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1. Introduction 

The genome of living organisms is constantly subjected to conditions that induce damage to 

DNA. A wide variety of DNA lesions are produced either as the result of normal metabolic 

processes or exogenous sources (ionizing radiation, UV light) (Seviour and Lin 2010). This 

damage to genomic material represents a persistent threat to genomic stability. 

Mammalian cells have developed a range of molecular mechanisms capable of responding 

to DNA damage. These mechanisms include activation of DNA damage repair pathways 

or tolerance systems, initiation of complex regulatory networks that coordinate cell cycle 

progression and repair and induction of apoptosis if errors are detected (Madhusudan 

and Middleton 2005). At a cellular level, if a DNA lesion is misrepaired, it can lead to 

genomic instability. It is therefore essential for a cell to efficiently respond to DNA 

damage. Different DNA Repair Mechanisms exist and play a major role in restoring 

genomic integrity. These include: The Direct Repair Pathway (DR), Base Excision Repair 

Mechanism (BER), Nucleotide Excision Repair Pathway (NER), Non-Homologous End 

Joining (NHEJ), Homologous Recombination (HR) and DNA Mismatch Repair Pathway 

(MMR). It is quite obvious that any defect in these mechanisms can lead to improperly 

repaired DNA lesions and genomic abnormalities, which constitute the hallmark of 

tumorigenesis (Cline and Hanawalt 2003, Hwang et al. 1999). Indeed, mutations and 

polymorphisms of DNA repair genes have been correlated with different hereditary and 

sporadic cancer types (Altieri et al. 2008). 

Hematological malignancies account for about 8% of all cancers in men and 6% of all 

cancers in women. There is a considerable body of evidence that suggests a strong 

association between DNA repair deficiency and hematological malignancies. This article is 

meant to serve as an overview of the relevant literature focusing on mutations and 

polymorphisms of DNA repair genes that predispose to certain hematological malignancies. 

We also discuss how defects in DNA repair affect sensitivity to chemotherapy. 

2. DNA repair mechanisms  

Below, we briefly summarize our current knowledge regarding DNA Repair Mechanisms. 
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2.1 Direct Repair (DR) 

Direct Repair of DNA damage (DR) is the simplest repair process that copes with the repair 
of O6-alkylguanine adducts in humans. O6-alkylguanine transferase (AGT, also known as 
MGMT) is the key enzyme that reverses O6-alkyl-guanine to guanine by transferring the 
inappropriate methyl group to one of its own cysteine residues, leading to inactivation of 
itself (Scharer 2003).  

2.2 Nucleotide Excision Repair (NER) 
The Nucleotide Excision Pathway (NER) processes bulky DNA lesions with potential to 
block DNA replication or transcription (de Laat et al. 1999, Gillet and Scharer 2006, Lockett 
et al. 2005, Park and Choi 2006, Sancar 1996, Wood 1997). It mainly corrects products of UV 
light and chemotherapy (reviewed in (Scharer 2003)). When NER mechanism repairs 
damaged lesions in non-transcribing genomic DNA, it is called Global Genome NER (GG-
NER). In contrast, Transcription-Coupled NER (TC-NER) removes damaged DNA 
specifically on the RNA polII transcribed strand of transcriptionally active DNA. 

2.3 Base Excision Repair (BER) 
The Base Excision Repair (BER) is a pathway that removes damaged bases from DNA, but 
also repairs single-strand breaks. Several variations exist, including short-patch BER (SP-
BER) that typically replaces a single nucleotide and long-patch BER (LP-BER) where repair 
synthesis can extend beyond one nucleotide. The two pathways progress through different 
processes that initially involve removal of the damaged base by glycolases (Fortini and 
Dogliotti 2007, Fortini et al. 1999). 

2.4 Mismatch Repair (MMR) 
The Mismatch Repair Pathway (MMR) recognizes and repairs base-base mismatches and 
insertion/deletion loops that could arise during DNA replication (Jiricny 2006). Therefore, it 
contributes to the accuracy of DNA replication process (Jiricny 1998). 
Defects in MMR result in Microsatellite Instability (MSI), a form of genetic instability 
characterized by frequent errors occurring during the replication of short nucleotide repeats 
(Velangi et al. 2004).  

2.5 Double Strand Break (DSB) Repair 
DNA double strand breaks (DSBs) occur as the result of two simultaneous nicks in opposite 
strands of the DNA helix. Although they are formed much less frequently than other forms of 
DNA damage, the consequences of DSBs can be severe. They are induced by exogenous 
sources (ionizing radiation, UV light, topoisomerase inhibitors) or arise spontaneously during 
natural processes (DNA synthesis, V-(D)-(J) recombination) (Karagiannis and El-Osta 2004).  
A cell has evolved the DNA damage response (DDR) to initially respond to a DSB. DDR 
involves the sensing of the damage, followed by transduction of the damage signal to either 
cell cycle checkpoints and DSB repair or apoptosis. DDR is dependent on transient 
recruitment of MRN (MRE11/RAD50/NBS1) complex followed by activation of two 
phosphatidylinositol-3-related kinases, ATM and ATR that phosphorylate a variety of 
molecules to execute DDR (Figure 1) (Bakkenist and Kastan 2004). The activation of cell 
cycle checkpoints aims at the growth arrest of damaged cells and allows DSB repair to mend 
the damage. A DSB can be repaired by two separate mechanisms, either Homologous 
Recombination (HR) or Non Homologous End Joining (NHEJ) (Kim et al. 2006). 
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2.6 Homologous Recombination (HR) 

Homologous Recombination (HR) is a highly complex pathway that uses an intact 
homologous template to repair a double strand break (DSB) accurately. It is the 
predominant pathway in lower eukaryotes, whereas it accounts only for the repair of 10% of 
DSBs in mammalian cells (reviewed in (Hakem 2008)). HR operates at S and G2 phase of the 
cell cycle, where a sister chromatid exists, and acts on rapidly dividing cells (Helleday et al. 
2007). Furthermore, it fulfills specialized roles; it participates in meiosis and the repair of 
DNA interstrand crosslinks, which are highly cytotoxic DNA lesions (reviewed in (Scharer 
2003)). The whole HR process is summarized in Figure 1. 

2.7 Non Homologous End Joining (NHEJ) 

Non Homologous End Joining (NHEJ) is the predominant pathway for repair of DSBs in 
higher eukaryotes (Kanaar et al. 2008). It is a conceptually simple pathway that involves the 
religation of broken ends and as the DNA ends may be damaged, this mode of repair is not 
necessarily accurate (Lieberman 2008). NHEJ is more important in quiescent or terminally 
differentiated cells and in G1 phase of the cell cycle. It also plays a crucial role in the 
generation of diversity in the immune system in V (D) (J) recombination and in telomere 
maintenance (reviewed in (Hakem 2008)). The NHEJ mechanism is illustrated in Figure 1. 
 

 

Fig. 1. Model for DSB initial response and repair. Initial recognition of DSB is performed by 
various sensor proteins (ATM, MRN complex, BRCA1, RAD51, DNA-PKcs). A DSB is 
repaired either by NHEJ or HR. In NHEJ, the heterodimer Ku70/80 binds to DSB and 
recruits DNA-PKcs, which promotes ends juxtaposition. Gaps are filled by polymerases ┤ or 
┣ and nicks are sealed by ligase complex (Ligase IV, XRCC4). In HR, after resection of DSB, 
Rad51 forms a nucleoprotein filament. Then, a strand-exchange reaction generates a joint 
molecule between the damaged and the undamaged DNA. Then, repair synthesis is 
performed by DNA polymerases ├/┝. 
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Design and nomenclature of Single Nucleotide Polymorphisms (SNPs)  

Single Nucleotide Polymorphism (SNP) is a DNA sequence variation occurring when a 
single nucleotide — A, T, C, or G — in the genome differs between members of a biological 
species or paired chromosomes in an individual (Stenson et al. 2009). It indicates a non 
disease-causing change or a change found at a frequency of 1% or higher in the population. 
SNPs may fall within coding sequences of genes, non-coding regions of genes, or in the 
intergenic regions between genes. SNPs within a coding sequence do not necessarily change 
the amino acid sequence of the protein that is produced, due to degeneracy (redundancy) of 
the genetic code (den Dunnen and Antonarakis 2003). 
The nomenclature for SNPs can be confusing: several variations can exist for an individual 
SNP and consensus has not yet been achieved. One approach is to write SNPs with a prefix 
showing the wild-type and altered nucleotide or amino acid. Variants can be described 
either at the DNA, RNA or protein level (Ogino et al. 2007).  
Descriptions at DNA level refer to a single nucleotide substitution designated by a ">"-
character that indicates the change from the wild type to the altered nucleotide. Description 
is made in relation to a coding or genomic reference sequence. Regarding nucleotide 
numbering, when a coding reference is used, nucleotide 1 is the A of the ATG-translation 
initiation codon and the nucleotide 5' of the ATG-translation initiation codon is -1; the 
previous -2 etc. When a genomic reference is used, nucleotide numbering is purely arbitrary 
and starts with 1 at the first nucleotide of the database reference file (den Dunnen and 
Antonarakis 2000, 2003). For example, SNP RAD51 135 G>C, denotes that at nucleotide 135 
a G is changed to a C. On the other hand, SNP RAD50 -38C>T denotes a C to T substitution 
38 nucleotides 5' of the ATG translation initiation codon. 
Descriptions at RNA and protein level are often deduced and not based on experimental 
evidence. Sequence changes at RNA level are basically described like those at the DNA level, 
with a few modifications. Description starts with the nucleotide number, followed by the 
nucleotide (in lower case), for example 78 u>a. In this chapter, none of the SNPs is described at 
RNA level. Descriptions at protein level start with the amino acid, followed by its number and 
the altered amino acid (den Dunnen and Antonarakis 2000, Ogino et al. 2007). For example, 
SNP XRCC1 Arg194Trp indicates a change of amino acid Arginine 194 to Tryptophan.  
Finally, frequently SNPs are reported in relation to their reference SNP ID number, which is 
assigned to them from the Single Nucleotide Polymorphism Database (dbSNP). dbSNP is a 
free public archive for genetic variation within and across different species developed and 
hosted by the National Center for Biotechnology Information (NCBI) in collaboration with 
the National Human Genome Research Institute (NHGRI) (Wheeler et al. 2007). When 
submitted, SNPs receive a reference SNP ID number (“rs#”; "refSNP cluster"). For example, 
XRCC4 rs13178127 refers to the SNP of the gene XRCC4 that has received the reference ID 
number rs13178127. 

3. DNA repair deficiency related to hematological malignancies  

Below, we summarize the existing data concerning abnormalities of DNA repair pathways 
in the most common hematological malignancies. 

3.1 Acute Myeloid Leukemia (AML) 

Acute Myeloid Leukemia (AML) is a group of marrow-based neoplasms that have clinical 
similarities but distinct morphologic, immunophenotypic and cytogenetic features (Monzo 
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et al. 2006). Clinical features are similar at any age and are the result of suppression of 
normal marrow elements by malignant blasts. 
Although many environmental and genetic factors have been suggested to play a role in 
AML pathogenesis, the mechanism still remains uncertain. Through the last years many 
studies have focused on indentifying genetic differences that could contribute to a patient’s 
predisposition to develop AML. These differences could be in part attributed to 
polymorphisms that lead to increased or decreased activity of the encoded genes; and DNA 
repair genes are attractive candidates for studies, since their ineffectiveness causes 
chromosomal instability. This is further supported by the higher incidence of AML in 
patients with syndromes characterized by defective DNA repair (Schwartz and Cohen 1988). 
So far, several polymorphisms have been associated with an increased risk of developing 
AML, such as polymorphisms of Homologous Recombination genes XRCC3 Thr241Met and 
RAD51 135G>C (Voso et al. 2007). In another study, these two polymorphisms have been 
reported to have a synergistic effect on AML development (Seedhouse et al. 2004). In 
addition, XRCC3 Thr241Met has been found to specifically increase the risk of 
inv(16)/t(16;16) AML and to be an independent poor prognostic factor for this AML 
subtype, since it reduces disease free survival in patients that achieved complete remission 
(CR) (Liu L. et al. 2011). This is an interesting finding, since it could help us substratify 
patients with inv (16)/t (16; 16) AML, which has favorable prognosis. On the other hand, 
RAD51 135 G>C has also been associated with a decreased risk of AML (Rollinson et al. 
2007). In this study, the authors claim that this polymorphism results in overexpression of 
RAD51 that might modulate HR in favor of the cells, protecting them from aberrant DNA 
repair events. Among other polymorphisms, XPD 2251A>C has been associated with 
increased risk of developing AML, mainly attributed to the C allele (Shi et al. 2011). 
It is also known that patients with AML have different response rates to the same treatment 
agents. Although administration of Ara-C, in conjunction with an anthracycline, is the 
cornerstone of therapy, the question of the best therapy for AML in first remission remains 
unanswered, and perhaps it could be stratified according to certain features. In this regard, 
several studies have focused on finding polymorphisms that have impact on the effects of 
chemotherapy and as a result, clinical outcome. It is known that good response to 
chemotherapy is usually associated with low DNA repair capacity, whereas 
chemoresistance is usually associated with a high DNA repair activity. Although there has 
been much effort on identifying DNA repair polymorphisms that could predict 
chemotherapy effectiveness in order to allow appropriate selection of drugs in specific 
patients, the existing results are of no clinical use and are sometimes contradictory. For 
example, polymorphism XPD Lys751Gln has been correlated with reduced risk of resistant 
disease (RD) due to an increased chemotherapy response rate (Kuptsova et al. 2007). 
However, in another study, the same polymorphism has also been associated with poor 
response to chemotherapy and decreased survival in patients with intermediate risk AML 
and normal cytogenetics (Strom et al. 2010). Of course, this controversy might be explained 
by different patient groups involved in these studies and it could be claimed that XPD 
Lys751Gln is a predictor of poor response to front line chemotherapy only in patients with 
normal karyotype.  Among other polymorphisms, XPD Asp312Asn is reported to have a 
positive impact on drug effectiveness (Kuptsova et al. 2007) and XPC Ala499Val has been 
associated with decreased overall survival in AML patients with normal karyotype (Strom 
et al. 2010). Furthermore, in a study that included 110 AML patients, patients with XPA 
genotype -4A>G have been shown to have a higher frequency of chemoresistant disease 
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when compared to wild type carriers (30% vs. 6, 5 % genotype AA) (Monzo et al. 2006). 
Finally ATM variant 4138C>T has been associated with poor response to chemotherapy in 
Chinese population (Shi et al. 2011); however this finding is difficult to be confirmed in 
European studies, due to its low penetrance (Choudhury et al. 2008, Johnson et al. 2007).  
Apart from the above polymorphisms, several studies implicate BRCA1 (involved in initial 
recognition of a double strand break) and BRCA2 gene (involved in Homologous 
Recombination) deficiencies in AML pathogenesis. Scardocci et al. observed that 32% of 
primary AML samples present with hypermethylated BRCA1 (Scardocci et al. 2006). 
Although this finding has not been confirmed in other studies (Bianco et al. 2000, Esteller et 
al. 2001), a meta-analysis performed in 2007 which reviewed risks for hematological 
malignancies associated with mutations in BRCA1/2 pathway, showed that defects in this 
pathway increase the risk for a subset of AML that are related to gene rearrangements 
(Friedenson 2007). Consequently, it could be hypothesized that BRCA1/2 pathway’s proper 
function is essential to prevent a group of leukemias. Consistent with these data is the 
observation that Fanconi anemia patients with biallelic mutations in BRCA2 present with a 
high risk of AML (Wagner et al. 2004).  
Recent evidence suggests a role of error-prone Non Homologous End Joining (NHEJ) in 
AML development. In preclinical studies, sequencing of breakpoint junctions in AML cells 
has revealed microhomologous sequences and small deletions, indicative of NHEJ repair 
(Gillert et al. 1999, Olive 1998, Wiemels et al. 2000, Wiemels et al. 2002, Yoshida et al. 1995). 
This increased NHEJ activity must, however, be confirmed in other studies.  
Regarding Mismatch Repair (MMR) Mechanism, published data in AML are somewhat 
conflicting. Although there are studies demonstrating increased rates of microsatellite 
instability in certain types of leukemia (mostly therapy-related AML and myelodysplastic 
syndromes (Ben-Yehuda et al. 1996, Kaneko et al. 1995)), most reports have described little 
or no evidence of deficient MMR in AML (Boyer et al. 1998, Sill et al. 1996, Tasak et al. 1996). 
However, while none of these studies focused on MMR deficiency in different stages of 
AML, in 2008 Mao et al. showed that more than 30% of AML patients presented with 
mutations in MMR genes and that MMR deficiency was higher in patients with relapsed/ 
refractory AML (Mao et al. 2008). Authors suggest the possibility of leukemia relapse 
generating from leukemic cells defective in MMR that have survived chemotherapy and 
present the minimal residual disease (Mao et al. 2008). 
In conclusion, many polymorphisms of DNA repair genes have been associated with 
individual susceptibility to AML, as well as pathogenesis and sensitivity to chemotherapy. 
The precise functional mechanism of their effect remains to be determined; however results 
strongly support the importance of considering them as prognostic factors or indicators of 
treatment strategy. Hopefully, further studies will elucidate their role with the view to use 
them in clinical setting. 

3.2 Acute Lymphoblastic Leukemia (ALL) 

Acute Lymphoblastic Leukemia (ALL) is a malignant disease characterized by accumulation 
of immature lymphoblasts. It is the most common leukemia in children, accounting for 70-
80% of all childhood leukemias. In the contrast, ALL accounts for 15-20% of leukemias in 
adults (Faderl et al. 1998). 
There is strong evidence that acquired genetic changes are central to the development of 
ALL. Polymorphisms of DNA repair genes have been investigated as potential pathogenetic 
and prognostic factors. The majority of studies are focused on childhood ALL, due to its 
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high frequency in children. Several polymorphisms have been implicated, but results are 
somewhat conflicting, probably because of the different ethnic groups involved in each 
study. Thus, polymorphism XRCC1 Arg399Gln has been associated with increased risk of 
childhood ALL, in Indians (Joseph et al. 2005), Chinese (Zhu et al. 2005) and Thais 
(Pakakasama et al. 2007), but no correlation was found in Mexican (Meza-Espinoza et al. 
2009), Brazilian (da Silva Silveira et al. 2009) and Turkish children (Batar et al. 2009). Perhaps 
this polymorphism has a stronger effect or a higher penetrance in Asian populations. In 
other studies, it has been proposed that it has a synergistic effect with CYP2E1*5B 
polymorphism of detoxification enzyme CYP2E1 (Tumer et al. 2010), as well as 
polymorphism OGG1 Ser326Cys (Stanczyk et al. 2011) in ALL development. Similarly, 
polymorphism XRCC1 Arg194Trp, has been found to have a protective effect in Thais 
(Pakakasama et al. 2007), while opposite results have been found in another study (Joseph et 
al. 2005). Moreover, several XRRC1 haplotypes have been related to ALL; haplotype B, as 
well as C, have been associated with an increased ALL risk (Meza-Espinoza et al. 2009, 
Pakakasama et al. 2007).   
On the other hand, polymorphisms of Nucleotide Excision Repair genes have also been 
investigated in ALL in a few studies. XPD Asp312Asn and Lys751Gln polymorphisms, 
which have been previously associated with AML, have not been found to be correlated 
with ALL risk (Batar et al. 2009, da Silva Silveira et al. 2009). On the contrary, CC genotype 
of ERCC18092C>A polymorphism has been suggested to increase susceptibility to ALL in 
Chinese children (Wang et al. 2006). In the same study, ERCC1 19007G>A was not found to 
be associated with ALL (Wang et al. 2006).  
Regarding Mismatch Repair (MMR) mechanism, most of the existing studies have failed to 
show an association between MMR deficiency and ALL development (Molenaar et al. 1998, 
Takeuchi et al. 1997), although preclinical studies have demonstrated MSI in ALL cell lines 
(Gu et al. 2002, Hangaishi et al. 1997). In addition, no relationship was found between 
polymorphisms in MMR genes MLH1 and MSH3 and childhood ALL (Mathonnet et al. 
2003), although a combined effect was demonstrated with CYP2A1*2A and CYP2E1*5 
polymorphisms of detoxification enzymes, suggesting a possible interaction between DNA 
repair enzymes and detoxification enzymes in childhood ALL. In addition, in another study 
that evaluated the risk of childhood ALL and the presence of variants in DNA repair 
enzymes in children exposed to diagnostic X-rays, hMLH1 was found to protect against X-
ray exposure (Infante-Rivard et al. 2000).  
Finally, it is worth mentioning that a positive correlation has been found between 
polymorphism 8360G>C in NBS1 gene (component of MRN complex) and ALL. It is 
interesting that this study included ALL patients from different ages, but results are 
potentially questionable, since the study was limited to a small size group of Chinese 
population (Jiang et al. 2011). 
In summary, although many polymorphisms have been associated with ALL, investigation 
remains still at an early stage. Further studies are needed in order to be able to draw definite 
conclusions for the potential use of polymorphisms for the stratification of patients in 
different prognostic and treatment groups. 

3.3 Myelodysplastic Syndromes (MDS) 

Myelodysplastic syndromes (MDS) represent a spectrum of stem cell malignancies that 
manifest dysplastic and ineffective hematopoiesis, which is associated with a variable risk of 
transformation to AML. They usually arise de novo with the risk of developing MDS 
increasing proportionally to age (Doll and List 1989, Noel and Solberg 1992). 
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It is known that genetic lesions in hematopoietic progenitor cells play a major role to their 
malignant transformation and there is accumulating evidence that genetic factors modify a 
person’s cumulative risk to MDS (Janssen et al. 1989). It has also been suggested that disease 
progression of MDS to AML is attributed to accumulation of mutations that cause defects in 
DNA repair (Rowley 1999); as a consequence, most of the existing studies are interested in 
identifying whether DNA repair polymorphisms implicated in AML are also involved in 
MDS. However, only one study found a positive correlation between polymorphism RAD51 
135G>C and MDS risk; and it is difficult to interpret this result, since the study is limited to 
a Chinese population (Li et al. 2010). All other studies did not show any association between 
DNA repair polymorphisms and MDS (Baumann Kreuziger and Steensma 2008, Fabiani et 
al. 2009). This contradiction might be interpreted by the fact that these polymorphisms have 
been associated with de novo AML, whose pathogenesis is a different molecular procedure 
compared to MDS. 
Finally, in an effort to examine a possible role of Non Homologous End Joining (NHEJ) 
repair mechanism in MDS, we have previously tested the expression of NHEJ protein 
components in 48 cases of adult de novo MDS (Economopoulou et al. 2009). We reported a 
significantly lower Ligase IV expression level in MDS patients compared to controls and an 
association of Ku70 expression with more aggressive disease, suggesting a potential role of 
these two molecules in MDS pathogenesis and clinical presentation. However, a larger 
number of cases need to be examined in order to confirm these findings. 

3.4 Chronic Myeloid Leukemia (CML) 

Chronic Myeloid Leukemia (CML) is a clonal stem cell disorder characterized by increased 
proliferation of myeloid elements at all stages of differentiation (Champlin and Golde 1985). 
It is caused by the Bcr-Abl oncoprotein, the product of the t (9;22) chromosomal 
translocation that generates the Philadelphia chromosome. CML is a multistep disease, 
which involves a chronic phase (CP) that finally progresses to a blast crisis (BC). 
Although imatinib, a selective inhibitor of the ABL kinase, has revolutionized the treatment 
of CML (Druker et al. 1996), it has not completely eradicated it, and has a poorer response 
rate in patients with CML and blast crisis (BC) (Oehler et al. 2007). Progression to BC has 
been associated with the appearance and accumulation of new cytogenetic abnormalities; 
therefore, there are many studies focusing on transformation to BC pathogenesis. It has been 
recently found that BCR-ABL transformed cells have an increased level of Reactive Oxygen 
Species (ROS) that induces numerous double strand breaks (DSBs) (Nowicki et al. 2004). It 
was also shown that BCR-ABL upregulates error-prone DSB repair pathways (Non 
Homologous End Joining-NHEJ) rather than the high-fidelity mechanism of Homologous 
Recombination, promoting mutagenic DSB repair (Nowicki et al. 2004, Salles et al. 2011) . 
Therefore, it could be suggested that mutagenic DSB repair might provoke chromosomal 
abnormalities found in the progression to BC (Nowicki et al. 2004). Furthermore, it was 
recently demonstrated that BCR-ABL increases expression and activation of WRN (involved 
in NHEJ), which promotes unfaithful repair and protects leukemia cells from apoptosis, 
resulting in genomic instability (Slupianek et al. 2011). 
Moreover, several DNA Repair proteins have been found to be associated with CML and 
have been suggested to play a potential role in CML-BC pathogenesis. DNA-PKcs has been 
found to be decreased in BCR-ABL transfected cells, as well as CD34+ cells from CML 
patients (Deutsch et al. 2001). This reduced expression of DNA-PKcs was correlated with 
DNA repair deficiency, that might contribute to genetic instability found in BC (Deutsch et 
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al. 2001). It could be therefore suggested that low expression of DNA-PKcs is involved in 
progression to CML-BC. Among other proteins, XPB has been isolated from BCR domain 
and it has been shown that continuous interaction with BCR-ABL provokes XPB deficiency 
and chromosomal instability (Takeda et al. 1999). Finally, hMSH3 Mismatch Repair protein 
has been found to be reduced in CML patients (Inokuchi et al. 1995). However, we can’t 
ignore that the percentage of CML patients with reduced hMSH3 expression in that study 
was very high (90%), but the number of CML samples examined was small (10). Given the 
fact that the finding has not been confirmed in other studies, its reliability is questionable. 
Abnormalities of DNA repair components and their impact on myeloid malignancies are 
summarized in Table 1. 

3.5 Non Hodgkin’s Lymphoma (NHL) 

Non Hodgkin’s Lymphoma (NHL) includes multiple neoplastic disorders of the lymphoid 
system with overlapping features. They most commonly derive from mature B-cells of 
germinal center origin. Clinical presentation is highly variable and depends on a number of 
factors; however NHL share a number of common clinical and pathologic features. 
DNA repair has a pivotal role in NHL development. Defects in DNA repair can lead to the 
development of chromosomal aberrations, a hallmark of lymphoma (Palitti 2004). This is 
further supported by the fact that several hereditary syndromes, including Ataxia 
telangiectasia and Nijmegen breakage syndrome are characterized by defective DNA 
repair and high occurrence of lymphoma. Among studies focused on DNA repair 
polymorphisms and their impact on NHL, three parallel studies conducted in the US and 
Australia have reported different or contradictory results. In the first one, DNA ligase IV 
(Lig4) 9 I variant allele has been found with lower frequency in NHL patients, including 
follicular lymphoma (FL) and Diffuse Large B-Cell Lymphoma (DLBCL) patients, 
compared to controls (Hill et al. 2006). This finding is in accordance with another case 
control study, where LIG4 9 I/I homozygotes had a 3 fold reduced NHL risk (Roddam et 
al. 2002). Among other polymorphisms examined, RAG1 K820R variant allele (involved in 
V (D) J recombination), BRCA2 Arg372His genotype and XRCC1 Arg194Trp were 
associated with an increased risk of NHL (Hill et al. 2006). However, the latter has not 
been confirmed in other studies that evaluated the impact of XRRC1 polymorphisms in 
NHL (Liu J. et al. 2009, Smedby et al. 2006). Finally, WRN V114I variant was found to be 
associated with a decreased risk of NHL (Hill et al. 2006). In contrast, in the second study 
conducted in Connecticut, these results were not confirmed. However, a negative 
association was demonstrated between NHL and another WRN polymorphism, 
Cys1367Arg, suggesting a protective role of WRN in NHL (Shen et al. 2006). On the other 
hand, polymorphism XPG Asp1104His has been for the first time correlated with elevated 
NHL risk, including DLBCL and T-cell lymphomas (Shen et al. 2006). Finally, the third 
study which included patients from Australia, found no association between the above 
polymorphisms and NHL (Shen et al. 2007). However, it has been found that MGMT 
SNPs Ala143Val and Lys178Arg are associated with elevated NHL risk, including FL, 
DLBCL and MALT lymphoma (Shen et al. 2007).  
Interestingly, a pooled investigation of genetic variation in 27 DNA repair genes based on 
the three above studies, revealed different results (Shen et al. 2010). Among the examined 
SNPS, BLM rs441399 was significantly associated with follicular lymphoma and XRCC4 
rs13178127 was correlated with NHL overall (Shen et al. 2010). Of note, products of BLM 
and XRCC4 genes are both involved in DSB repair and they both interact with Ligase IV. 
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Moreover, in the same study, ERCC3 rs4150506 was associated with reduced risk for 
marginal zone lymphoma (MZL) (Shen et al. 2010). 
Similarly, Worrillow et al. (Worrillow et al. 2009) analyzed polymorphisms in XPD gene, in 
a UK population study that involved 747 NHL cases. This is the largest study assessing the 
impact of XPD polymorphisms on NHL. There were no statistically significant case control 
differences in the distribution of XPD polymorphisms. However, a decreased risk of diffuse 
large B-cell lymphoma was observed in variants for XPD Lys751Gln. This finding has been 
previously reported (Shen et al. 2006). Furthermore, XPD 156 A>C was found to be 
associated with an increased risk of follicular lymphoma (Worrillow et al. 2009). 
Similarly, Rollinson et al. (Rollinson et al. 2006) studied the haplotypic variation of tri-
complex MRE11-RAD50-NBS1 and its relationship with NHL risk. The main findings of  
the study were a protective effect for MRE11 rs601341 variant in follicular lymphoma and 
for the MRE11 GCTCA haplotype in diffuse large B-cell lymphoma (DLBCL), suggesting  
a possible role of protein MRE11 in DLBCL pathogenesis. No altered NHL risk associated 
with haplotypes of NBS1 and RAD50 was observed in this study. Another similar study  
was performed by Schuetz et al (Schuetz et al. 2009). The authors suggest an association of  
a RAD50 SNP -38C>T with Mantle Cell Lymphoma (MCL), but the low incidence of both 
the SNP and MCL make these data questionable. No association was observed between 
NBS1 haplotypes and NHL (Schuetz et al. 2009). In contrast to the previous study, this one 
failed to show any correlation of MRE11 rs601341 variant with NHL, but the authors 
propose that this disparity is due to the fact that the part of intron where rs601341 was 
located was not sequenced.  
Additionally, ATM protein, also involved in double strand break response, has been 
associated with NHL. Schaffner et al. (Schaffner et al. 2000) reported inactivation of both 
alleles of ATM gene in a high proportion of patients with Mantle Cell Lymphoma (MCL), 
suggesting that ATM functions as a tumor suppressor gene in MCL. This finding has been 
confirmed in subsequent studies that provide evidence for somatic mutations in ATM  
in MCL (Fang et al. 2003, Taylor et al. 1996). On the other hand, ATM has been associated 
with NHL of B-origin (B-NHL) clinical outcome, since deletion of one ATM allele has  
been found to strongly influence B-NHL survival (Vorechovsky et al. 1997). However, 
another study reported contradictory results claiming that common variants in ATM do  
not influence NHL susceptibility (Sipahimalani et al. 2007). The authors suggest that 
individuals with common ATM variants are phenotypically normal and that only rare 
variants could possibly influence NHL susceptibility. The role of rare ATM variants in NHL 
remains to be elucidated. 
Among other DNA repair proteins, it is worth mentioning the role of Nucleotide Excision 
Repair component hHR23B as an apoptosis- associated protein in Burkitt Lymphoma  
(Vogel et al. 2005). 
Finally, the role of Mismatch Repair (MMR) pathway in NHL has also been investigated, 
although limited published data exist. Kotoula et al. (Kotoula et al. 2002) described a low 
expression of proteins hMLH1 and hPMS1 in B-cell lymphomas and in Mantle Cell 
Lymphoma (MCL) of blastoid type compared to normal controls, although in B-Chronic 
Lymphocytic Leukemia and Mantle cell Lymphoma of centrocyte-like type the expression of 
MMR genes remained intact. The small sample size and the heterogeneity of the specimens, 
along with the lack of additional published data that could support the findings, make these 
data questionable. Furthermore, Morimoto et al. (Morimoto et al. 2005) observed a reduced 
expression of MMR genes in patients with adult T-cell Leukemia (ATL), supporting a role of 
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MMR gene inactivation in disease progression and development of ATL. Although the 
number of patients included in the study is small, the results are promising and give insight 
for further investigation.  

3.6 Hodgkin’s Lymphoma (HL) 

Hodgkin’s lymphoma (HL) is a hematolymphoid neoplasm, primarily of B-cell lineage, with 
unique molecular, histologic, immunophenotypic and clinical features. The diagnosis of 
classical HL requires the recognition of Reed-Steinberg cells in an appropriate cellular 
milieu (Liu A. et al. 2008). 
To date, the effect of DNA repair polymorphisms on HL has not been yet thoroughly 

investigated. However, few studies have tried to assess their role on HL development. In a 

large study that involved 200 newly diagnosed adult HL patients, a positive association was 

demonstrated between XRCC1 Arg399Gln and risk of HL (El-Zein et al. 2009). Interestingly, 

the authors observed that combined analysis of XRCC1/XRCC3 and XRCC1/XPC 

polymorphisms revealed significant association with increase in HL risk. For example, 

XRCC3 Thr241Met was associated with an OR of 2.38 when combined with homozygous 

XRCC1 Arg/Arg genotype. XRCC1 Gln/Gln along with XRCC3 variant led to a 3 fold 

increased HL risk. Similarly, XRCC1 Arg399Gln together with XPC Lys/Lys was found to 

significantly increase HL risk. Similar findings were reported in a recent study that 

evaluated potential gene-gene interaction between DNA repair genes and their contribution 

to individual susceptibility to HL (Monroy et al. 2011). Polymorphism XRCC1 Arg399Gln 

was again associated with increased HL risk, as well as polymorphisms XPC Ala499Val, 

XRCC3 Thr241Met and XRCC1 Arg194Trp. Most importantly, it was observed that HL risk 

increases as the number of adverse alleles in Base Excision Repair (BER) and repair of 

double strand breaks (DSBR) increases. Taken together these two studies suggest a potential 

cooperation between BER and DSBR mechanisms in HL development; however the exact 

procedure remains to be elucidated. 
Furthermore, there is strong evidence that ATM gene is involved in the pathogenesis of HL. 
The existing data refers to identification of four SNPs of ATM gene with a defective protein 
activity (Takagi et al. 2004). Consequently, it could be proposed that in the presence of 
genotoxic stress, these defects might be amplified and lead to accumulation of mutations 
that may contribute to a malignant phenotype. Similarly, Liberzon at al. showed that 
variants of ATM were associated with aggressive disease in children (Liberzon et al. 2004). 
The main limitation of both these studies is the small sample size that consisted only of 
children. Further investigation is necessary in order to draw safe conclusions.  
Finally, it is worth mentioning that a relationship was recently found between telomere 
shortening and development of second cancers in HL patients (M'Kacher et al. 2007). 
Telomere dysfunction is linked to DNA repair and probably to decreased Ku70 expression, 
although further studies are required to elucidate the mechanism of telomere shortening in 
HL patients.  

3.7 Chronic Lymphocytic Leukemia (CLL) 

Chronic Lymphocytic Leukemia (CLL) is the most common form of adult leukemia in the 
Western hemisphere (Ganster et al. 2009). It is a neoplastic disorder of mature B 
lymphocytes that is determined by genetic, molecular and environmental factors. The 
clinical course of CLL is highly variable. There are two groups of patients with diverse 
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clinical outcomes that are separated by the mutational status of immunoglobulin variable 
region (IgV) gene (Hamblin et al. 1999). 
Although mutation status of IgV gene, as well as acquired chromosomal abnormalities 
[del(13q), del(11q), del(17p), trisomy 12] have been identified as prognostic factors in CLL, 
discovery of further prognostic factors would help to predict disease progression among 
different patient groups. Recently, polymorphism XPD Lys751Gln not only has been found 
to be associated with CLL development but it also occurred significantly more frequently in 
high risk patients. In the same study, polymorphisms XRCC1 Arg399Gln and XPF 
Arg415Gln were similarly positively correlated with cytogenetically high risk CLL patients. 
In contrast, polymorphism RAD51 135 G>C was associated with low risk CLL. The most 
important aspect of this study is that it examines the effect of SNPs on cytogenetic 
aberrations in CLL and suggests that polymorphisms XPD Lys751Gln and XRCC1 
Arg399Gln might predict the unfavorable clinical outcome of CLL. Notably, polymorphism 
XPD Lys751Gln has been previously been described as a negative prognostic factor in acute 
myeloid leukemia. However, contradictory results were produced in another study, where 
XPD Lys751Gln was associated with a decreased risk of developing CLL; there was no 
distribution among different cytogenetic risk subgroups though (Enjuanes et al. 2008). 
Similarly, XRCC1 Arg399Gln has not been correlated with CLL in previous studies, 
although there was again no distinction between different subgroups (Enjuanes et al. 2008, 
Sellick et al. 2008) . These data suggest that individual genetic polymorphisms may predict 
the clinical outcome of CLL; however, future studies should focus on confirming the results 
in a larger group of patients, with the view for clinical application. 
It is known that one of the therapies used in CLL is treatment with alkylating agents, which 
is associated with low rates of complete remission. The ability of CLL cells to efficiently 
repair alkylator-induced DNA damage might explain lack of response to treatment. 
Therefore, DNA repair may be linked to chemoresistance in CLL (Sampath and Plunkett 
2007). There is strong evidence that both HR and NHEJ play an important role in CLL 
resistance to chemotherapy. For instance, there is evidence that CLL cells exposed to 
chlorambucil demonstrate an increase in RAD51 foci (Christodoulopoulos et al. 1999). In 
addition, resistance to alkylating agents has been associated with enhanced HR repair in 
CLL cells (Aloyz et al. 2004, Bello et al. 2002, Xu et al. 2005). Similarly, a high level of XRCC3 
was associated with lack of response of CLL cells to nitrogen mustards (Bello et al. 2002). 
Furthermore, it has been reported that low levels of Non Homologous End Joining protein 
component DNA-PKcs is strongly associated with drug sensitivity in CLL cells, whereas 
increases in DNA-PK activity resulted in increased resistance to neocarzinostatin and 
chlorambucil (Amrein et al. 2007, Austen et al. 2005). Inhibition of DNA-PKcs (Amrein et al. 
2007), as well as dual inhibition of both RAD51 and DNA-PK (Amrein et al. 2011) has been 
found to induce drug sensitivity in CLL cells. Recently, the effect of DNA-PK inhibitors in 
CLL cells was investigated in combination with mitoxantrone. Interestingly, DNA-PK 
inhibitors provoked mitoxantrone cytotoxicity in CLL cells, especially cells with unfavorable 
cytogenetic anomalies [del(17p) and del(13q)] (Elliott et al. 2011). These findings could be of 
vital importance regarding CLL treatment, since DNA repair inhibitors could be used as 
potential therapeutic targets in combination with alkylating agents for a better clinical 
outcome, especially in high risk CLL. 
Finally, association of DNA repair enzymes’ abnormalities with CLL prognosis has been the 
subject of investigation of several studies. ATM has been implicated in CLL, since it has 
been shown that approximately 14% of patients with untreated CLL harbor deletions of the 
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long arm of chromosome 11 at the 11q22-23 (ATM) locus, which is associated with poor 
survival. An explanation could be that since ATM is an upstream regulator of p53, defects in 
ATM lead to attenuation of p53-dependent apoptosis, which results in a chemo-refractory 
phenotype. Furthermore, a correlation was described between protein DNA-PKcs 
component of Non Homologous End Joining and poor prognosis in CLL in terms of enzyme 
over-expression in del (17p) and del (11q) unfavorable CLL cases (Willmore et al. 2008). In 
the same study, high DNA-PKcs levels predicted for reduced treatment-free survival. These 
findings suggest that DNA-PKcs might contribute to disease progression in CLL, possibly 
by enhancing error-prone Non Homologous End Joining activity.  

3.8 Multiple Myeloma (MM) 

The diagnosis of multiple myeloma (MM) requires 10% or more plasma cells on bone 

marrow examination, M protein in the serum and/or urine (except in patients with true 

non-secretory myeloma) and evidence of end-organ damage (hypercalcaemia, renal 

insufficiency and anemia or bone lesions) secondary to the underlying plasma cell disorder. 

Almost all patients are thought to evolve from an asymptomatic premalignant stage termed 

monoclonal gammopathy of undetermined significance (MGUS) (Kyle and Rajkumar 2004). 

Genetic instability is a prominent feature of MM, since malignant plasma cells display 

aneuploidy and complex cytogenetics associated with poor prognosis (Calasanz et al. 1997, 

Rajkumar et al. 1999, Smadja et al. 2001). Two pathways are considered important for 

disease progression; hyperploid MM involves trisomies of several chromosomes, whereas 

non-hyperploid MM is characterized by translocations in immunoglobulin heavy chain 

locus at 14q32 (Bergsagel and Kuehl 2005, Fonseca et al. 2004, Ho et al. 2001). The latter 

events represent aberrant class switch recombination (CSR), a process that normally alters 

immunoglobulin isotype with the maturation of immune response (Fenton et al. 2002, 

Liebisch and Dohner 2006). 

Given the fact that CSR requires formation of double stand breaks, the role of Homologous 

Recombination (HR) and Non Homologous End Joining (NHEJ) in MM pathogenesis has 

been investigated in many studies. Among DNA repair polymorphisms, XRCC4 rs963248 

and rs1051685 Ku80 have been found in a higher frequency in MM patients compared to 

controls (Hayden et al. 2007). At a protein level, XRCC4 was also recently found to be 

overexpressed in MM (Roddam et al. 2010) Furthermore, recently, protein Ku80 has been 

associated again with MM, since it was demonstrated that Ku80/Ku70 are translocated to 

human MM cells surface and that this localization has functional implications which could 

contribute to MM pathogenesis (Tai et al. 2002).  

Homologous Recombination (HR) has also been investigated in MM. Rad50 has been 

recently found to be overexpressed in MM patients (Roddam et al. 2010). In another study 

by Shammas et al. model MM cell lines were used in order to evaluate the molecular 

mechanisms of genetic instability and progression in malignancies (Shammas et al. 2009). 

An elevated HR activity is reported in MM cells, which leads to mutations. The authors 

show that inhibition of HR activity by siRNAs leads to reduction of genetic changes. 

Therefore, we could presume that HR can be targeted not only for prevention of disease 

progression, but also for therapy improvement. In another study focused on assessing the 

role of NHEJ in MM phenotype, authors observed that DSBs, when induced in MM cell 

lines, exhibited corrupt NHEJ (Yang et al. 2009). Interestingly, with the use of DNA-PK 

inhibitor was used, NHEJ process was suppressed and DNA ends were processed by intact 
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HR. This finding suggests that deregulated DSB repair in MM might contribute to complex 

chromosomal aberrations that, as mentioned above, is typical feature of the disease. 

Apart from DSB repair, Mismatch Repair deficiency in MM has been investigated in several 
studies. Microsatellite instability has been reported in MM patients (Timuragaoglu et al. 
2009, Velangi et al. 2004) and has been associated with more aggressive forms of the disease 
(e.g. plasma cell leukemia-PCL) (Velangi et al. 2004). On the other hand, Martin et al. 
(Martin et al. 2006) examined the methylation status and expression of enzymes MGMT and 
hMLH1 in 44 cases of plasma cells disorders [(Multiple Myeloma, Monoclonal Gammopathy 
of Undetermined Significance (MGUS), Plasma Cell Leukemia (PCL)]. Protein hMLH1 was 
found to be underexpressed in 50% of cases of MM, but not in patients with MGUS, whereas 
hMLH1 gene promoter was hypermethylated in 10% patients with MM but not in cases with 
MGUS. This finding suggests that inactivation of hMLH1 could be implicated in the 
evolution of MGUS to MM. On the contrary, 33% of MGUS and 44% MM patients had lost 
the MGMT expression, suggesting that MGMT deficiency is an initial alteration in plasma 
cell disorders. 
Additionally, Nucleotide Excision Repair (NER) enzymes and have been associated with 
MM. Peng et al. reported epigenetic silencing of NER protein XPD in MM cells that was 
found to promote clonal expansion of MM cells (Peng et al. 2005). As a consequence, it 
might contribute to MM pathogenesis. NER has also been studied in the context of 
autologous bone marrow transplantation (ASCT) in MM. It has been observed that the 
combination of variant alleles of NER proteins XPD K75Q and XRCC3 T241M correlates 
with prolonged time to treatment failure in MM patients treated with ASCT (Vangsted et al. 
2007). This finding is very important, since polymorphisms in XPD and XRCC3 could 
potentially predict the outcome in MM patients undergoing ASCT. 
Finally, there is recent evidence that DNA repair polymorphisms are related to treatment 
response rate (RR) in MM. In a study conducted in Spain, it was found that polymorphisms 
ERCC1 rs735482 and Ku80 rs1051685 were associated with higher RR and longer overall 
survival in patients with relapsed/refractory myeloma treated with thalidomide (Cibeira et 
al. 2011). Similarly, RR was better in MM patients with SNPs in ERCC5 rs17655 (Cibeira et 
al. 2011). Although sample size is relatively small and belongs to a specific group of patients, 
this study provides very useful information, which, if confirmed in other studies, could be 
used in clinical practice to predict favorable outcome in relapsed myeloma. 
Abnormalities of enzymes involved in DNA repair mechanisms and their influence on 
hematological malignancies are summarized in Table 1. 

4. Conclusions 

Genomic instability is the hallmark of all hematological malignancies. Since DNA repair 
mechanisms are responsible for correcting DNA damage and preserving genomic integrity, 
it is obvious that abnormalities of these mechanisms are strongly related to hematological 
cancers. Mutations and polymorphisms of DNA repair genes are associated with alteration 
of an individual’s susceptibility to malignancy. In addition, they are related to prognosis, 
drug resistance and clinical outcome and represent potential targets for therapy. 
We have presented the existing published data that show association of DNA repair 
mechanisms with the most common myeloid and lymphoid malignancies. Many studies 
have focused on investigation of the role of Base Excision Repair, Nucleotide Excision 
Repair, Non Homologous End Joining and Homologous Recombination in hematological  
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MALIGNANCY DEFECTS 

AML NER: - XPDGlu751C/Asp312G }t risk of RD 

      - XPDAsp312Asnst risk of RD/tsurvival in AML with normal 

karyotype  

      - XPD Lys751Gln A>Cs r AML risk  

      -XPC Ala499ValstOS in normal karyotype 

      - XPA 4A>GGGs chemoresistant disease, tOS 

BER:  - XRCC3 Thr241Met} r AML risk, especially inv(16)/t(16;16) 

AML 

HR:  -Rad51G135C}2x r or t AML risk? 

      - Rad51-135-172-C haplotype }t AML risk 

NHEJ: - r NHEJ activity and repair infidelity 

DSBR: - ATM variant 4138CT} poor response to chemotherapy in 

Chinese 

      -hypermethylation of BRCA1 

MMR: -MMR deficiency in relapsed/refractory AML. 

 

ALL BER: - XRCC1 194Trp allele s t risk ALL in Thais, r risk in Indians 

      - XRCC1 399Gln sr risk of ALL in Indians, Chinese, Thais 

      - XRCC1 haplotypes B&Csr risk of ALL 

NER: - ERCC1 8092C>A CC genotypesr risk of ALL in Chinese 

DSBR:- E185Q in NBS1s r risk of ALL 

MMR: - MLH1 Ile-219/Ile-219+ CYP2A1*2A/ +GSTM1/ +CYP2E1*5sr 

risk of ALL 

 

MDS HR:  -RAD51-G135Csr risk of MDS? 

NHEJ:- ‾ Ligase IV expression in MDS vs. controls, r Ku70 expressions 

aggressive disease 

 

CML NER: -XPB binds to BCR domain sdysfunction of XPB s role in BC? 

DSBR: -BCR/ABL(+) cellss r DSBs, high mutation rate in 

HR/NHEJsgenomic instability 

HR:- DNA-PKcs expression in hematopoietic cells transfected with 

BCR/ABL/ CD34+ cells from CML patients 

MMR:- hMSH3 ‾ in MMR 

 

NHL DR:- MGMT Ile143Val and MGMT Lys178Args| risk of NHL 

(FL,DLBCL,MCL,T-Cell Lymphomas) 

BER: - XRCC1 Arg194Trps | risk of NHL,t risk of DLBCL 

NER: - XPD K751QCCst risk of DLBCL  

      -XPD R156Rs| risk of FL 

      -XPG Asp1104Hiss| risk of NHL 

      - hHR23BsBurkitt lymphoma? 

DSBR: -Loss of ATM in MCL  

      -MRE11 GCTCAst risk of DLBCL  

      -MRE11 rs601341st risk of FL 

      - BLM rs441399s| risk of FL 

      - BRCA2 372 H/H} ‾ risk of NHL (FL & DLBCL) 

      - RAG1 820Rs| risk of NHL 
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NHEJ: -.Ligase 9I var allelest risk of NHL (FL & DLBCL) 

       -WRN V114l variant}‾ risk of NHL 

       -WRN Cys1367Arg}‾ risk of NHL 

MMR: - hMLH1, hPMS1st risk for B-NHL and MCL blastoid type  

      -MMR genes inactivations role in ATL disease progression 

 

HL BER:- XRCC1 Arg399Glns| risk for HL 

      -XRCC3 Thr241Met, XRCC1 Arg194Trps| risk for HL 

     - polymorphisms XRCC1/XRCC3& XRCC1/XPCs| risk for HL 

DSBR:- SNPS of ATM with defective function       

CLL BER: -XRCC1 399Glns rin CLL with unfavorable prognosis 

NER: -XPD Lys751Glnsr in CLL with unfavorable prognosis 

     -XPF Arg415Glns r in CLL with unfavorable prognosis 

DSBR: Inactivation of ATM 

HR:- Rad51 G135Csr in CLL with favorable prognosis 

   -.r Rad51 foci in CLL exposed to chlorambucils resistance to 

chlorambucil ? 

   -r HR activity in CLL cells exposed to alkylating agentss resistance to 

alkylating agents 

NHEJ:- t DNA-PKcs expressions chemosensitivity 

      -| DNA-PK activitys resistance to chlorambucil 

      -| DNA-PKcs expression in CLL patients with poor prognosiss 

disease progression?     

MM DR:  -MGMT t/hypermethylated in MM 

NER: -XPD K75Qsr prolonged TTR in MM patients with ASCT 

      -ERCC1 rs735482s| RR and OS in relapsed/refractory MM 

HR:  - Rad50 overexpresion in MM patients 

     - r HR activity in MM cell lines 

     -XRCC3 T24r 1Msr prolonged TTR in MM patients with ASCT 

NHEJ: -XRCC4 rs96248 Allele As| risk of MM 

      -Overexpession of XRCC4 

      -Ku80 rs1051685 GGs| risk for MM 

      - Corrupt NHEJ in MM cell lines 

     - Ku80 rs1051685s| RR and OS in relapsed/refractory MM 

DR= Direct Repair, BER= Base Excision Repair, NER= Nucleotide Excision Repair, MMR= MisMatch 

Repair, DSBR= Double Strand Break Repair, HR= Homologous Recombination,  

NHEJ= Non Homologous End Joining, AML= Acute Myeloid Leukemia, ALL= Acute Lymphoblastic 

Leukemia, MDS= Myelodysplastic Syndromes, CML= Chronic Myeloid Leukemia,  

NHL= Non Hodgkin Lymphoma, FL= Follicular Lymphoma, DLBCL= Diffuse Large B- Cell 

Lymphoma, MCL= Mantle Cell Lymphoma, ATL= Adult T- cell Leukemia,  

HL= Hodgkin’s Lymphoma, , CLL= Chronic Lymphocytic Leukemia,  

MM= Multiple Myeloma, MGUS= Monoclonal Gammmopathy of Undetermined Significance,  

TTR= Time to Treatment Failure, ASCT= Autologous Stem Cell Transplantation,  

RD= Resistant Disease, BC= Blast Crisis, OS=Overall Survival 

Table 1. Defects of DNA repair mechanisms in hematological malignancies 

diseases, whereas few data is reported regarding the impact of Direct Repair and Mismatch 
Repair on these malignancies. The most commonly studied diseases are acute myeloid 
leukemia and Non Hodgkin’s Lymphoma. Among all the data reviewed, none has clinical 
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application yet, therapeutic or prognostic. Further analysis of DNA repair pathways 
alterations is essential in order to elucidate their pathogenetic role in hematological 
malignancies and establish alternative therapeutic options that could be used in a clinical level, 
in order to help improve prognosis and survival of patients with hematological cancers. 

5. Abbreviations 

  
AGT/MGMT O6-alkylguanine transferase 

ALL Acute Lymphoblastic Leukemia 

AML Acute Myeloid Leukemia 

ATL Adult T-cell Leukemia 

ASCT Autologous Stem Cell Transplantation  

BC Blast crisis in chronic myeloid leukemia 

BER Base Excision Repair  

B-NHL Non Hodgkin’s Lymphoma of B-origin 

CLL Chronic Lymphocytic Leukemia 

CML Chronic Myeloid Leukemia 

CP Chronic Phase in chronic myeloid leukemia 

CR Complete Remission 

CSR Class Switch Recombination 

dbSNP Single Nucleotide Polymorphism Database  

DDR DNA Damage Response 

DLBCL Diffuse Large B-Cell Lymphoma 

DR Direct Repair 

DSB Double Strand Break 

FL Follicular Lymphoma 

GG-NER Global Genome Nucleotide Excision Repair  

HL Hodgkin’s Lymphoma 

HR Homologous Recombination 

IgV Immunoglobulin Variable region 

LP-BER Long Patch Base Excision Repair 

MCL Mantle Cell Lymphoma 

MDS Myelodysplastic Syndromes 

MGUS Monoclonal Gammopathy of Undetermined Significance  

MM Multiple Myeloma 

MMR Mismatch Repair 

MSI Microsatellite Instability 

MZL Marginal Zone Lymphoma 

NCBI National Center for Biotechnology Information 

NER Nucleotide Excision Repair 

NHEJ Non Homologous End Joining 

NHGRI National Human Genome Research Institute 

NHL Non Hodgkin’s Lymphoma  

OR Odd Ratio  
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OS Overall Survival 

PCL Plasma-Cell Leukemia 

RD Resistant Disease 

ROS Reactive Oxygen Species 

RR Response Rate 

SNP Single Nucleotide Polymorphism 

SP-BER Short-Patch Base Excision Repair  

TC-NER Transcription Coupled Nucleotide Excision Repair  

TTR Time to Treatment Failure 
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reviews presented here, contain detailed descriptions of DNA repair pathways, as well as analysis of a large

body of evidence addressing links between DNA damage repair and human health. They will be of interest to a

broad audience, from molecular biologists working on DNA repair in any model system, to medical

researchers.
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