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1. Introduction 

Genetic knowledge has increased tremendously in the last years, filling gaps and giving 

answers that were inaccessible before. Medical genetics seeks to understand how genetic 

variation relates to human health and disease (National Center for Biotechnology 

Information, 2008). Although genetics plays a larger role in general, the knowledge of the 

genetic origins of disease has increased our understanding of illnesses caused by 

abnormalities in the genes or chromosomes, offering the potential to improve the diagnosis 

and treatment of patients. Normally, every person carries two copies of every gene (with the 

exception of genes related to sex-linked traits), which cells can translate into a functional 

protein. The presence of mutant forms of genes (mutations, copy number changes, 

insertion/deletions and chromosomal alterations) may affect several processes concerning 

the production of these proteins often resulting in the development of genetic disorders. 

Genetic disease is either caused by changes in the DNA of somatic cells in the body or it is 

inherited, e.g. by mutations in the germ cells of the parents.  

Genetic testing is "the analysis of, chromosomes (DNA), proteins, and certain metabolites in 
order to detect heritable disease-related genotypes, mutations, phenotypes, or karyotypes 
for clinical purposes (Holtzman et al, 2002). In order to make this suitable for routine 
diagnostics dedicated, affordable, fast, easy-to-interpret and simple-to-use genetic tests are 
necessary. This allows scientists to easily access information that for instance can be used to: 
confirm or rule out a suspected genetic condition or help determine a person's chance of 
developing or passing on a genetic disorder. Several hundred genetic tests are currently in 
use, and more are being developed (Sequeiros et al, 2008). The Multiplex Ligation-
dependent Probe Amplification (MLPA) is a PCR-based technique, which allows the 
detecting of copy number changes in DNA or RNA. MLPA can quantify up to 50 nucleic 
acid sequences or genes in one simple reaction, with a resolution down to the single 
nucleotide level (Schouten et al., 2002) needing only 20 ng of DNA. The MLPA procedure 
itself needs little hands on work allowing up to 96 samples to be handled simultaneously 
while results can be obtained within 24 hours. These properties make it a very efficient 
technique for medium-throughput screening of many different diseases in both a research 
and diagnostic settings (Ahn et al, 2007).  
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Over a million of MLPA reactions were performed last year worldwide but researchers are 
still concerned with the application of tools to facilitate and improve MLPA data analysis on 
large, complex data sets. MLPA kits contain oligo-nucleotide probes that through a 
biochemical reaction can produce signals that are proportional to the amount of the target 
sequences present in a sample. These signals are detected and quantified on a capillary 
electrophoresis device producing a fragment profile. The signals of an unknown sample 
need to be compared to a reference in order to assess the copy number. Profile comparison is 
a matter of professional judgment and expertise. Diverse effects may furthermore 
systematically bias the probe measurements such as: quality of DNA extraction, PCR 
efficiency, label incorporation, exposure, scanning, spot detection, etc., making data analysis 
even more challenging.  To make data more intelligible, the detected probe measurements of 
different samples need to be normalized thereby removing the systematic effects and 
bringing data of different samples onto a common scale. 
Although several normalization methods have been proposed, they frequently fail to take 
into account the variability of systematic error within and between MLPA experiments. 
Each MLPA study is different in design, scope, number of replicates and technical 
considerations. Data normalization is therefore often context dependent and a general 
method that provides reliable results in all situations is hard to define. The most used 
normalization strategy therefore remains the use of in-house brew analysis spreadsheets 
that often cannot provide the reliability required for results with clinical purposes. These 
sheets furthermore do not provide easy handling of large amounts of data and file retrieval, 
storage and archival needs to be handled by simple file management systems. We therefore 
set out to develop software that could tackle all of these problems, and provide users with 
reliable results that are easy to interpreter.  
In this chapter we show the features and integrated analysis methods of our novel MLPA 
analysis software called Coffalyser.NET. Our software uses an analysis strategy that can 
adapt to fit the researcher objectives while considering both the biological context and the 
technical limitations of the overall study. We use statistical parameters appropriate to the 
situation, and apply the most robust normalization method based on the biology and quality 
of the data. Most information required for the analysis is extracted directly from the MRC-
Holland database, producer of the MLPA technology, needing only little user input about 
the experimental design to define an optimal analysis strategy. In the next section we review 
the MLPA technology in more detail and explain the principles of MLPA data 
normalization. Then in section 3, we describe the main features of our software and their 
significance. The database behind our software is reviewed in section 4 and section 5 
explains the exact workflow of our program reviewing the importance and methodology of 
each analysis step in detail. In the final section, we summarize our paper and present the 
future directions of our research.  

2. Background 

MLPA data is commonly used for sophisticated genomic studies and research to develop 
clinically validated molecular diagnostic tests, which e.g. can provide individualized 
information on response to certain types of therapy and the likelihood of disease recurrence. 
The most common application for MLPA is the detection of small genomic aberrations, often 
accounting for 10 to 30% of all disease-causing mutations (Redeker et al., 2008). In case of 
the very long DMD gene –involved in Duchenne Muscular Dystrophy— exon deletions and 
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duplications even account for 65-70% of all mutations (Janssen et al., 2005). Since MLPA can 
detect sequences that differ only a single nucleotide, the technique is also widely used for 
the analysis of complicated diseases such as congenital adrenal hyperplasia and spinal 
muscular atrophy, where pseudo-genes and gene conversion complicate the analysis 
(Huang et al., 2007). Methylation-specific MLPA has also proven to be a very useful method 
for the detection of aberrant methylation patterns in imprinted regions such as can be found 
with the Prader-Willi/Angelman syndrome and Beckwith-Wiedemann syndrome (Scott et 
al., 2008). The MS-MLPA method can also be used for the analysis of aberrant methylation 
of CpG islands in tumour samples using e.g. DNA derived from formalin-fixed, paraffin-
embedded tissues. 
MLPA kits generally contain about 40-50 oligo-nucleotide probes targeted to mainly the 

exonic regions of a single or multiple genes. The number of genes that each kit contains is 

dependent on the purpose of the designed kit. Each oligo-probe consists of two hemi-

probes, which after denaturation of the sample DNA hybridize to adjacent sites of the target 

sequence during an overnight incubation. For each probe oligo-nucleotide in a MLPA kit 

there are about 600.000.000 copies present during the overnight incubation. An average 

MLPA reaction contains 60 ng of human DNA sample, which correlates to about 20.000 

haploid genomes. This abundance of probes as compared to the sample DNA allows all 

target sequences in the sample to be covered. After the overnight hybridization adjacent 

hybridized hemi-probe oligo-nucleotides are then ligated using a ligase enzyme and the 

ligase cofactor NAD at a slightly lower temperature than the hybridization reaction (54 °C 

instead of 60 °C). The ligase enzyme used, Ligase-65, is heat-inactivated after the ligation 

reaction. Afterwards the non-ligated probe oligonucleotides do not have to be removed 

since the ionic conditions during the ligation reaction resemble those of an ordinary 1x PCR 

buffer. The PCR reaction can therefore be started directly after the ligation reaction by 

adding the PCR primers, polymerase and dNTPs. All ligated probes have identical end 

sequences, permitting simultaneous PCR amplification using only one primer pair. In the 

PCR reaction, one of the two primers is fluorescently labeled, enabling the detection and 

quantification of the probe products.  

The different length of every probe in the MLPA kit then allows these products to be 

separated and measured using standard capillary fragment electrophoresis. The unique 

length of every probe in the probe mix is used to associate the detected signals back to the 

original probe sequences. These probe product measurements are proportional to the 

amount of the target sequences present in a sample but cannot simply be translated to copy 

numbers or methylation percentages. To make the data intelligible, data of a probe 

originating from an unknown sample needs to be compared with a reference sample. This 

reference sample is usually performed on a sample that has a normal (diploid) DNA copy 

number for all target sequences. In case the signal strengths of the probes are compared with 

those obtained from a reference DNA sample known to have two copies of the chromosome, 

the signals are expected to be 1.5 times the intensities of the respective probes from the 

reference if an extra copy is present. If only one copy is present the proportion is expected to 

be 0.5. If the sample has two copies, the relative probe strengths are expected to be equal. In 

some circumstances reliable results can be obtained by comparing unknown samples can to 

reference samples by visual assessment, simply by overlaying two fragment profiles and 

comparing relative intensities of fragments (figure 1).  
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Fig. 1. MLPA fragment profile of a patient sample with Duchenne disease (bottom) and that 
of a reference sample (top). Duchenne muscular dystrophy is the result of a defect in the 
DMD gene on chromosome Xp21. The fragment profile shows that the probe signals 
targeted to exon 45-50 of the DMD gene have a 100% decrease as compared to the reference, 
which may be the result of a homozygous deletion. 

It may however not be feasible to obtain reliable results out of such a visual comparison if: 

1. The DNA quality of the samples and references is incomparable.  
2. The MLPA kit contains probes targeted to a number of different genes or different 

chromosomal regions, resulting in complex fragment profiles  
3. The data set is very large, making visual assessment very laborious.  
4. The DNA was isolated tumor tissue, which often shows DNA profiles with altered 

reference probes 
To make (complex) MLPA data easier understandable unknown and reference samples have 
to be brought on a common scale. This can be done by normalization, the division of 
multiple sets of data by a common variable in order to cancel out that variable's effect on the 
data. In MLPA kits, so called reference probes are usually added, which may be used in 
multiple ways in order to comprise a common variable. Reference probes are usually are 
targeted to chromosomal regions that are assumed to remain normal (diploid) in DNA of 
applicable samples. The results of data normalization are probe ratios, which display the 
balance of the measured signal intensities between sample and reference. In most MLPA 
studies, comparing the calculated MLPA probe ratios to a set of arbitrary borders is used to 
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recognize gains and losses (González, 2008). Probe ratios of below 0.7 or above 1.3 are for 
instance regarded as indicative of a heterozygous deletion (copy number change from two 
to one) or duplication (copy number change from two to three), respectively. A delta value 
of 0.3 is a commonly accepted empirically derived threshold value for genetic dosage 
quotient analysis (Bunyan et al. 2004). To get more conclusive results probes may be 
arranged according to chromosomal location as this may reveal more subtle changes such as 
those observed in mosaic cases.  

3. Key features 

3.1 Support wide range of file format 
Our software is compatible with binary data files produced by all major capillary 
electrophoresis systems including: ABIF files (*.FSA,  *.AB1, *.ABI) produced by Applied 
Biosystems devices, SCF and RSD files produced by MegaBACE™ systems (Amersham) and 
SCF and ESD files produced by CEQ systems (Beckman). We can also import fragment lists 
in text or comma separate format, produced by different fragment analysis software 
programs such as Genescan (Applied Biosystems), Genemapper (Applied Biosystems), CEQ 
Fragment analysis software (Beckman) and Genetools. Raw data files are however preferred 
since they allow more troubleshooting and quality check options as compared to size called 
fragment lists. Next to this, raw and analyzed data are then stored in a single database and 
more advanced reports can be created. 

3.2 Optimized peak detection / quantification method for MLPA 
All applied algorithms in our software are specifically designed to suit MLPA or MLPA-like 
applications. We designed an algorithm for peak detection and quantification specifically for 
MLPA peak patterns. Most peak detection algorithms simply identify peaks based on 
amplitude, ignoring the additional information in the shape of the peaks. In our experience, 
‘true’ peaks have characteristic shapes, and including fluorescence of artifacts may 
introduce ambiguity into the analysis and interpretation process. Our algorithm has the 
ability to differentiate most spurious peaks and artifacts from peaks that originate from a 
probe product. We differentiate a number of different peak artifacts, such as: shoulder 
peaks, printout spikes, dye artifacts, split peaks, pull-up peaks, stutter peaks and non-
template additions. It is often difficult to identify the correct peaks due to appearance of 
nonspecific peaks in the vicinity of the main allele peak. Our algorithm is therefore 
optimized to discriminate the different artifacts from the probe signals by usage of 
minimum and maximum threshold values on the peak -amplitude, -area, -width and -
length. Next to this, it may also recognize split and shoulder -peaks by means of shape 
recognition, making correct identification of probe signals even more reliable. Following 
peak detection, quantification and size calling, our software allows one or more peaks to be 
linked to the original MLPA probe target sequence. This pattern matching is greatly 
simplified as compared to other genotyping programs and additionally provides a powerful 
technique for identifying and separating signal due to capillary electrophoresis artifacts. 
Our software may employ three different metrics to reflect the amount of probe 
fluorescence: peak height, peak area and peak area including its siblings. Peak siblings are 
the peak artifacts that are created during the amplification of the true MLPA products but 
have received an alternative length. To determine which metric should be used for data 
normalization, our program uses an algorithm that compares the signal level of each metric 
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over the reference probes in all samples, and compares this to the amount of noise over the 
same signals. The metric that has the largest level signal to noise is then used in the 
following normalization steps. 

3.3 Performances and throughput 
After a user logs in, analysis of a complete experiment can be performed in two simple 
steps: the processing of raw data and the comparison of different samples. Depending on 
the analysis setup and type of computer, the complete analysis may be completed in less 
than a minute for 24 samples. Our software can also make use of extra cores running in a 
computer, multiplying the speed of the analysis almost by two for each core. Because of 
problems arising from poor sample preparations, presence of PCR artifacts, irregular stutter 
bands, and incomplete fragment separations, a typical MLPA project requires manual 
examination of almost all sample data. Our software was designed to eliminate this 
bottleneck by substantially minimizing the need to review data. By creating a series of 
quality scores to the different processes users can easily pinpoint the basis for the failed 
analysis. These scores include quality assessment related to: the sample DNA, MLPA 
reaction, capillary separation and normalization steps (figure 6). The quality of each step can 
fall roughly into three categories. 
1. High-quality or green. The results of these analysis steps can be accepted without 

reviewing. 
2. Low-quality or red. These steps represent samples with contamination and other 

failures, which render the resulted data unsuitable to continue with. This data can 
quickly be rejected without reviewing; recommendations can be reviewed in 
Coffalyser.NET and used for troubleshooting.  

3. Intermediate-quality or yellow. The results of these steps fall between high- and low- 
quality. The related data and additional recommendations can be reviewed in 
Coffalyser.NET and used to optimize the obtained results.  

When the analysis is finished the results can be visualized in a range of different display and 
reporting options designed to meet the requirement of modern research and diagnostic 
facilities. Results effortlessly can be exported to all commonly used medical report formats 
such as: pdf, xls, txt, csv, jpg, gif, png etc.  

3.4 Reliable recognition of aberrant probes 
Results interpretation of clinically relevant tests can be one of the most difficult aspects of 

MLPA analysis and is a matter of professional judgment and expertise. In practice, most 

users only consider the magnitude of a sample test probe ratio, comparing the ratio against 

a threshold value. This criterion alone may often not provide the conclusive results required 

for diagnosing disease. MLPA probes all have their own characteristics and the level of 

increase or decrease that a probe ratio displays that was targeted to a region that contains a 

heterozygous gain or loss, may differ for each probe. Interpretation of normalized data may 

even be more complicated due to shifts in ratios caused by sample-to-sample variation such 

as:  dissimilarities in PCR efficiency and size to signal sloping. Other reasons for fluctuations 

in probe ratios may be: poor amplification, misinterpretation of an artifact peak/band as a 

true probe signal, incorrect interpretation of stutter patterns or artifact peaks, contamination, 

mislabeling or data entry errors (Bonin et al., 2004). To make result interpretation more 

reliable our software combines effect-size statistics and statistical interference allowing users 
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to evaluate the magnitude of each probe ratio in combination with it’s significance in the 

population. The significance of each ratio can be estimated by the quality of the performed 

normalization, which can be assessed two factors: the robustness of the normalization factor 

and the reproducibility of the sample reactions.  
During the analysis our software estimates the reproducibility of each sample type in a 
performed experiment by calculating the standard deviation of each probe ratio in that 
sample type population. Since reference samples are assumed to be genetically equal, the 
effect of sample-to-sample variation on probe ratios of test probes is estimated by the 
reproducibility of these probes in the reference sample population. These calculations may 
be more accurate under circumstances where reference samples are randomly distributed 
across the performed experiment. Our program therefore provides an option to create a 
specific experimental setup following these criteria, thereby producing a worksheet for the 
wet analysis and a setup file for capillary electrophoresis devices. DNA sample names can 
be selected from the database and may be typed as a reference or test sample, positive 
control or negative control. This setup file replaces the need for filling in the sample names 
in the capillary electrophoresis run software thereby minimizing data entry errors.  
To evaluate the robustness of the normalization factor our algorithm calculates the 
discrepancies computed between the probe ratios of the reference probes within each 
sample. Our normalization makes use of each reference probe for normalization of each test 
probe; thereby producing as many dosage quotients (DQ) as there are references probes. 
The median of these DQ’s will then be used as the definite ratio. The median of absolute 
deviations between the computed dosage quotients may reflects the introduced 
mathematical imprecision of the used normalization factor. Next, our software calculates the 
effect of both types of variation on each test sample probe ratio and determines a 95% 
confidence range. By comparing each sample’s test probe ratio and its 95% confidence range 
to the available data of each sample type population in the experiment, we can conclude if 
the found results are significantly different from e.g. the reference sample population or 
equal to a positive sample population. The algorithm then completes the analysis by 
evaluating these results in combination with the familiar set of arbitrary borders used to 
recognize gains and losses. A probe signal in concluded to be aberrant to the reference 
samples; if a probe signal is significantly different as from that reference sample populations 
and if the extent of this change meets certain criteria. The results are finally translated into 
easy to understand bar charts (figure 2) and sample reports allowing users to make a 
reliable and astute interpretation of the results. 

3.5 Advanced data mining options 
The database behind our software is designed in SQL and is based on a relational database 
management system (RDBMS). In short this means that data is stored in the form of tables 
and the relationship among the data is also stored in the form of tables. Our database setup 
contains a large number of subtraction levels, not only allowing users to efficiently store and 
review experimental sample data, but also allowing users to get integrative view on 
comprehensive data collections as well as supplying an integrated platform for comparative 
genomics and systems biology. While all data normalization occurs per experiment, 
experiments can be organized in projects, allowing advanced data-mining options enabling 
users to retrieve and review data in many different ways. Users can for instance review 
multiple MLPA sample runs from a single patient in a single report view. Results of 
multiple MLPA mixese may be clustered together, allowing users gain more confidence on 
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any found results. The database can further handle an almost unlimited number of 
specimens for each patient, and each specimen can additionally handle an almost unlimited 
number of MLPA sample runs. To each specimen additional information can be related such 
as sample type, tissue type, DNA extraction method, and other clinical relevant data, which 
can be used for a wide range of data mining operations for discovery purposes. Some of 
these operations include: 
1. Segmenting patients accurately into groups with similar health patterns.  
2. Evidence based medicine, where the information extracted from the medical literature 

and the corresponding medical decisions are key information to leverage the decision 
made by the professional. 

 
 
 

 
 

Fig. 2. Ratio chart of the results of a tumor sample analyzed with the P335 MLPA kit. Red 
dots display the probe ratios and the error bars the 95% confidence ranges. The orange box 
plots in the background show the 95% confidence range of the used reference samples. Map 
view locations are displayed on the x-axis and ratio results on the Y-axis. The red and green 
lines at ratio 0.7 and 1.3 indicate the arbitrary borders for loss and gain respectively. The 
displayed sample contains several aberrations and extra caution with interpretation is 
needed due to normal cell contamination.  
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3. Non-parametric tests (distribution-free) used to compare two or ore independent 
groups of data. 

4. Classification methods that can be used for predicting medical diagnosis. 

4. About the database 

4.1 Client server database model 
Our software uses a SQL client–server database model to store all project/experiment-
related data. The client-server model has one main application (server) that deals with one 
or several slave applications (clients). Clients may communicate to a server over the 
network, allowing data sharing within and even beyond their institutions. Even though this 
system may provide great convenience e.g. for people who are working on a single project 
but are working on different locations, both client and server may also reside in the same 
system. Having both client and server on the same system has some advances over running 
both separately: the database is better protected and both client and server will always have 
the same version number. In case an older client will try to connect to a server that has a 
newer version number, the client needs to be updated first. A client does not share any of its 
resources, but requests a server's content or service function. Clients therefore initiate 
communication sessions with servers that await incoming requests. When a new client is 
installed on a computer it will implement a discovery protocol in order to search for a server 
by means of broadcasting. The server application will then answer with its dynamic address 
that resolves any issues with dynamic IP addresses.  

4.2 User access 
In addition to serving as a common data archive, the database provides user authentication, 
robust and scalable data management, and flexible archive capabilities via the utilities 
provided within Software. Our database model acts in accordance with a simple legal 
system, linking users to one or multiple organizations. Each user receives a certain role 
within each organization to which certain right are linked. These rights may for instance 
include denial of access to certain data but may also be used to deny access to certain parts 
of the program. These same levels may also be applied on project level. Projects will have 
project administrators and project members. The initial project creators will also be the 
project administrators who are responsible for user management of that project.  

4.3 Sessions 
As soon as a user makes a connection with the server a session will be started with a unique 

identifier. Subsequent made changes by any user will be held to this identifier, in order to 

keep track of the made changes. This number is also used to secure experiment data when in 

use; this ensures no two users try to edit essential data simultaneously (data concurrency). 

When a user logs in on a certain system, all previously open session of that user will be 

closed. Every user can thus only be active on a single system. On closing a session, either by 

logout or by double login all old user locks will disappear.  

4.4 Data retrieval and updates 
In our software is equipped with MLPA sheet manager software, allowing users to obtain 

information about commercial MLPA kits and size markers directly from the MRC-Holland 

database. Next to this, the sheet manager also allows users to create custom MLPA mixes. 

www.intechopen.com



 
Modern Approaches To Quality Control 

 

134 

The sheet manager software can be used to check if updates to any of the MLPA mixes are 

available. The sheet manager can further carry out automatic checks for updates at the 

frequency you choose, or it can be used to make manual checks whenever you wish. It can 

display scheduled update checks and can work completely in the background if you choose. 

With just one click, you can check to see if there are new versions of the program, or 

updated MLPA mix sheets. If updates are available, you can download them quickly and 

easily. In case some MLPA mixes are already in use, users may choose to hold on to both the 

older version and updated versions of the mix or replace the older version.  

5. Coffalyser.NET workflow 

Figure 3 shows the graphical representation of the workflow of our software. After creating 
an empty solution, users can add new or existing items to the empty solution by using the 
“add new project” or “add new experiment” command from the client software context 
menu. By creating projects, users can collect data of different experiments in one 
collection. Next, data files can then be imported to the database and linked to an 
experiment. Users then need to define for each used channel or dye stream of each 
capillary (sample run) what the contents are. Each detectable dye channel can be set as a 
sample (MLPA kit) or a size marker. Samples may further be typed as: MLPA test sample, 
MLPA reference sample, MLPA positive control, or MLPA digested sample. The complete 
analysis of each MLPA experiment can be divided in 2 steps: raw data analysis and 
comparative analysis. Raw data analysis includes all independent sample processes such 
as: the recognition and signal determination of peaks in the raw data streams of imported 
data files, the determination of the sizes of these peaks in nucleotides and the process of 
linking these peaks to their original probe target sequences. After raw data analysis is 
finished, users can evaluate a number of quality scores (figure 6), allowing users to easily 
assess the quality of the produced fragment data for each sample. Users may now reject, 
accept and adjust sample types before starting the comparative analysis. During the 
comparative part of the analysis several normalization and regression analysis methods 
are applied in order to isolate and correct the amount of variation that was introduced 
over the repeated measured data. Found variation that could not be normalized out of the 
equation is measured and used to define confidence ranges. The software finally 
calculates the variation of the probes over samples of the same types, allowing subsequent 
by classification of unknown samples. After the comparative analysis is finished, users 
may again evaluate a number of quality scores this time concerning the quality of 
different properties related to the normalization. The users can finally evaluate the results 
by means of reporting and visualization methods.  

5.1 Import / export of capillary data 
Importing data is the process of retrieving data from files to the SQL Server™ (for 

example, an ABIF file) and inserting it into SQL Server tables. Importing data from an 

external data source is likely to be the first step you perform after setting up your 

database. Our software contains several algorithms to decode binary files from the most 

commonly used capillary electrophoresis devices (see paragraph 2.1). Capillary devices 

usually store measurements of relative fluorescent units (RFU) and other related data that 

is collected during fragment separation in computer files encoded in binary form. Binary 
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Fig. 3. Schematic overview of the Coffalyser.NET software workflow. 

files are made up as a sequence of bytes, which our program decodes back into lists of the 

different measurements. The most important measurement being the laser induced 

fluorescence of the covalently bound fluorescent tags on the probe products and the size 

marker. The frequency at which these measurements occur depends on the type of 

system. A complete scan will always check all filters (or channels) and result in one data 

point. Almost all capillary systems are able to detect multicolor dyes permitting the usage 

of an internal size marker providing a more accurate size call than the usage of external 

size marker. Multicolor dyes may also permit the analysis of loci with overlapping size 

ranges, thus allowing multiple MLPA mixes to be run simultaneously in different dye 

colors. 

After data has been imported into your SQL Server database, users can start the analysis. 

Users can choose to analyze the currently imported data or data that was imported in the 

past or a combination of both. Due to the relative nature of all MLPA data, it is 

recommended to analyze data within the confinements of each experiment. There do exist 

circumstances in which better results may be obtained by applying older collected reference 

data but one should use these options with caution.  

Exporting data is usually a less frequent occurrence. Coffalyser.NET therefore does not have 

standard tools to export raw capillary data but rather depends on the provided tools and 

features of the SQL server. The data may be exported to a text file and then be read by third 

party applications such as Access or Microsoft Excel, which can then be used to view or 

manipulate the data.  
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5.2 Raw data analysis 
5.2.1 Baseline correction 
When performing detection of fluorescence in capillary electrophoresis devices it is some 

times the case that spectra can be contaminated by fluorescence. Baseline curvature and 

offset are generally caused by the sample itself and little can be designed in an instrument to 

avoid these interferences (Nancy T. Kawai, 2000). Non-specific fluorescence or background 

auto fluorescence should be subtracted from the fluorescence obtained from the probe 

products to obtain the relative fluorescence as a result of the incorporation of the 

fluorophore. The baseline wander of the fluorescence signals may cause problems in the 

detection of peaks and should be removed before starting peak detection. Our software 

corrects for this baseline by applying two times a median signal filter on the raw signals. 

First, the signals of the first 200 data points of each dye channel are extracted and its median 

was calculated. Then for every 200 subsequent data points till the end of the data stream, the 

same procedure is carried out. These median values are then subtracted from the signal of 

the original data stream to remove the baseline wander, resulting in baseline 1. This 

corrected baseline 1 is then fed as input for a filter that calculates the median signal over 

every 50 subsequent data points. These median values are then subtracted from all the 

signals that are below 300 RFU (for ABI-devices) on baseline 1, resulting in baseline 2. This 

second baseline is often necessary due to the relatively short distance between the peaks that 

derive from probe products with only a few nucleotides difference. By applying this second 

baseline correction solely on the signals that are in the lower range of detection, even peaks 

that reside close to each other may reside back to zero-signal, without subtracting too much 

fluorescence that originates from the probe products. Program administrators can modulate 

the default baseline correction settings, and also may store different defaults for each used 

capillary system.  

5.2.2 Peak detection 
In capillary-based MLPA data analysis, peak detection is an essential step for subsequent 

analysis. Even though various peak detection algorithms for capillary electrophoresis data 

exist, most of them are designed for detection of peaks in sequencing profiles. While peak 

detection and peak size calling are very important processes for sequencing applications, 

peak quantification is not so important. Due to the relatively nature of the MLPA data, peak 

quantification is particularly important and has a large influence on the final results. Our 

peak detection algorithm exists of two separate steps; the first step exists of peak detection 

by comparison of the intensities of fluorescent units to set arbitrary thresholds and shape 

recognition, the second step exist of filtering of the generated peak list by relative 

comparison. Program administrators can modulate the peak detection algorithm thresholds, 

which make use of the following criteria: 

1. Detection/Intensity threshold: 

This threshold is used to filter out small peaks in flat regions. The minimal and maximal 

peak amplitudes are arbitrary units and default values are provided for each different 

capillary system.  

2. Peak area ratio percentage: 

Peak area is computed as the area under the curve within the distance of a peak 

candidate. Peak area ratio percentage is computed as the peak area divided by the total 
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amount of fluorescence times one hundred. The peak area ratio percentage of a peak 

must be larger than the minimum threshold and lower than the maximum set 

threshold.  

3. Model-based criterion: 
The application of this criterion can consists of 3-4 steps: 

 Locate the start point for each peak: a candidate peak is recognized as soon as the 
signal increases above zero fluorescence. 

 Check if the candidate peak meets minimal requirements: the peak signal intensity 

is first expected to increase, if the top of the peak is reached and the candidate peak 

meets the set thresholds for peak intensity and peak area ratio percentage, then the 

peak is recognized as a true peak.   

 Discarding peak candidates: if the median signal of the previous 20 data points is 
smaller then the current peak intensity or if the current peak intensity returns to 
zero. 

 Detect the peak end: the signal is usually expected to drop back to zero designating 
the peak end. In some cases the signal does not return to zero, a peak end will 
therefore also be designated if the signal drops at least below half the intensity of 
the peak top and if the median signal of the 14 last data points is lower than the 
current signal.  

4. Median signal peak filter: 
The median peak signal is calculated by the percentage of intensity of each peak as 
opposed to the median peak signal intensity of all detected peaks. Since the minimum 
and maximum thresholds are dependent on detected peaks, this filter will be applied 
after an initial peak detection procedure based on the criteria point 1-3. 

5. Peak width filter: 
After peak end points have been identified, the peak width is computed as the 
difference of right end point and left end point. The peak width should be within a 
given range. This filter is also applied after an initial peak detection procedure.  

6. Peak pattern recognition: 
This method is only applied for the size marker channel, and involves the calculation of 
the correlation between the data point of the peak top of the detected peak list (based 
on the criteria point 1-5) and the expected lengths of the set size marker. In case the 
correlation is less than 0.999, the previous thresholds will be automatically adapted and 
peak detected will be restarted. These adaptations mainly include adjustment of 
minimal and maximal threshold values. 

5.2.3 Peak size calling 
Size calling is a method that compares the detected peaks of a MLPA sample channels 

against a selected size standard. Lengths of unknown (probe) peaks can then be predicted 

using a regression curve between the data points and the expected fragment lengths of the 

used size standard, resulting in a fragment profile (figure 4). Coffalyser.NET allows the use 

of 2 different size-calling algorithms: 

1. Local least squares method 
2. 1st, 2nd or 3rd order least squares 
The local least squares method is the default size calling method for our software. It 
determines the sizes of fragments (nucleotides) by using the local linear relationship 
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between fragment length and mobility (data points). Local linearity is a property of 
functions that have graph that appear smooth, but they need not to be smooth in a 
mathematical sense. The local linear least squares method makes use of a function that is 
only once differentiable at a point where it is locally linear. Different from the other 
methods, this function is not differentiable, because the slope of the tangent line is 
undefined. To solve the local linear function our algorithm first calculates the intercept and 
coefficient for each size marker point of the curve by use of a moving predictor. A local 
linear size of 3 points provides three predictions for each point along its curve that is 
surrounded by at least 2 points. The average intercept and coefficient are then stored for that 
point. Points at the beginning and the end of the curve will receive a single prediction, since 

they do not have any surrounding known values. The coefficient () and intercept () are 
calculated by solving the following equations 1 and 2. 
 
 

 

Fig. 4. MLPA fragment length profile displaying the lengths of all detected peaks from a 
sample. Peak lengths were determined by comparison of the data against a GS500-ABI size 
marker and determination of the length using the local least squares method.  
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E.g. if we use a size marker that has 15 known points and a local linear size of 3 points, the 
coefficient and intercept of point 5 will be calculated by equation 3 and 4. 
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To calculate the length of an unknown fragment our algorithm uses the calculated 
coefficient and intercepts calculated over the surrounded size marker peaks above and one 
below its peak. Each unknown point will be predicted twice where after the average value 
will be stored for that peak. If we wish to predict the length (Y) of an unknown fragment (X) 
of which the data point of the peak top is in between the data points of known fragments 5 
and 6, we need to solve equation 5. 

 
5 5 6 6

1
* ; *

2
X         (5) 

5.2.4 Peak identification 
Once all peaks have been size called, the profiles must be aligned to compare the fluorescence 
of the different targets across samples, an operation that is perhaps the single most difficult 
task in raw data analysis. Peaks corresponding to similar lengths of nucleotides may still be 
reported with slight differences or drifts due to secondary structures or bound dye 
compounds. These shifts in length make a direct numerical alignment based on the original 
probe lengths all but impossible. Our software uses an algorithm that automatically considers 
what the same peaks are between different samples, allowing easy peak to probe linkage. This 
procedure follows a window-based peak binning approach, whereby all peaks within a given 
window across different samples are considered to be the same peak (figure 5). Our software 
algorithm follows four steps: reference profile analysis, applying and prediction of new probe 
lengths, reiteration of profile analysis and data filtering of all samples. 
 

 

Fig. 5. Visualization of the collection of bins for a MLPA mix (x-axis) and the signal 
intensities in relative fluorescent units for detected peaks of a sample (y-axis).  
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The crucial task in data binning is to create a common probe length reference vector (or bin). 
In the first step our algorithm applies a bin set that searches for all peaks with a length 
closely resembling that of the design length of that probe. Next, the largest peak in each 
temporary bin is assumed to be the real peak descending from the related probe product. To 
create a stable bin, we calculate the average length over all real peaks of all used reference 
samples. If no reference samples exist, the median length over all collected real peak from all 
samples will be used. Since some probes may have a large difference between their original 
and detected length the previously created results may often not suffice. We therefore check 
if the length that we have related to each probe is applicable in our sample set. We do this 
by calculating how much variation exists over collected peaks length in each of the previous 
bins. If the variation was too large (standard deviation > 0.2) or no peak at all was found in 
any of the bins, the expected peak length for that probe will be estimated by prediction. The 
expected probe peak lengths may be predicted by using a second-order polynomial 
regression on using the available data of the probes for which reproducible data was found. 
Even though a full collection of bins is now available, the lengths of the probe products that 
were predicted may not be very accurate. The set of bins for each probe in the selected 
MLPA mix will therefore be improved by iteration of the previous steps. The lengths 
provided for the bins are now based on the previously detected or predicted probe product 
lengths allowing a more accurate detection of the real probe peaks. Probes that were not 
found are again predicted and a final length reference vector or bin is constructed for each 
probe. This final bin set can be used directly for data filtering but may also be edited 
manually in case the automatically created bin set may not suffice.  
Data filtering is the actual process where the detected fragments of each sample are linked 
with gene information to a probe target or control fragment. Our algorithm assumes that 
peaks within each sample that fall within the same provided window or bin and have 
sufficient fluorescence intensity are the same probe (figure 4). Our algorithm is also able to 
link more than one peak to a probe within one sample. The amount of fluorescence of each 
probe product may then be expresses the peak height, peak area of the main peak and the 
summarized peak area of all peaks in a bin. An algorithm can then be used to compare these 
metrics and decide which should optimally be used as described at 3.2, alternatively users 
may set a default metric. The summarized peak area may reflect the amount of fluorescence 
best if peaks are observed that show multiple tops which all originate from the amplification 
of the same ligation product. Such peaks may be observed if: 
1. Too much input DNA is added the amplification reaction and the polymerase was 

unable to complete the extension for all amplicons (Clark, J. M. 1988).  
2. Peaks were discovered which are one base pair longer than the actual target due to non-

template addition.  
3. The polymerase was unable to complete the adenine addition on all products that 

resulted in the presence of shoulder peaks or +A/-A peaks (Applied Biosystems, 1988).   

5.2.5 Raw data quality control 
In the final step of the raw data analysis the software performs several quality checks and 
translates this into simple scores (figure 6).  
These quality checks are the result of a comparison of sample specific properties such as: 

baseline height, peak signal intensity, signal to size drop, incorporated percentage of primer 

etc., to expected standards specific for each capillary system. Several quality checks are 

furthermore performed using the control fragments providing information about the used 
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Fig. 6. Coffalyser.NET screenshot. FRSS means fragment run separation score. FMRS means 
fragment MLPA reaction score. Probes, displays the number of found signals to the number 
of expected signals. The last columns display the quality of the DNA concentration and 
denaturation and the presence of the X and Y- fragments.  

DNA itself as described before (Coffa, 2008). The quality scores allow users to easily find 

problems due to: the fragment separation process, MLPA reaction, DNA concentration or 

DNA denaturation. Users may then reject, accept and adjust sample types before starting 

the comparative analysis. 

5.3 Comparative analysis 
During the comparative part of the analysis we aim to isolate the amount of variation that 

was introduced over the repeated measured data and provide the user with meaningful 

data by means of reporting and visualization methods. The program is equipped with 

several normalization strategies in order to allow underlying characteristics of the different 

types of data sets to be compared. During normalization we bring MLPA data (probe peak 

signals) of unknown and reference samples to a common scale allowing easier 

understandable data to be generated. In MLPA, normalization refers to the division of 

multiple sets of data by a common variable or normalization constant in order to cancel out 

that variable's effect on the data. In MLPA kits, so called reference probes are usually added, 

which are targeted to chromosomal regions that are assumed to remain normal (diploid) in 

the DNA of all used samples.  

Our algorithm is able to make use of the reference probes in multiple ways in order to 

comprise a common variable. In case a MLPA kit does not contain any reference probes, the 

common variable can be made out of probes selected by the user or the program will make 
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an auto-selection. After normalization the relative amount fluorescence related to each 

probe can be expressed in dosage quotients, which is the usual method of interpreting 

MLPA data (Yau SC, 1996). This dosage quotient or ratio is a measure for the ratio in which 

the target sequence is present in the sample DNA as compared to the reference DNA, or 

relative ploidy. To make the normalization more robust our algorithm makes use of every 

MLPA probe signal, set as a reference probe for normalization to produce an independent 

ratio (DQi, h, j, z). The median of all produced ratios is then taken as the final probe ratio (DQi, 

h j). This allows for the presence of aberrant reference signals without profoundly changing 

the outcome. If we want to calculate the dosage quotient for test Probe J of unknown Sample 

I as compared to t reference Sample H, by making use of reference Probes Z (1-n), we need 

to solve the equation 6. 
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The data for each test probe of each sample (DQi, h, j) will be compared to each available 
reference sample (Sh=n), producing as many dosage quotients as there are reference 
samples. The final ratio (DQi, j) will then estimated by calculating the average over these 
dosage quotients. In case no reference samples are set, each sample will be used as reference 
and the median over the ratios be calculated. 

5.3.1 Dealing with sample to sample variation 
Each MLPA probe is multiplied during the amplification reaction with a probe specific 

efficiency that is mainly determined by the sequence of the probe, resulting in a probe 

specific bias. Even though the relative difference of these probes in signal intensity between 

different samples can be determined by normalization or visual assessment (figure 1), the 

calculated ratio results may not always be easy to understand by employing arbitrary 

thresholds only. This is mainly due to sample-to-sample variation or more specific, a 

difference in the amplification efficiency of probe targets between reference and sample 

targets. Chemical remnants from the DNA extraction procedure and other treatments 

sample tissue was subjected to, may allot to impurities that influence the Taq DNA 

polymerase fidelity. Alternatively target DNA sequences may have been modified by 

external factors, e.g. by aggressive chemical reactants and/or UV irradiation which may 

result in differences in amplification rate or extensive secondary structures of the template 

DNA that may prevent access to region of the target DNA by the polymerase enzyme 

(Elizatbeth van Pelt-Verkuil, 2008). An effect that is commonly seen with MLPA data is a 

drop of signal intensity that is proportional with the length of the MLPA product fragments 

(figure 7). This signal to size drop is caused by a decreasing efficiency of amplification of the 

larger MLPA probes and may be intensified by sample contaminants or evaporation during 

the hybridization reaction. Signal to size drop may further be influenced by injection bias of 

the capillary system and diffusion of the MLPA products within the capillaries. 

In order to minimize the amount of variation in and between reference and sample data and 
create a robust normalization strategy our algorithm follows 7 steps. By automatic 
interpretation of results after each step our algorithm can adjust the parameters used for the 
next step thereby minimizing the amount of error that may be introduced by the use of 
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Fig. 7. MLPA fragment profile of a sample with a large drop in signal as size. This effect may 
have a similar result on the dosage quotients if not corrected for. 

aberrant reference signals. The following 7 steps are performed in a single comparative 

analysis round: 

1. Normalization of all data in population mode. Each sample will be applied as a 

reference sample and each probe will be applied as a reference probe. 

2. Determination of significance of the found results by automatic evaluation using effect-

size statistics and comparison of samples to the available sample type populations. 

3. Measure of the relative amount of signal to size drop. If the relative drop is less than 

12% a direct normalization will suffice, any larger drop will automatically be corrected 

by means of regression analysis (step 4-5). 

4. Before correction of the actual amount of signal to size drop, samples are corrected for 

the MLPA mix specific probe signal bias. This can be done by calculating the extent of 

this bias in each reference run by regressing the probe signals and probe lengths using a 

local median least squares method. Correction factors for these probe specific biases are 

then computed by dividing the actual probe signal through its predicted signal. The 

final probe-wise correction factor is then determined by taking a median of the 

calculated values over all reference runs. This correction factor is then applied to all 

runs to reduce the effect of probe bias due to particular probe properties on the 

forthcoming regression normalization.  

www.intechopen.com



 
Modern Approaches To Quality Control 

 

144 

5. Next we calculate the amount of signal to size drop for every sample by using a 

function where the log-transformed probe bias corrected signals are regressed with the 

probe lengths using a 2nd order least squares method. Signals from aberrant targets are 

left out of this function, by applying an outlier detection method that makes use of the 

results found at step 2 as well as correlation measurements of the predicted line. The 

signal to size corrected values can then be obtained by calculating the distance of each 

log transformed pre-normalized signal to its predicted signal. 

6. Normalization of signal to size corrected data in the user selected mode and 

determination of significance of the found results. 

Our algorithm then measures the amount variation that could not be resolved in the final 
normalization to aid in results interpretation and automatic sample classification. To 
measure the imprecision of the normalization constant, each time a sample is normalized 
against a reference, the median of absolute deviations (MAD i, h, j) is calculated between the 
final probe ratio (DQi, h, j) and the independent dosage quotients using each reference probe 
(DQi, h, j, z). The average of all collected MAD i, j values over the samples are then average to 
estimate the final amount of variation introduced by the imprecision of reference probes. 
Our algorithm estimates the final MAD i, j for each probe J in sample I and by equation 7. 
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Since the final probe ratio (DQi, j) for each probe in each sample is estimated by the average 

over the dosage quotients (DQi, h, j) that were calculated using each reference sample 

(equation 8), the amount variation that was introduced over the different samples is 

estimated by calculating the standard deviation over these probe ratios (equation 9). 

  
2

, , , ,
1

1 N

i j i h j i j
h

DQ DQ
N




    (8) 

 ,
1

1

/1

/

N M i j i z

i j
z

h h j h z

S P S P
DQ Med

N S P S P

    
    

  (9) 

Our algorithm then estimates the 95% confidence range of each probe ratio (DQi, j) of each 

sample by following 3 steps: 

1. Conversion of the MAD values to standard deviations by multiplying with 1.4826 

Albert, J. (2007)  

2. Calculation of a single standard deviation for each probe ratio by combining the 

calculated value of step 1 with the standard deviation calculated over the reference 

samples by equation 9. This can be done by first converting both standard variations to 

variations by converting the values to the power of two. Then we sum up the outcome 

of both and take the square root.  

3. Defining the limits of the confidence range by adding and subtracting a number of 

standard deviations of the final probe ratio (DQi, j) from equation 8.  
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Discrepancies on estimated dosage quotient by the used reference probes and/or reference 

samples may lead to an increase of the width of this confidence range, indicating a poor 

normalization. Since 95% is commonly taken as a threshold indicating virtual certainty 

(ZAR, J.H., 1984), our algorithm on default uses 1.96 standard deviations (equation 10) to 

calculate the confidence ranges for probe ratios. 

     
95% 2 2

, ,
,

/ 1.96 * 1.4826 * i j i j
i j

DQ MAD 
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5.3.2 Interpretation of the calculated dosage quotients 
The previous sections explained how probe ratio are calculated and how our algorithm 
estimates the amount of introduced variation. In this section, we reflect on what those 
results mean for empirical comparison of users. To make data interpretation easier our 
program allows the use advanced visualization methods but also contains an algorithm 
allowing automatic data interpretation. Our algorithm compares the ratio and standard 
deviation of a test probe from a single sample to the behavior of that probe within a sub-
collection of samples. This allows the program for instance to recognize if a result from an 
unknown sample is significantly different from the results found in the reference sample 
population. Alternatively, it may find if a sample is equal to a sample population, for 
instance a group of positive control samples. To make an estimation of the behavior of a 
probe ratio within a sample population, we calculate the average value and standard 
deviation for each probe over samples with the same sample type. In order to calculate the 
confidence range of probe J in for instance the reference sample population, we need to 
solve equation 11. N in this case refers to all probe ratio results (DQi, j) from samples that 
were defined in the normalization setup with the sample type: reference sample (h).  
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Probe result of each sample are then classified in three categories, by comparison to the 
confidence ranges of available sample types. A probe result of a sample is either 
significantly different to a sample population, equal to a sample population or the result is 
ambiguous. To define if a probe result of an unknown sample is significantly different (>>*) 
to sample population, our algorithm employs 2 criteria: 
1. The difference in the magnitude of the probe ratio, as compared to the average of that 

probe calculated over samples with the same sample type, needs to exceed a delta value 

of 0.3. In case an unknown sample is compared to the reference sample population, the 

average ratio for each probe is always approaches 1.  

2. The confidence range of the probe of the unknown sample (equation 10) cannot overlap 

with the confidence range of that probe in a sample population (equation 11).  

An unknown sample in classified to be equal (=) to the population of a certain sample type if: 

1. The difference in the magnitude of the probe ratio, as compared to the average of that 

probe calculated over samples with the same sample type, is less than 0.3. 

2. The probe ratio of the unknown sample falls within the confidence range of that probe 

in a sample population (equation 11). 
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Probe results that are ambiguous, consequently only meet one of the two criteria in order to 
characterize the result to be different or equal.  Ambiguous probe results that do show a 
difference in the magnitude of the probe ratio, as compared to the average of that probe 
calculated over samples with the same sample type, but have overlapping 95% confidence 
ranges will be marked with an asterisk (*). In case the overlap of the confidence ranges is 
less than 50% the probe results will be marked with a smaller or greater than symbol plus 
asterisk (<* or >*). Ambiguous probe results that do not show a difference in the magnitude 
of the probe ratio, but do show a difference in confidence ranges may be displayed with a 
single and double smaller or greater than symbols, depending on the size of the difference. 
 

 

Fig. 8. Part of a pdf report from a tumor sample analyzed with the P335 MLPA kit. The 
report shows clear aberrations at 9p21.3, 9p13.2 and 12q21.33. Less clear is the ratio of RB1, 
which displays a slight decrease in signal as opposed to the reference population, but 
doesn’t surpass the threshold value, due to sample mosaicism.  
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5.3.3 Reporting and visualization 
Automatic data interpretation cannot replace the specialist judgment of a researcher. 
Knowledge about the expected genetic defect of the target DNA and other sample 
information may be crucial. To assist the user with data interpretation, our software 
automatically sorts all probe results based on the last updated map view locations of the 
probes. Chromosomal aberrations often-span larger regions (M. Hermsen, 2002), which 
allow probes targeted to that region to cluster together by sorting. Our software can then 
make a single page PDF reports, containing a summary of all relevant data, probe ratios 
(figure 8), statistics, quality controls and charts (figure 2 & 4) of a single sample.  
 

 

Fig. 9. Screen shot of from a tumor sample analyzed with the P335 MLPA kit. Probe ratio 
results of targets estimated as significantly increased as opposed to the reference population 
are marker green; those estimated as significantly decreased are marked red.  
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Our software enables users further, to display MLPA sample results in large array of 

different chart types figure 2 & 4). Charts may all be exported to different formats such as: 

jpg, gif, tiff, png, bmp. The results of a complete experiment may be plot together in grids 

and heat map algorithms may be applied to provide users a simple overview (figure 9). 

These grids may be exported to file formats (XML, txt, csv) that may be opened in Microsoft 

Excel. Alternatively these grids may also be exported to PDF files or several imaging 

formats.  

6. Conclusions and future research 

In this chapter we showed the options and applied algorithms of our MLPA analysis 
software, called Coffalyser.NET. Our software integrates new technologies enhancing the 
speed, accuracy and ease of MLPA analysis. Recognition of aberrations is improved by 

companioning effect-size statistics with statistical interference allowing users to interpreter 
units of measurement that are meaningful on a practical level (L. Wilkinson, 1999), while 
also being able to draw conclusions from data that are subject to random variation, for 
example, sampling variation (Bickel, Peter J.; Doksum, Kjell A., 2001). Our software contains 

extensive methods for results reporting and interpretation. It may also provide an 
alternative to software such as: Applied BioSystems Genotyper® and GeneScan® or 
GeneMapper®software; LiCor’s SAGA, MegaBACE® Genetic Profiler and Fragment 

Profiler. Compatible with outputs from all major sequencing systems i.e. ABI Prism®, 
Beckman CEQ and MegaBACE® platforms. Coffalyser.NET is public freeware and can be 
downloaded from the MRC-Holland website.  
Using data-mining techniques such as support vector machines in the large volumes of data 
obtained by large-scale MLPA experiments, may serve as a powerful and promising 
mechanism for recognizing of results patterns, which can be used for classification. Our 
future directions therefore concentrate on developing novel methods and algorithms that 
can improve recognition of disease related probe ratio patterns optimizing results in terms 
of validity, integrity and verification. 
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