive testing. 
After the plastic region, the sudden failure of the tissue occurs and stress disappears (Fig. 3). 
The location of the breakdown is called the failure point, which is one typical parameter 
reported for soft tissues under destructive tensile testing. 
 

 

Fig. 2. Stress-relaxation (left) and creep (right) testing protocols. 

 
 

 

Fig. 3. Typical stress-strain curve for destructive tensile testing of skeletal soft tissues. 
Collagen fibril straightening and failure, related to different regions of the stress-strain 
curve, are also schematically shown. 
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3. Biomechanical modeling of skeletal soft tissues 

3.1 Introduction 
In this section, we will present the development of computational models applied for the 
characterization of biomechanical properties of cartilage, meniscus, ligaments and tendons. 
We will start from traditional linearly elastic models that can be applied for the 
characterization of static or dynamic properties of tissues by a simple Hookean relation. As 
the linear elastic model is only applicable for small strains, we will also introduce 
hyperelastic models that can be applied for nonlinear problems in larger strains. 
Second, we will show traditional solid viscoelastic models, i.e. Maxwell, Voigt and Kelvin 
models. We will show the basic equations of these models. Then, we will take fluid into 
account in the model and present a biphasic, poroelastic model. We will present biphasic 
models with isotropic and anisotropic solid matrixes, improving the prediction of 
experimentally found mechanical behavior of fluid-saturated soft tissues. 
Finally, we will present the fibril reinforced biphasic model of cartilage. In this model, the 
solid matrix is divided into fibrillar and non-fibrillar parts. We will also present different 
forms of nonlinearities formulated especially for the collagen fibers and the swelling 
properties due to the fixed charge density of proteoglycans. At the end of the section, we 
will summarize the application of the presented constitutive models for cartilage, menisci, 
ligaments and tendons. 

3.2 Linear elastic model 
The most traditional and simplest mechanical model for skeletal soft tissues is Hooke’s 
linear elastic model for solid materials. This model assumes the linear relation between 
stress and strain, corresponding to a spring fixed from one end and compressed or strecthed 
from the other. Hooke’s model can be presented as follows: 

 購 = 継ϵ, (3.1) 

where 購 is stress, 綱 is strain, and E is the elastic (Young’s) modulus: This model is easy to 
apply for various testing geometries and protocols, and consequently stiffness of a tested 
soft tissue can be expressed by the Young’s modulus. However, it should be realized that 
this simple model is limited to one-dimensional geometry and it assumes tissue as elastic 
and isotropic material. Hooke’s law can be generalized to three-dimensional geometry and 
then also the Poisson‘s ratio (荒) is needed to describe the mechanical behaviour of the tested 
soft tissue (see section 3.5.1). Obviously, this is still not adequate for viscoelastic and 
anisotropic skeletal soft tissues. 
Hooke’s law can be further generalized for an anisotropic elastic material, when it can be 
expressed as a matrix form: 

 [購] = [系][香], (3.2) 

where [購] is the stress tensor, [綱] is the strain tensor, and [系] is the stiffness matrix. In order 
to completely characterize the mechanical behaviour of anisotropic and elastic tissue, 
altogether 21 stiffness components are needed in [系]. For the material with mutually 
perpendicular planes of elastic symmetry, i.e. orthotropic material, nine elastic constants are 
needed in [系]. Furthermore, if one assumes the same mechanical properties in one plane 
(e.g. in x–y plane) and different properties in the direction normal to this plane (e.g. z-axis), 
five independent elastic constants are needed in [系] and the material is referred as 
transversely isotropic (see section 3.5.2). 
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Even though one could determine all required stiffness components for an anisotropic 
elastic material, the mechanical behaviour of skeletal soft tissues still cannot be described by 
this linear model. In general, the linear elastic model can be applied for skeletal soft tissues 
when strains are small and the stress-strain relationship can be assumed linear. However, 
many soft tissues experience large strains in vivo. Furthermore, time-dependent behaviour 
(due to viscoelasticity) and different mechanical responses in compression and tension, both 
typical to skeletal soft tissues, cannot be described with this simple model. Therefore, more 
sophisticated models are needed for the mechanical characterization of skeletal soft tissues. 

3.3 Hyperelastic model 
Many biological tissues experience large deformations and then the stress-strain relationship 
becomes nonlinear. These materials are called hyperelastic materials. There are several 
hyperelastic material models developed, e.g. Neo-Hookean, Arruda-Boyce, Mooney-Rivlin, 
Ogden models. We will present here one of these models (Neo-Hookean model) that has 
been typically applied for many biological soft tissues.  
The Neo-Hookean material model uses a general strain energy potential for finite strains: 

 戟 = 	 系怠岫荊怠拍 − ぬ岻 +	 怠帖迭 岫蛍勅鎮 − な岻態, (3.3) 

where C1 and D1 are material parameters, 蛍勅鎮 is the elastic volume ratio and 荊怠拍	is the first 
deviatoric strain invariant defined as: 

 荊怠拍 = 	 膏怠博博博態 + 膏態博博博態 + 膏戴博博博態
, (3.4) 

where 膏̅沈 = 	 蛍貸迭典	膏沈 are the deviatoric stretches, 蛍 is is the total volume ratio, and 膏沈 are the 
principal stretches. The material parameters are given by: 

系怠 = 罫待に , 経怠 = ぬ岫な − に荒岻罫待岫な + 荒岻 (3.5)

where 罫待 is the initial shear modulus and ν is the Poisson’s ratio. For linear elastic materials, 
the shear modulus can be expressed with the Young’s modulus (継 = に罫待岫な + 荒岻岻. 

3.4 Viscoelastic models 
There are three typical viscoelastic solid materials that have been applied for biological soft 
tissues; Maxwell, Voigt and Kelvin (Standard linear solid) (Fig. 4). In contrast to the elastic 
or hyperelastic materials, these models have a time-dependent component that enables the 
modelling of creep, stress-relaxation and hysteresis. 
The solid voscoelastic models are composed of elastic and viscous components. The elastic 
component is that shown in eq. 3.1, while the viscous component (dashpot) is velocity 
dependent as: 

繋 = 考 穴捲穴建  (3.6)

where 考 is the damping coefficient, F is force and x is deformation/elongation. F and x can 
also be replaced with stress (σ) and strain (ε). In the Maxwell model, both the spring and 
dashpot experience the same force, while their deformation and velocity are different. The 
total velocity becomes: 
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穴捲穴建 = な航 穴繋穴建 + 繋考  (3.7)

In the Voigt model, the forces of the spring and dashpot elements are different, but their 
deformation is the same. Thus, the total force is the sum of forces acting on the spring and 
dashpot: 

繋 = 航捲 + 考 穴捲穴建  (3.8)

In the Kelvin model, the combination of two springs and one dashpot complicates the 
equation of motion. The same principles as with the Maxwell and Voigt models can be 
applied, i.e. the elements that are side by side, undergo the same deformation but different 
force, while those that are arranged consecutively, experience the same force but different 
deformation. Subsequently, it can be proven that the equation of motion becomes: 

繋 + 酵敵 穴繋穴建 = 継眺 磐捲 + 酵蹄 穴捲穴建卑 (3.9)

where 酵敵 = 考怠航怠 , 酵蹄 = 考怠航待 磐な + 航待航怠卑 , 継眺 = 航待. (3.10)

There are several textbooks that derive creep and stress-relaxation equations of the 
aforementioned viscoelastic models. See for instance Fung (2004). 
 

 

Fig. 4. Solid viscoelastic models: a) Maxwell, b) Voigt, c) Kelvin. F=force, µ=spring constant, 

η=damping coefficient, x=distance. 
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3.5 Biphasic, poroelastic model 

The biphasic model is the most traditional model of articular cartilage and other fluid-

saturated tissue which takes the interstitial fluid movement into account (Mow et al., 1980). 

In the biphasic theory, the solid matrix and fluid are assumed to be intrinsically 

incompressible and nondissipative. The only dissipative factor is the fluid flow in the tissue. 

The constitutive equations, i.e, the stress-strain relations for the solid, fluid and entire tissue 

are given by: 

 時史 = −剛鎚喧薩 + 時撮, (3.11) 

 時讃 = −剛捗喧薩, (3.12) 

 時嗣 = 時史 + 時讃 = −喧薩 + 時撮, (3.13) 

where 時史, 時讃 and 時嗣 are solid, fluid and total stress tensors, respectively, 剛鎚 and 剛捗 are 

volume fractions for the solid and fluid, respectively, 喧 is the fluid pressure, 薩 is the unit 

tensor and 時撮 is the effective solid stress tensor. 

For the biphasic material with linearly elastic Hookean solid matrix (see eqs. 3.1 and 3.2), the 

effective solid stress can be written as follows: 

 時撮 = 察而, (3.14) 

where 察 is the stiffness matrix and 而 is the elastic strain tensor. The effective solid stress 

tensor alone resists the deformation at equilibrium, when the fluid flow has ceased. 

With both solid and fluid phases considered intrinsically incompressible and homogenous, 

the balance of mass (continuity equation) is given by: 

 繕 ∙ 岫剛鎚士史 + 剛捗士讃岻 = 宋, (3.15) 

where 士史and 士讃 are velocity vectors of the solid and fluid phases. Neglecting inertia effects 

(acceleration = 0), the momentum equations for the solid and fluid phases are: 

 繕 ∙ 時詩 + 慈詩 = 宋, (3.16) 

慈史 = −慈讃 = 剛捗態倦 岫士讃 − 士史岻 (3.17)

 繕 ∙ 時嗣 = 宋, (3.18) 

where permeability 倦 is related to the diffusive drag coefficient 計 by: 

倦 = 剛捗態計 . (3.19)

The permeability 倦 can be defined to be dependent on the porosity and void ratio, i.e. ratio 

of fluid to solid content, according to the following equation: 

倦 = 倦待 磐 な + 結な + 結待卑暢, (3.20)
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where 倦待 is the initial permeability, 結待 and  結 are initial and current void ratios, and 警 is a 
positive constant. The void ratio or fluid fraction has also been modeled in a depth-
dependent manner, e.g, 

 捗 = ど.8ど − ど.などz, (3.21) 

where z is the tissue depth (0: cartilage surface, 1:cartilage-bone interface). 

3.5.1 Isotropic model 

The elastic parameters of the biphasic poroelastic tissue can be obtained from the equation 

3.14. The simplest form of linear elasticity is the isotropic case. The stress-strain relationship 

becomes: 

時撮 = 帳岫怠袋程岻岫怠貸態程岻 琴欽欽
欽欽欣な − 荒 荒 荒 ど ど ど荒 な − 荒 荒 ど ど ど荒 荒 な − 荒 ど ど どど ど ど な − に荒 ど どど ど ど ど な − に荒 どど ど ど ど ど な − に荒筋禽禽

禽禽禁 而. (3.22)

Subsequently, the isotropic biphasic or poroelastic model consists of three material 

parameters: elastic parameters (Young’s modulus (継), Poisson’s ratio (荒)) and permeability 

(倦, eq. 3.19)).  
The biphasic isotropic material is equivalent to the elastic isotropic material at equilibrium 
and under dynamic loading. In these representations, it is assumed that at equilibrium all 
fluid flow has ceased and that the instantaneous response (t → 0) of the biphasic tissue 
corresponds to that of an incompressible elastic material (ν = 0.5). These elastic isotropic 
models are useful if one wishes to obtain simple material parameters for the tissue. 
However, a more detailed description of the complex mechanical properties of skeletal soft 
tissues can only be obtained by using more sophisticated models. 

3.5.2 Transversely isotropic model 
In the transversely isotropic material, the mechanical parameters depend on the three 
mutually orthogonal directions. However, the properties are considered isotropic in the x-y 
plane. Then, the stiffness matrix relates the stress and strain tensors as follows: 

時撮 =
琴欽欽
欽欽欽
欽欽欽
欽欽欣

な − 荒椎佃荒佃椎継椎継佃Δ 荒椎 + 荒佃椎荒椎佃継椎継佃Δ 荒佃椎 + 荒椎荒佃椎継椎継佃Δ ど ど ど荒椎 + 荒椎佃荒佃椎継佃継椎Δ な − 荒佃椎荒椎佃継佃継椎Δ 荒佃椎 + 荒佃椎荒椎継佃継椎Δ ど ど ど荒椎佃 + 荒椎荒椎佃継椎態Δ 荒椎佃岫な + 荒椎岻継椎態Δ な − 荒椎態継椎態Δ ど ど どど ど ど に罫佃椎 ど どど ど ど ど に罫佃椎 どど ど ど ど ど 継椎な + 荒椎筋禽禽
禽禽禽
禽禽禽
禽禽禁

而	, (3.23)

 

 

where 
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Δ = 岫な + 荒椎岻岫な − 荒椎 − に荒椎佃荒佃椎岻継椎態継佃 . (3.24)

The total number of transversely isotropic biphasic poroelastic parameters can now be 
written in terms of the Young’s modulus and Poisson’s ratio in the transverse plane, i.e. 
parallel to the articular surface (継椎 and 荒椎), out-of-plane Young’s modulus and Poisson’s 
ratio (継椎佃 and 荒椎佃), out-of-plane shear modulus (罫佃椎), and permeability (倦, eq. 3.19).  

Under an instantaneous loading (t → 0), when fluid is entrapped in the tissue, the 
transversely isotropic biphasic or poroelastic material behaves like an incompressible elastic 
material (Garcia et al., 2000; Korhonen et al., 2002b), similarly as in the case of the isotropic 
model. The elastic parameters are then: 

 継椎佃, 継椎, 荒椎佃 = ど.5, 荒椎 = な − ど.5 帳妊帳妊年 , 罫佃椎. (3.25) 

Similarly at equilibrium, when the fluid flow has ceased and only the solid matrix resists the 
compression, the material can be assumed to be elastic with the five independent material 
parameters in eq. 3.23.  

3.5.3 Fibril reinforced model 
In the fibril reinforced biphasic model, the fibril network (collagen network), in addition to 
the isotropic biphasic matrix, contributes to the mechanical response of tissues under 
loading (Korhonen et al. 2003). Thus, the total stress becomes: 

 時嗣 = 時仔讃 + 時讃餐産司餐残 − 喧薩, (3.26) 

where 時仔讃 and 時讃餐産司餐残 are nonfibrillar and fibril network stresses, respectively. The isotropic 

biphasic nonfibrillar matrix has been modeled as Hookean or Neo-Hookean materials  
with Darcy’s law for the fluid flow (sections 3.2 and 3.3). The material parameters for  
the nonfibrillar part are the Young’s modulus (継陳), Poisson’s ratio (荒陳) and permeability  
(倦). The fibril network properties are controlled by the Young’s modulus of the fibril  
network (継捗). Elastic properties of the fibril network have been characterized with a nonlinear 

relation: 

 継捗 = 継捗待 + 継捗敵香捗, for	香捗 > ど,	 (3.27) 

 継捗 = ど, for	香捗 ≤ ど,	 (3.28) 

where 継捗待 is the initial fibril network modulus, 継捗敵 is the strain-dependent fibril network 

modulus, and 香捗 is the fibril strain. The significant difference between the fibril reinforced 

and transversely isotropic poroelastic model is that the fibrils in the fibril reinforced model 
resist only tension, whereas 継椎 in the transversely isotropic model is the same for both 

compression and tension. 
The collagen fibril stresses (購捗) have also been modeled as viscoelastic: 

購捗 	 = 	 − ηに謬盤購捗 − 継捗待綱捗匪継捗悌 購捗岌 + 	 継捗待綱捗 + 	 均僅 η継捗待に謬盤購捗 − 継捗待綱捗匪継捗悌 	 + 	η斤巾 綱捗岌 , for		綱捗 > ど, (3.29)

www.intechopen.com



 
Theoretical Biomechanics 126 

 購捗 	 = ど, for		綱捗	ど,  

where 考 is the viscoelastic damping coefficient, and 綱岌 and 購岌 are the stress- and strain-rates, 
respectively. 
The fibrillar part has also been modeled with primary and secondary fibrils (Wilson et al., 
2004). The primary fibrils represent the collagens detected with polarized light microscopy 
(Arokoski et al., 1996; Korhonen et al., 2002b), which cause a depth-dependent tensile 
modulus for the tissue. The fibrils are oriented vertically in the deep zone, curve in the 
middle zone, and reach a parallel orientation with the articular surface in the superficial 
zone (Benninghoff, 1925). Two parameters are needed to describe the fibril orientation: 
thickness of the superficial zone (dvec) and bending radius of the collagen fibrils in the 
middle zone (rvec). The secondary fibrils mimic the less organized collagen network which 
are observed in scanning electron microscopy (Kaab et al., 2003). The stresses for primary 
and secondary fibrils can be formulated as: 

 購捗,椎 = 貢佃系購捗, (3.30) 

 購捗,鎚 = 貢佃購捗, (3.31) 

where 貢佃 represents the depth dependent fibril density, and C is the density ratio of primary 
and secondary fibrils. The stress of the fibril network is then determined as the sum of the 

stresses in each individual fibril (購捗,銚鎮鎮沈 ), 

 購捗 = ∑ 購捗,銚鎮鎮沈痛墜痛捗沈退怠 . (3.32) 

3.5.4 Other models of skeletal soft tissues 

There are also other models of biological soft tissues than those presented above. The 
conewise linear elastic model is able to characterize compression-tension nonlinearity of 
the tissues (Soltz&Ateshian, 2000). The poroviscoelastic model includes both fluid flow 
dependent and fluid flow independent viscoelasticities (DiSilvestro&Suh, 2001). The 
triphasic model includes ion flow (Lai et al., 1991) and it is equivalent to the biphasic 
swelling model at equilibrium (Wilson et al., 2005a). In the biphasic fibril reinforced 
swelling model, after inclusion of osmotic swelling and chemical expansion, the total 
stress becomes: 

 時嗣 = 時仔讃 + 時讃餐産司餐残 − ∆講薩 − 劇頂薩 − 航捗薩, (3.33) 

where ∆講 is the osmotic pressure gradient, 劇頂 is the chemical expansion stress, and 航捗 = 喧 − ∆講 is the chemical potential of fluid (Huyghe&Janssen, 1997; Wilson et al., 2005a; 

Wilson et al., 2005b; Korhonen et al., 2008). The osmotic pressure gradient is caused by the 

difference in ion concentration of the cartilage and that of the surrounding fluid 

(Huyghe&Janssen, 1997; Wilson et al., 2005a; Wilson et al., 2005b). It is also referred to as 

the Donnan swelling pressure gradient. The chemical expansion stress comes from the 

repulsion between negative charges in the solid matrix (Lai et al., 1991; Wilson et al., 

2005a; Wilson et al., 2005b). Swelling of the tissue is resisted by the collagen network, 

inducing pre-stresses in the collagen fibrils. This model has been applied specifically for 

cartilage since its swelling properties due to the fixed charge density have a significant 

role for the deformation behavior of the tissue, especially under static loading. For the 
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implementation of swelling properties, the fixed charge density can be taken from 

experimental measurements (Maroudas, 1968; Chen et al., 2001). 

Other anisotropic and nonlinear representation have also been presented for biological soft 

tissues. Specifically the collagen fibrils and their nonlinear stress-strain tensile behavior has 

been presented as follows: 

 鶏怠 = 継怠岫結賃迭肉 − な岻, (3.34) 

 鶏態 = 継態岫結賃鉄賑 − な岻, (3.35) 

 鶏捗 = 鶏怠 + 鶏態, (3.36) 

where Pf is the first Piola-Kirchhoff fibril stress, εf is the total fibril strain, εe is the strain of the 

spring µ1 (Fig. 3c), and E1, E2, k1 and k2 are constants (Wilson et al., 2006; Julkunen et al., 

2008). Tensile stress-stretch relationship for collagen fibrils has also been presented in the 

following form 

  庁鉄


= 崔ど,																																									 < な,系戴盤結寵填岫碇貸怠岻 − な匪			な < 膏 < 膏∗,系泰膏 + 系滞																										膏 > 膏∗, (3.37) 

where 

 系滞 = 系戴盤結寵填岫碇∗貸怠岻 − な匪 − 系泰膏∗. (3.38) 

In these equations, F2 is the strain energy function for the collagen fibers, usually in 

conjunction with the hyperelastic model, such as Neo-Hookean (eq. 3.3), λ is fiber stretch, λ* 

is the stretch where collagen fibers are straightened, and 系戴, 系替, 系泰 and 系滞 are material 

constants (Pena et al., 2006; Zhang et al., 2008). 

3.6 Models applied for skeletal soft tissues 

Articular cartilage has been modelled using almost all the above mentioned models (Mow et 

al., 1980; Lai et al., 1991; Li et al., 1999; Garcia et al., 2000; Guilak&Mow, 2000; 

Soltz&Ateshian, 2000; DiSilvestro&Suh, 2001; Korhonen et al., 2003; Laasanen et al., 2003; 

Wilson et al., 2004; Julkunen et al., 2007). The choice of the material model has been mainly 

based on the study purpose and loading protocol. Recently, however, the fibril reinforced 

material description has been applied by many researchers and it is probably the most 

realistic approach for cartilage (Li et al., 1999; Li et al., 2000; Korhonen et al., 2003; Wilson et 

al., 2004; Wilson et al., 2005b; Julkunen et al., 2007; Korhonen et al., 2008; Julkunen et al., 

2009). It should also be noted that in articular cartilage negative fixed charges create tissue 

swelling pressure and is very important for the mechanical behaviour of the tissue. Thus, 

tissue swelling model or triphasic approaches are important phenomena. Meniscus, 

ligaments and tendons have only a small amount of fixed charges and swelling mechanisms 

have thus been neglected in the models.  

Meniscus has been typically modelled as isotropic or transversely isotropic material (Spilker 

et al., 1992; Meakin et al., 2003; Sweigart et al., 2004; Guess et al., 2010). Poroelastic 

properties have also been included in meniscus models. Typical models for ligaments and 

tendons have been transversely isotropic nonlinear with hyperelastic behaviour (Pena et al., 
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2006; Zhang et al., 2008). Also viscoelastic solid models (Thornton et al., 1997) and 

poroelastic models have been applied for ligaments (Atkinson et al., 1997). However, the 

fluid-flow dependent viscoeasticity may not be that important in ligaments and tendons 

because they experience mainly tensile forces under physiological loading and it has been 

suggested that fluid has only a minor role in contributing to soft tissue response in tension 

(Li et al., 2005). Furthermore, viscoelastic models with anisotropic nonlinear stress-strain 

behaviour have been developed to capture the strain rate dependent nonlinearity of 

ligaments and tendons (Pioletti et al., 1998; Limbert&Middleton, 2006).  

3.7 Optimization of material parameters 

The optimization of material parameters of the model can be done by typically minimizing 
the mean squared error (MSE), root mean squared error (RMSE) or mean absolute error 
(MAE) between the simulated and experimental force curves (Fig. 5). This can be done for 
instance using a multidimensional unconstrained nonlinear minimization routine 
(fminsearch) available in Matlab (Mathworks Inc., Natick, MA, USA). The optimization 
should be first tested with different initial values of the material parameters, and the 
optimized parameter values should be always the same, independent on the initial guess. 
Then one of the equations for MSE, RMSE and MAE, 

 警鯨継 = 怠津 ∑ 盤繋陳墜鳥勅鎮,珍 − 	繋勅掴椎,珍匪態津珍退怠 , (3.39) 

 迎警鯨継 = 怠津 ∑ 謬岫繋陳墜鳥勅鎮,珍 − 	繋勅掴椎,珍岻態津珍退怠 , (3.40) 

 警畦継 = 怠津 ∑ 弁繋陳墜鳥勅鎮,珍 −	 繋勅掴椎,珍弁津珍退怠 , (3.41) 

where 繋陳墜鳥勅鎮,珍 is the model output and 繋勅掴椎,珍 is the experimental result at any time point (j), 

can be applied. The optimizations have also been conducted using normalized MSE, RMSE 
and MAE, i.e. by dividing equations 3.39-3.41 with 繋勅掴椎,珍 at each time point. 
 

 

 

Fig. 5. A typical stress-relaxation measurement of articular cartilage and corresponding 
optimized model fit using a fibril reinforced poroviscoelastic model. 
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