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“…measurements are not passive accountings of an objective world but active interactions 
in which the thing measured and the way it is measured contribute inseparably to the 

outcome.” (Lindley 2007: p. 154, attributing the concept to Neils Bohr) 
 

“The experienced scientist has to learn to anticipate the possible sources of systematic 
error...” (Taylor 1997: p. 97) 

 

“No simple theory tells us what to do about systematic errors. In fact, the only theory of 
systematic errors is that they must be identified and reduced....” (Taylor 1997: p. 106) 

 

 “…the only reason to carry out a test is to improve a process, to improve the quality...” 
(Deming 1986: p. i) 

1. Introduction 

Rationally, as scientists, we recognize that documented standard procedures constitute the 
first requirement for developing consistency within and among datasets; the second step is 
putting the procedures into practice. If the procedures were implemented as perfectly as 
they are written, there would be no need to question data. However, we are also cognizant 
of the fact that humans (a group of organisms to which we cannot deny holding 
membership) are called upon to use the procedures, and the consistency and rigor with 
which the procedures are applied are directly affected by an individual’s skill, training, 
attention span, energy, and focus (Edwards, 2004). In fact, we fully expect inconsistency due 
to human foibles, and often substantial portions of careers are spent in efforts to recognize, 
isolate, correct, and minimize future occurrences of, error. 
Many public and private organizations in the United States (US) and other countries collect 
aquatic biological data using a variety of sampling and analysis methods (Gurtz & Muir, 
1994; ITFM, 1995a; Carter & Resh, 2001), often for meeting regulatory requirements, for 
example, by the United States’ Clean Water Act (CWA) of 1972 (USGPO, 1989). While the 
information collected by an individual organization is usually directly applicable to a 
specific question or site-specific issue, the capacity for using it more broadly for 
comprehensive assessment has been problematic due to unknown data quality produced by 
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different methods or programs (ITFM, 1995a; Diamond et al., 1996; NWQMC, 2001; The 
Heinz Center, 2002; GAO, 2004). If the occurrence and magnitude of error in datasets is 
unknown, a supportable conclusion based solely (or even in part) on those data is 
problematic at best. These datasets are more difficult to justify for analyses, communicate to 
broader audiences, base policy decisions on, and defend against potential misuse (Costanza 
et al., 1992; Edwards, 2004). To ensure the measurement system produces data that can be 
defended requires understanding the potential error sources that can affect variability of the 
data and approaches for monitoring the magnitude of error expression.  
The purpose of this chapter is to communicate the concept of biological monitoring and 
assessment as a series of methods, each of which produces data and are as subject to error as 
any other measurement system.  It will describe specific QC techniques and analyses that 
can be used to monitor variability (i.e., error), identify causes, and develop corrective actions 
to reduce or otherwise control error rates within acceptable limits. The chapter concludes by 
demonstrating that comparability analysis for biological data and assessment results is a 
two-step process, including 1) characterizing data quality, or the magnitude of error rates, 
associated with each method or dataset, and 2) determining acceptability. It should also be 
recognized that specific methods are not recommended in the chapter, but rather, emphasis 
is given that whatever methods are used, data quality and performance should be 
quantified. Additionally, special emphasis is given to biological monitoring where benthic 
macroinvertebrate sampling provides the primary data, but conceptually, this approach to 
QC is also applicable to other organism groups. 

2. Quality control 

Quality control (QC) is a process by which tests are designed and performed to document 
the existence and causes of error (=variability) in data, as well as helping determine what 
can be done to minimize or eliminate them, and developing, communicating, and 
monitoring corrective actions (CA). Further, it should also be possible to implement the QC 
process (Figure 1) in a routine manner such that, when those causes are not present, the cost 
of searching for them does not exceed budgetary constraints (Shewhart, 1939). 
 

 

Fig. 1. Quality control (QC) process for determining the presence of and managing error 
rates, and thus, the acceptability of data quality. 
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The programmatic system that contains not only a series of QC tests and analyses, but also 
provides for organization and management of personnel, acquisition and maintenance of 
equipment and supplies essential to data collection, information management, information 
technology resources, safety protocols and facilities, enforcement of corrective actions, and 
budgetary support, is quality assurance (QA).  It is acceptable to use the two terms jointly in 
reference to an overall quality program, as they often are, as QA/QC, but they should not be 
used interchangeably.  The overall program is QA; the process for identifying and reducing 
error is QC. 
Overall variability of data (= total uncertainty, or error) from any measurement system 
results from accumulation of error from multiple sources (Taylor 1988; Taylor & Kuyatt, 
1994; Diamond et al., 1996; Taylor, 1997).  Error can generally be divided into two types:  
systematic and random.  Systematic error is the type of variability that results from a 
method and its application or mis-application; it is composed of bias that can, in part, be 
mediated by using an appropriate quality assurance program of training, audits, and 
documentation. Random error results from the sample itself or the population from which it 
is derived, and can only partly be controlled through a careful sampling design. It is often 
not possible to separate the effects of the two types of error, and they can directly influence 
each other (Taylor, 1988). The overall magnitude of error associated with a dataset is known 
as data quality; how statements of data quality are made and communicated are critical for 
data users and decision makers to properly evaluate the extent to which they should rely on 
technical, scientific, information (Keith, 1988; Peters, 1988; Costanza et al., 1992). Thus, an 
effective set of QC procedures helps not only reduce error in datasets, it provides tools for 
objective communication of uncertainty. 
Biological assessment protocols are measurement systems consisting of a series of methods, 
each of which contribute to overall variability (Diamond et al., 1996; Cao et al., 2003; 
Brunialti et al., 2004; Flotemersch et al., 2006; Haase et al., 2006; Nichols et al., 2006; 
Blocksom & Flotemersch, 2008) (Figure 2). Our capacity as practitioners to control rates and 
magnitudes of error requires some attention be given to each component of the protocol. 
While it could be argued that error arising from any single component has only trivial 
effects on the overall indicator, lack of testing and documentation can substantially weaken 
that assertion, and opens the results to question. In fact, information without associated data 
quality characteristics might not even be considered data. 
 

 

Fig. 2. Total error or variability (s2) associated with a biological assessment is a combined 
result of that for each component of the process" (Flotemersch et al. 2006). 
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3. Indicators 

All aquatic ecosystems are susceptible to cumulative impacts from human-induced 
disturbances including inorganic and organic chemical pollution, hydrologic alteration, 
channelization, overharvest, invasive species, and land cover conversion. Because they live in 
the presence of existing water chemistry and physical habitat conditions, the aquatic life of 
these systems (fish, insects, plants, shellfish, amphibians, reptiles, etc.) integrates cumulative 
effects of multiple stressors that are produced by both point and non-point source (NPS) 
pollution. The most common organism groups that are used by routine biological monitoring 
and assessment programs are benthic macroinvertebrates (aquatic insects, snails, mollusks, 
crustaceans, worms, and mites), fish, and/or algae, with indicators most often taking the form 
of a multimetric Index of Biological Integrity (IBI; Karr et al., 1986; Hughes et al., 1998; Barbour 
et al., 1999; Hill et al., 2000, 2003) or a predictive observed/expected (O/E) model based on the 
River Invertebrate Prediction and Classification System (RIVPACS; Clarke et al., 1996, 2003; 
Hawkins et al., 2000; Hawkins, 2006). Of these latter three groups, benthic macroinvertebrates 
(BM) are commonly used because the protocols are most well-established, the level of effort 
required for field sampling is reasonable (Barbour et al., 1999), and taxonomic expertise is 
relatively easily accessible. Thus, examples of QC tests and corrective actions discussed in this 
chapter are largely focused on benthic macroinvertebrates in the context of multimetric 
indexes, though, similar procedures for routine monitoring with algae and fish could be 
developed. Stribling et al. (2008) also used some of these procedures for documenting 
performance of O/E models. 

4. Potential error sources in indicators 

4.1 Field sampling 

Whether the target assemblage is benthic macroinvertebrates, fish, or algae, the first step of 

biological assessment is to use standard field methods to gather a sample representing the 

taxonomic diversity and functional composition of a reach, zone, or other stratum of a 

waterbody. The actual dimensions of the sampling area ultimately depend on technical 

objectives and programmatic goals of the monitoring activity (Flotemersch et al., 2010). The 

spatial area from which the biological sample is drawn is that segment or portion of the 

waterbody the sample is intended to represent; for analyses and higher level interpretation, 

biological indicators are considered equivalent to the site. For its national surveys of lotic 

waters (streams and rivers), the U. S. Environmental Protection Agency defines a sample 

reach as 40x the mean wetted width (USEPA, 2004a); many individual states use a fixed 

100m as the sampling reach. 

Benthic macroinvertebrate samples are collected along 11 transects evenly distributed 

throughout the reach length, and a D-frame net with 500-µm mesh openings used to sample 

multiple habitats (Klemm et al., 1998; USEPA, 2004a; Flotemersch et al., 2006). An alternative 

approach to transects is to estimate the proportion of different habitat types in a defined 

reach (e.g., 100m), and distribute a fixed level of sampling effort in proportion to their 

frequency of occurrence throughout the reach (Barbour et al., 1999, 2006). For both 

approaches, organic and inorganic sample material (leaf litter, small woody twigs, silt, and 

sand) are composited in one or more containers, preserved with 95% denatured ethanol, and 

delivered to laboratories for processing. A composite sample over multiple habitats in a 

reach is a common protocol feature of many monitoring program throughout the US (Carter 

& Resh, 2001). 
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4.2 Laboratory processing 
Processing of benthic macroinvertebrate samples is a 3-step process.  Sorting and 
subsampling serves to 1) isolate individual organisms from nontarget material, such as leaf 
litter and other detritus, bits of woody material, silt, and sand, and 2) prepare the sample (or 
subsample) for taxonomic identification. Taxonomic identification serves to match 
nomenclature to specimens in the sample, and enumeration provides the actual counts, by 
taxon, of everything contained within the sample. 
Although it is widely recognized that subsampling helps to manage the level of effort 
associated with bioassessment laboratory work (Carter & Resh, 2001), the practice has been 
the subject of much debate (Courtemanch, 1996; Barbour & Gerritsen, 1996; Vinson & 
Hawkins, 1996). Fixed organism counts vary among monitoring programs (Carter & Resh, 
2001), with 100, 200, 300 and 500 counts being most often used (Barbour et al., 1999; Cao & 
Hawkins, 2005; Flotemersch et al., 2006). Flotemersch & Blocksom (2005) concluded that a 
500-organism count was most appropriate for large/nonwadeable river systems, based on 
examination of the relative increase in richness metric values (< 2%) between successive 100-
organism counts. However, they also suggested that 300-organism count is sufficient for 
most study needs. Others have recommended higher fixed counts, including a minimum of 
600 in wadeable streams (Cao & Hawkins, 2005). The subsample count used for the USEPA 
national surveys is 500 organisms (USEPA, 2004b); many states use 200 or 300 counts. 
If organisms are missed during the sorting process, bias is introduced in the resulting data. 
Thus, the primary goal of sorting is to completely separate organisms from organic and 
inorganic material (e.g., detritus, sediment) in the sample. A secondary goal of sorting is to 
provide the taxonomist with a sample for which the majority of specimens are identifiable. 
Note that the procedure described here assumes that the sorter and the taxonomist are 
different personnel. Although it is not the decision of the sorter whether an organism is 
identifiable, straightforward rules can be applied that minimize specimen loss. For example, 
“counting rules” can be part of the standard operating procedures (SOP) for both the 
sorting/subsampling and taxonomic identification, such as specifying what not to count: 
 Non-benthic organisms, such as free-swimming gyrinid adults (Coleoptera) or surface-

dwelling veliids (Heteroptera) 
 Empty mollusk shells (Mollusca: Bivalvia and Gastropoda) 
 Non-headed worm fragments 
 Damaged insects and crustaceans that lack at least a head and thorax 
 Incidental collections, such as terrestrial insects or aquatic vertebrates (fish, frogs or 

tadpoles, snakes, or other) 
 Non-macroinvertebrates, such as copepods, cladocera, and ostracods 
 Exuviae (molted “skins”) 
 Larvae or pupae where internal tissue has broken down to point of floppiness 
If a sorter is uncertain about whether an organism is countable, the specimen should be 
placed in the vial and not added to the rough count total. 
The sorting/subsampling process is based on randomly selecting portions of the sample 
detritus spread over a gridded Caton screen (Caton, 1991; Barbour et al., 1999; see also 
Figures 6-4a, b of Flotemersch et al., 2006 [note that an individual grid square is 6 cm x 6 cm, 
or 36 cm2, not 6 cm2 as indicated in Figure 6-4b]). Prior to beginning the 
sorting/subsampling process, it is important that the sample be mixed thoroughly and 
distributed evenly across the sorting tray to reduce the effect of organism clumping that 
may have occurred in the sample container. The grids are randomly selected, individually 
removed from the screen, placed in a sorting tray, and all organisms removed with forceps; 
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the process is completed until the rough count by the sorter exceeds the target subsample 
size. There should be at least three containers produced per sample, all of which should be 
clearly labeled:  1) subsample to be given to taxonomist, 2) sort residue to be checked for 
missed specimens, and 3) unsorted sample remains to be used for additional sorting, if 
necessary. 
The next step of the laboratory process is identifying the organisms within the subsample. A 
major question associated with taxonomy for biological assessments is the hierarchical 
target levels required of the taxonomist, including order, family, genus, species or the lowest 
practical taxonomic level (LPTL). While family level is used effectively in some monitoring 
programs (Carter & Resh 2001), the taxonomic level primarily used in most routine 
monitoring programs is genus. However, even with genus as the target, many programs 
often treat selected groups differently, such as midges (Chironomidae) and worms 
(Oligochaeta), due to the need for slide-mounting. Slide-mounting specimens in these two 
groups is usually (though, not always) necessary to attain genus level nomenclature, and 
sometimes even tribal level for midges. Because taxonomy is a major potential source of 
error in any kind of biological monitoring data sets (Stribling et al., 2003, 2008a; Milberg et 
al., 2008; Bortolus, 2008), it is critical to define taxonomic expectations and to treat all 
samples consistently, both by a single taxonomist and among multiple taxonomists. This, in 
part, requires specifying both hierarchical targets and counting rules. An example list of 
taxonomic target levels is shown in Table 1. These target levels define the level of effort that 
should be applied to each specimen. If it is not possible to attain these levels for certain 
specimens due to, for example, the presence of early instars, damage, or poor slide mounts, 
the taxonomist provides a more coarse-level identification. When a taxonomist receives 
samples for identification, depending upon the rigor of the sorting process (see above), the 
samples may contain specimens that either cannot be identified, or non-target taxa that 
should not be included in the sample. The final screen of sample integrity is the 
responsibility of the taxonomist, who determines which specimens should remain 
unrecorded (for any of the reasons stated above). Beyond this, the principal responsibility of 
the taxonomist is to record and report the taxa in the sample and the number of individuals 
of each taxon. Programs should use the most current and accepted keys and nomenclature. 
An Introduction to the Aquatic Insects of North America (Merritt et al., 2008) is useful for 
identifying the majority of aquatic insects in North America to genus level. By their very 
nature, most taxonomic keys are obsolete soon after publication; however, research 
taxonomists do not discontinue research once keys are available. Thus, it is often necessary 
to have access to and be familiar with ongoing research in different taxonomic groups. 
Other keys are also necessary for non-insect benthic macroinvertebrates that will be 
encountered, such as Oligochaeta, Mollusca, Acari, Crustacea, Platyhelminthes, and others. 
Klemm et al. (1990) and Merritt et al. (2008) provide an exhaustive list of taxonomic 
literature for all major groups of freshwater benthic macroinvertebrates. Although it is not 
current for all taxa, the integrated taxonomic information system (ITIS; 
http://www.itis.usda.gov/) has served as a clearinghouse for accepted nomenclature, 
including validity, authorship and spelling. 

4.3 Data entry 
Taxonomic nomenclature and counts are usually entered into the data management system 
directly from handwritten bench or field sheets. Depending on the system used, there may 
be an autocomplete function that helps prevent misspellings, but which can also contribute 
to errors. For example, entering the letters ‘hydro’ could potentially autocomplete as either 
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Hydropsyche or Hydrophilus, and the data entry technician on autopilot might continue as 
normal. There are also, increasingly, uses of e-tablets for entering field observation data, or 
direct entry of laboratory data into spreadsheets, obviating the need for hardcopy paper 
backup. 

4.4 Data reduction/indicator calculation 
There is a large number of potential metrics that monitoring programs can use (Barbour et 
al., 1999; Blocksom & Flotemersch, 2005; Flotemersch et al., 2006), requiring testing, 
calibration, and final selection before being appropriate for routine application. Blocksom & 
Flotemersch (2005) tested 42 metrics relative to different sampling methods, mesh sizes, and 
habitat types, some of which are based on taxonomic information, as well as stressor 
tolerance, functional feeding group, and habit. Other workers and programs have tested 
more and different ones. For example, the US state of Montana calibrated a biological 
indicator for wadeable streams of the “mountains” site class (Montana DEQ 2006), resulting 
in a multimetric index comprised of seven metrics (Table 2).  
 

Taxon Target

Ceratopogonidae 
Ceratopogoninae, leave at subfamily; 

all others, genus level
Dolichopodidae (Dolichopodidae)

Phoridae (Phoridae)
Scathophagidae (Scathophagidae)

Syrphidae (Syrphidae)
Decapoda Family
Hirudinea Family

Hydrobiidae (Hydrobiidae)
Nematoda (Nematoda)

Nematomorpha (Nematomorpha)
Nemertea (Nemertea)

Turbellaria (Turbellaria)
Chironomidae, the following genera are combined under 

Cricotopus/Orthocladius
Cricotopus Cricotopus/Orthocladius

Orthocladius Cricotopus/Orthocladius
Cricotopus/Orthocladius Cricotopus/Orthocladius
Orthocladius/Cricotopus Cricotopus/Orthocladius

Chironomidae, the following genera are combined under 
Thienemannimyia genus group

Conchapelopia Thienemannimyia genus group
Rheopelopia Thienemannimyia genus group
Helopelopia Thienemannimyia genus group
Telopelopia Thienemannimyia genus group
Meropelopia Thienemannimyia genus group
Hayesomia Thienemannimyia genus group

Thienemannimyia Thienemannimyia genus group
Hydropsychidae, the following genera are combined under 

Hydropsyche
Hydropsyche Hydropsyche
Ceratopsyche Hydropsyche

Hydropsyche/Ceratopsyche Hydropsyche
Ceratopsyche/Hydropsyche Hydropsyche

Table 1. In this example list of hierarchical target levels, all taxa are targeted for identification to 
genus level, unless otherwise noted. Taxa with target levels in parentheses are left at that level. 
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This discussion assumes that the indicator terms have already been calibrated and selected, 
and deals specifically with their calculation. For this purpose, the raw data are taxa lists and 
counts; their conversion into metrics is data reduction usually performed with computer 
spreadsheets or in relational databases.  
To ensure that database queries are correct and result in the intended metric values, a subset 
of values should be recalculated by hand. One metric is calculated for all samples, all 
metrics are calculated for one sample. When recalculated values differ from those values in 
the matrix, the reasons for the disagreement are determined and corrections are made. 
Reports on performance include the total number of reduced values as a percentage of the 
total, how many errors were found in the queries, and the corrective actions specifically 
documented. 

4.5 Indicator reporting 

Regardless of whether the indicator is based on a multimetric framework or multivariate 
predictive model, the ultimate goal is to translate the quantitative, numeric result, the score, 
into some kind of narrative that provides the capacity for broad communication. The final 
assessment for a site is usually determined based on a site score relative to the distribution 
of reference site scores to reflect degrees of biological degradation, the more similar a test 
site is to reference less degradation is being exhibited. Depending on the calibration process 
and how many condition categories are structured, narratives for individual sites can come 
from two categories (degraded, nondegraded), three (good, fair, poor), four (good, fair, 
poor, very poor), or five (very good, good, fair, poor, or very poor). There also may be other 
frameworks a program chooses to use, but the key is to have the individual categories 
quantitatively-defined. 
 

Metric Description 

Number of Ephemeroptera 
taxa 

Count of the number of distinct taxa of mayflies in sample 

Number of Plecoptera taxa Count of the number of distinct taxa of stoneflies in sample 

% individuals as EPT 
Percent of individuals in sample that is mayflies, stoneflies, or 
caddisflies (Ephemeroptera, Plecoptera, or Trichoptera, 
respectively) 

% individuals as non-insects Percent of individuals in sample as non-insects 

% individuals as predators Percent of individuals in sample as predators 

% of taxa as burrowers Percent of taxa in sample as burrower habit 

Hilsenhoff Biotic Index 
Abundance-weighted mean of stressor tolerance values for 
taxa in the sample 

Table 2. Sample-based metrics calculated for benthic macroinvertebrates. Shown are those 
developed and calibrated for streams in the “mountains” site class of the state of Montana, 
USA (Montana DEQ 2006, Stribling et al. 2008b). 

5. Measurement quality objectives (MQO) 

For each step of the biological assessment process there are different performance 
characteristics that can be documented, some of which are quantitative and others that are 
qualitative (Table 3). Measurement quality objectives (MQO) are control points above (or 
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below) which most observed values fall (Diamond et al., 2006; Flotemersch et al., 2006; 
Stribling et al., 2003, 2008a, b; Herbst &  Silldorf, 2006), and are roughly analogous to the 
Shewhart (1939) concept of process control. 
 

Component method or activity 

Performance characteristics 

P
re

ci
si

o
n

 

A
cc

u
ra

cy
 

B
ia

s 

R
e
p

re
se

n
ta

ti
v

e
n

e
ss

 

C
o

m
p

le
te

n
e
ss

 

1.  Field sampling  na ∆ ∆  

2.  Laboratory sorting/subsampling  na  ∆  

3.  Taxonomy   na na  

4.  Enumeration   ∆ na  

5.  Data entry na  na na  

6.  Data reduction (e. g., metric calculation) na  ∆ na na 

7.  Site assessment and interpretation   ∆ ∆  

Table 3. Error partitioning framework for biological assessments and biological assessment 
protocols for benthic macroinvertebrates. There may be additional activities and 

performance characteristics, and they may be quantitative (), qualitative (∆) or not 
applicable (na). 

Specific MQO should be selected based on the distribution of values attained, particularly 
the minima and maxima. Importantly, for environmental monitoring programs, special 
studies should never be the basis upon which a particular MQO is selected; rather, they 
should reflect performance expectations when routine techniques and monitoring personnel 
are used. Consider MQO that are established using data from the best field team, or the 
taxonomist with the most years of experience, or the dissolved oxygen measurements taken 
using the most expensive field probes. When those people or equipment are no longer 
available to the program, how useful would the database be to future or secondary users?  
Defensibility would potentially be diminished. Values that are >MQO are not automatically 
taken to be unacceptable data points; rather, such values are targeted for closer scrutiny to 
determine possible reasons for exceedence and might indicate a need for corrective actions 
(Stribling et al. 2003, Montana DEQ 2006). Simultaneously, they can be used to help quantify 
performance of the field teams in consistently applying the methods. 

5.1 Field sampling 

Quantitative performance characteristics for field sampling are precision and completeness 
(Table 3). Repeat samples for purposes of calculating precision of field sampling are 
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obtained by sampling two adjacent reaches, shown as 500 m in this example (Figure 3), and 
can be done by the same field team for intra-team precision, or by different teams for inter-
team precision. For benthic macroinvertebrates, samples from the adjacent reaches (also 
called duplicate or quality control [QC] samples) must be laboratory-processed prior to data 
being available for precision calculations. Assuming acceptable laboratory error, these 
precision values are statements of the consistency with which the sampling protocols 1) 
characterized the biology of the stream or river and 2) were applied by the field team, and 
thus, reflect a combination of natural variability and systematic error inherent in the dataset. 
 

 

Fig. 3. Adjacent reaches (primary and repeat) for calculating precision estimates 
(Flotemersch et al. 2006). 

The number of reaches for which repeat samples are taken varies, but a rule-of-thumb is 

10%, randomly-selected from the total number of sampling reaches constituting a sampling 

effort (whether yearly, programmatic routine, or individual project). Because they are the 

ultimate indicators to be used in address the question of ecological conditions, the metric 

and index values are used to calculate different precision estimates.  Root-mean square error 

(RMSE) (formula 1), coefficient of variability (CV) (formula 2), and confidence intervals 

(formula 3) (Table 4) are calculated on multiple sample pairs, and are meaningful in that 

context. Documented values for field sampling precision (Table 5) demonstrate differences 

among individual metrics and the overall multimetric index (Montana MMI; mountain site 

class).  Relative percent difference (RPD) (formula 4) (Table 4) can have meaning for 

individual sample pairs.  For example, for the composite index, median relative percent 

difference (RPD) was 8.0 based on 40 sample pairs (Stribling et al., 2008b). MQO 

recommendations for that routine field sampling for that biological monitoring program 

were a CV of 10% and a median RPD of 15.0. Sets of sample pairs having with CV>10% 

would be subjected to additional scrutiny to determine what might be the cause of increased 

variability. Similarly, individual RPD values for sample pairs would be more specifically 

examined. 

Percent completeness (formula 5) (Table 3, 4) is calculated to communicate the number of 

valid samples collected as a proportion of those that were originally planned. This value 

serves as one summary of data quality over the dataset and it demonstrates an aspect of 

confidence in the overall dataset. 
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Also called standard error of estimate, root mean square error (RMSE) is an estimate of the 
standard deviation of a population of observations and is calculated by: 

     

2

1 1

1...

( )
jnk

ij j
j i

k

y y

RMSE
df

 






  (1)

where yij is the ith  individual observation in group j, j = 1…k (Zar 1999). Lower values
indicate better consistency; and are used in calculation of the coefficient of variability (CV),
a unit-less measure, by the formula: 

 100
RMSE

CV
Y

    (2)

where Y is the mean of the dependent variable (e.g., metric, index across all sample pairs; 

Zar 1999).  It is also known as relative standard deviation (RSD). 
Confidence intervals (CI) (or detectable differences) are used to indicate the magnitude of

separation of 2 values before the values can be considered different with statistical

significance. A 90% significance level for the CI (i.e., the range around the observed value

within which the true mean is likely to fall 90% of the time, or a 10% probability of type I

error [α]). The 90% confidence interval (CI90) is calculated using RMSE by the formula: 

   90 ([ ][ ])CI RMSE z    (3)

where zα is the z-value for 90% confidence (i.e., p = 0.10) with degrees of freedom set at 

infinity. In this analysis, zα = 1.64 (appendix 17 in Zar 1999). For CI95, the z-value would be 

1.96. As the number of sample repeats increases, CI becomes narrower; we provide CI that

would be associated with 1, 2, and 3 samples per site. 

Relative percent difference (RPD) is the proportional difference between 2 measures, and is

calculated as: 

   100
( ) / 2

A B
RPD x

A B

 
  

 
  (4)

where A is the metric or index value of the 1st sample and B is the metric or index value of

the 2nd sample (Keith, 1991; APHA, 2005; Smith, 2000). Lower RPD values indicate

improved precision (as repeatability) over higher values. 

Percent completeness (%C) is a measure of the number of valid samples that were obtained

as a proportion of what was planned, and is calculated as: 

 % 100vC x
T

   (5)

where v is the number of valid samples, and T is the total number of planned samples 

(Flotemersch et al., 2006). 

Percent sorting efficiency (PSE) describes how well a sample sorter has done in finding and

removing all specimens from isolated sample material, and is calculated as: 
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 100
A

PSE x
A B




  (6)

where A is the number of organisms found by the original sorter, and B is the number of 
missed organisms recovered (specimen recoveries) by the QC laboratory sort checker. 
Percent taxonomic disagreement (PTD) quantifies the sample-based precision of taxonomic 
identifications by comparing target level taxonomic results from two independent
taxonomists, using the formula:  

 1 100
a

PTD
N

        
  (7)

where a is the number of agreements, and N is the total number of organisms in the larger of
the two counts (Stribling et al., 2003, 2008a). 
Percent difference in enumeration (PDE) quantifies the consistency of specimen counts in 
samples, and is determined by calculating a comparison of results from two independent
laboratories or taxonomists using the formula: 

 1 2

1 2

100
n n

PDE x
n n





  (8)

where n1 is the number of organisms in a sample counted by the first laboratory, and n2, the 
second (Stribling et al. 2003).  
Percent taxonomic completeness (PTC) describes the proportion of specimens in a sample
that meet the target identification level (Stribling et al. 2008) and is calculated as: 

 100xPTC x
N

   (9)

where x is the number of individuals in a sample for which the identification meets the
target level, and N is the total number of individuals in the sample. 
Discrimination efficiency (DE) is an estimate of the accuracy of multimetric indexes and 
individual metrics is characterized as their capacity to correctly identify stressor conditions
(physical, chemical, hydrologic, and land use/land cover) and is quantified as
discrimination efficiency using the formula: 

 100aDE x
b

   (10)

where a is the number of a priori stressor sites identified as being below the quantified
biological impairment threshold of the reference distribution (25th percentile, 10th, or other), 
and b is the total number of stressor sites (Flotemersch et al., 2006). 

Table 4. Explanations and formulas for quantifying 10 different performance characteristics 
for different steps of the biological assessment process. 

Qualitative performance characteristics for field sampling are bias and representativeness 
(Table 3). Programs that use multihabitat sampling, either transect-based similar to that 
used by the US national surveys (USEPA 2004a), or distributing sampling effort among 
different habitat types (Barbour et al., 1999, 2006), are attempting to minimize the bias 
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through two components of the field method. First, the approaches are not limited to one or 
a few habitat types; they are focused on sampling stable undercut banks, macrophyte beds, 
root wads, snags, gravel, sand, and/or cobble. Second, allocation of the sampling effort is 
distributed throughout the entire reach, thus preventing the entire sample from being taken 
in a shortened portion of the reach. Further, if the predominant habitat in a sample reach is 
poor or degraded, that habitat would be sampled as well. These field sampling methods are 
intended to depict the benthic macroinvertebrate assemblage that the physical habitat in the 
streams and rivers has the capacity to support. Another note about representativeness is to 
be cognizant that, while a method might effectively depict the property it is intended to 
depict (Flotemersch et al., 2006), it could be interpreted differently at different spatial scales 
(Figure 4). 
 

Metric RMSE Mean CV 
CI90 

1 sample 2 samples 3 samples 

Number of Ephemeroptera 
taxa 

0.94 5.25 17.9 1.55 1.1 0.89 

Number of Plecoptera taxa 0.9 2.42 37.3 1.48 1.05 0.85 

% individuals as EPT 8.86 47.98 18.5 14.53 10.27 8.39 

% individuals as non-insects 3 7.3 41.1 4.93 3.49 2.85 

% individuals as predators 5.32 16.91 31.4 8.72 6.17 5.03 

% of taxa as burrowers 3.93 28.91 13.6 6.45 4.56 3.72 

Hilsenhoff Biotic Index 0.47 4.27 10.9 0.76 0.54 0.44 

Multimetric index (7-metric 
composite) 

3.80 55.6 6.8 6.23 4.41 3.60 

Table 5. Precision estimates for sample-based benthic macroinvertebrate metrics, and 
composite multimetric index (Stribling et al., 2008b). Data shown are from the US state of 
Montana, and performance calculations are based on 40 sample pairs from the “mountain” 
site class (abbreviations - RMSE, root mean square error; CV, coefficient of variation; CI90, 90 
percent confidence interval; EPT, Ephemeroptera, Plecoptera, Trichoptera). 

 

 

Fig. 4. Defining representativeness of a sample or datum first requires specifying the spatial 
and/or temporal scale of the feature it is intended to depict. 
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Accuracy is considered “not applicable” to field sampling (Table 3), because efforts to define 
analytical truth would necessitate a sampling effort excessive beyond any practicality. That 
is, the analytical truth would be all benthic macroinvertebrates that exist in the river (shore 
zone to 1-m depth). There is no sampling approach that will collect all individual benthic 
macroinvertebrate organisms. 

5.2 Sorting/subsampling 

Bias, precision, and, in part, completeness, are quantitative characteristics of performance for 
laboratory sorting and subsampling (Table 3). Bias is the most critical performance 
characteristic of the sorting process, and is evaluated by checking for specimens that may 
have been overlooked or otherwise missed by the primary sorter (Flotemersch et al., 2006). 
Checking of the sort residue is performed by an independent sort checker in a separate 
laboratory using the same procedures as primary, specifically, the same magnification and 
lighting as called for in the SOP. The number of specimens found by the checker as a 
proportion of the total number of originally found specimens is the percent sorting 
efficiency (PSE; formula 6) (Table 4), and quantifies sorting bias. This exercise is performed 
on a randomly-selected subset of sort residues (generally 10% of total sample lot), the 
selection of which is stratified by individual sorters, by projects, or by programs. As a rule-
of-thumb, an MQO could be “less than 10% of all samples checked will have a PSE ≤90%”. 
Table 6 shows PSE results from sort rechecks for a project within the state of Georgia (US). 
One sample (no. 8) exhibited a substantial failure with a PSE of 77.8, which became an 
immediate flag for a potential problem. Further evaluation of the results showed that the 
sample was fully sorted (100%), and still only 21 specimens were found by the original 
sorter, prior to the 6 recoveries by the re-check. Values for PSE become skewed when overall 
numbers are low, thus failure of this one sample did not indicate systematic error (bias) in 
the sorting process.  Three additional samples fell slightly below the 90% MQO, but were 
only ≤ 0.2 percentage points low and were judged as passing by the QC analyst. 
Precision of laboratory sorting is calculated by use of RPD with metrics and indexes as the 

input variables (Table 4). If, for example, the targeted subsample size is 200 organisms, and 

that size subsample is drawn twice from a sorting tray without re-mixing or re-spreading, 

metrics can be calculated from the two separate subsamples. RPD would be an indication of 

how well the sample was mixed and spread in the tray; the “serial subsampling” and RPD 

calculations should be done on two timeframes. First, these calculations should be done, and 

the results documented and reported to demonstrate what the laboratory (or individual 

sorter) is capable of in application of the subsampling method. Second, they should be done 

periodically to demonstrate that the program routinely continues to meet that level of 

precision. Representativeness of the sorting/subsampling process is addressed as part of the 

SOP that requires random selection of grid squares (Flotemersch et al., 2006) with complete 

sorting, until the target number is reached within the final grid. Percent completeness for 

subsampling is calculated as the proportion of samples with the target subsample size 

(±20%) in the rough sort. Considered as “not applicable”, estimates of accuracy are not 

necessary for characterizing sorting performance. 

5.3 Taxonomic precision (sample-based) 

Precision and completeness are quantitative performance characteristics that are used for taxonomy 
(Table 3). Precision of taxonomic identifications is calculated using percent taxonomic 
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Sample no. 
Number of specimens 

PSE 
Original Recovered Total 

1 208 5 213 97.7 

2 202 8 210 96.2 

3 227 1 228 99.6 

4 200 12 212 94.3 

5 208 7 215 96.7 

6 222 2 224 99.1 

7 220 24 244 90.2 

8 21 6 27 77.8a 

9 215 22 237 90.7 

10 220 25 245 89.8b 

11 220 3 223 98.7 

12 211 24 235 89.8b 

13 205 12 217 94.5 

14 213 24 237 89.9b 

15 205 11 216 94.9 

16 222 15 237 93.7 

17 203 10 213 95.3 

18 158 16 174 90.8 
a Low PSE is due to there being small total number of specimens in the 

sample (n=27); this sample was also whole-pick (all 30 grid squares); b 

PSE values taken as passing, only ≤0.2 percentage points below MQO. 

Table 6. Percent sorting efficiency (PSE) as laboratory sorting/ subsample quality control 
check. Results from 2006-2008 sampling for a routine monitoring program in north Georgia, 
USA. 

disagreement (PTD) and percent difference in enumeration (PDE), both of which rely on the 

raw data (list of taxa and number of individuals) from whole-sample re-identifications 

(Stribling et al., 2003, 2008a). These two values are evaluated individually, and are used to 

indicate the overall quality of the taxonomic data. They can also be used to help identify the 

source of a problem. Percent taxonomic completeness (PTC) is calculated to document how 

consistently the taxonomist is able to attain the targeted taxonomic levels as specified in the 

SOP. It is important to note that the purpose of this evaluation approach is not to say that 

one taxonomist is correct over the other, but rather to make an effort to understand what is 

causing differences where they exist. The primary taxonomy is completed by one or more 

project taxonomists (T1); the re-identifications are completed as blind samples by one or 

more secondary, or QC taxonomists (T2) in a separate independent laboratory. 

The number of samples for which this analysis is performed will vary, but 10% of the total 

sample lot (project, program, year, or other) is an acceptable rule-of-thumb. Exceptions are 

that large programs (>~500 samples) may not need to do >50 samples; small programs 

(<~30 samples) will likely still need to do at least 3 samples. In actuality, the number of re-

identified samples will be program-specific and influenced by multiple factors, such as, how 
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many taxonomists are doing the primary identification (there may be an interest in having 

10% of the samples from each taxonomist re-identified), and how confident the ultimate 

data user is with the results. Mean values across all re-identified samples are estimates of 

taxonomic precision (consistency) for a dataset or a program.  

5.3.1 Percent taxonomic disagreement (PTD) 
The sample-based error rate for taxonomic identifications is quantified by calculation of 
percent taxonomic disagreement (PTD) (Table 4, formula 7). The key exercise performed by 
the QC analyst is determining the number of matches, or shared identifications between the 
two taxonomists (Table 7). Matches must be exact, that is, negative comparisons result even 
if the difference is only hierarchical (genus vs. family, or other), whether they have been 
assigned different names, or whether specimens are missing from the overall results of 
either T1 or T2.  Error typing individual sample comparisons is the process of determining 
differences as either: a) straight disagreements, b) hierarchical differences, or c) missing 
specimens. While tedious, this QC exercise provides information that is extremely valuable 
in formulating corrective actions. An MQO of 15% has been found to be attainable by most 
programs, and is used for the USEPA national surveys. As testing continues and 
laboratories and taxonomists become more accustomed to the procedure, it is becoming 
apparent that potentially the national standard could eventually be set at 10%.  A standard 
summary report for taxonomic identification QC (Table 8) can be effectively communicated 
to data users. 

5.3.2 Percent difference in enumeration (PDE) 
Another summary data quality indicator for performance in taxonomic identification is 
comparison of the total number of organisms counted and reported in the sample by the two 
taxonomists (not the sorters). There is some redundancy of this measure with PTD, but it 
has proven useful in helping highlight coarse differences immediately, and is calculated as 
percent difference in enumeration (PDE) (Table 4, formula 8). While sorters may be well-
trained, experienced, and have substantial internal QC oversight, they may not always be 
able to determine identifiability, the final decision of which is the responsibility of the 
taxonomist. It is rare to find exact agreement on sample counts between two taxonomists 
but the differences are usually minimal, hence the low recommended MQO of 5%. When 
PDE>5, reasons are usually fairly obvious, and the QC analyst can turn attention directly to 
the error source to determine if it may be systematic, and the nature and necessity of 
corrective action(s). 

5.3.3 Percent taxonomic completeness (PTC) 
Percent taxonomic completeness (PTC) (Table 3, formula 9) quantifies the proportion of 
individuals in a sample that are identified to the specified target taxonomic level (Table 1). 
Results can be interpreted in a number of ways: the individuals in a sample are damaged or 
early instar, many are damaged with diagnostic characters missing (such as, gills, legs, 
antennae, etc.) or the taxonomist is inexperienced or unfamiliar with the particular taxon. 
MQO have not been used for this characteristic, but barring an excessively damaged sample, 
it is not uncommon to see PTC in excess of 97 or 98. For purposes of QC, it is more 
important to have the absolute difference (abs diff) of PTC between T1 and T2 to be a low 
number, as documentation of consistency of effort; those values are often typical at 5-6%, or 
below. 
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Sample 
no. 

Count 
No. 

matches
PDE PTD 

Target level (taxonomic 
completeness) 

T1 T2 T1 PTC T2 PTC 
Abs 
diff 

1 243 244 232 0.2 4.9 234 96.3 223 91.4 4.9 

2 227 223 204 0.9 10.1 205 90.3 194 87.0 3.3 

3 214 213 191 0.2 10.7 202 94.4 199 93.4 1.0 

4 221 223 207 0.5 7.2 212 95.9 208 93.3 2.6 

5 216 214 202 0.5 6.5 207 95.8 201 93.9 1.9 

6 216 216 214 0 0.9 209 96.8 208 96.3 0.5 

7 86 83 69 1.8 19.8 77 89.5 64 77.1 12.4 

8 206 201 194 1.2 5.8 204 99 187 93.0 6.0 

9 208 210 196 0.5 6.7 203 97.6 195 92.9 4.7 

10 192 195 180 0.8 7.7 182 94.8 172 88.2 6.6 

Table 7. Summary table for sample by sample taxonomic comparison results, from routine 
biological monitoring in US state of Mississippi. T1 and T2 are the primary and QC 
taxonomists, respectively. “No. matches” is the number of individual specimens counted 
and given the same identity by each taxonomist, and PDE, PTD, and PTC are explained in 
text. Target level is the number and percentage of specimens identified to the SOP-specified 
level of effort (see Table 3 as an example); “Abs diff” is the absolute difference between the 
PTC of T1 and T2. 

 

A.  Number of samples in lot 97 
B.  Number of samples used for taxonomic comparison 10 
C.  Percent of sample lot 10.3% 
D.  Percent taxonomic disagreement (PTD)
     1.  MQO 15 
     2.  No. samples exceeding 1 
     3.  Average 7.9 
     4.  Standard deviation 4.9 
E.  Percent difference in enumeration (PDE)
     1. MQO 5 
     2. No. samples exceeding 0 
     3.  Average 0.6 
     4.  Standard deviation 0.6 
F.  Percent taxonomic completeness (PTC, absolute difference)
     1.  MQO none 
     2.  Average 4.3 
     3.  Standard deviation 3.5 

Table 8. Taxonomic comparison results from a bioassessment project in the US state of 
Mississippi. 

5.4 Taxonomic accuracy (taxon-based) 
Accuracy and bias (the inverse of accuracy) are quantitative performance characteristics for 
taxonomy (Table 3). Accuracy requires specification of an analytical truth, and for taxonomy 
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that is 1) the museum-based type specimen (holotype, or other form of type specimen), 2) 
specimen(s) verified by recognized expert(s) in that particular taxon or 3) unique 
morphological characteristics specified in dichotomous identification keys. Determination of 
accuracy is considered “not applicable” for production taxonomy (most often used in 
routine monitoring programs) because that kind of taxonomy is focused on characterizing 
the sample; taxonomic accuracy, by definition, would be focused on individual specimens. 
Bias in taxonomy can result from use of obsolete nomenclature and keys, imperfect 
understanding of morphological characteristics, inadequate optical equipment, or poor 
training. Neither of these performance characteristics is considered necessary for production 
taxonomy, in that they are largely covered by the estimates of precision and completeness. 
For example, although it is possible that two taxonomists would put an incorrect name on 
an organism, it is considered low probability that they would put the same incorrect name on 
that organism. 

5.5 Data entry accuracy 
Recognition and correction of data entry errors (even the one mentioned in Section 4.3) 
could come from one of two methods for assuring accuracy in data entry; both do not need 
to be done. One is the double entry of all data by two separate individuals, and then 
performing a direct match between databases. Where there are differences, it is determined 
which database is in error, and corrections are made. The second approach is to perform a 
100% comparison of all data entered to handwritten data sheets. Comparisons should be 
performed by someone other than the primary data entry person. When errors are found, 
they are hand-edited for documentation, and corrections are made electronically. The rates 
of data entry errors are recorded and segregated by data type (e.g., fish, benthic 
macroinvertebrates, periphyton, header information, latitude and longitude, physical 
habitat, and water chemistry). Issues could potentially arise when entering data directly into 
field e-tablets or laboratory computers.  Because there would be no paper backup, QC 
checks of data entry are not possible. 

5.6 Site assessment and interpretation 
Quantitative performance characteristics for site assessment and interpretation are precision, 
accuracy, and completeness (Table 3). Site assessment precision is based on the narrative 
assessments from the associated index scores (good, fair, poor) from reach duplicates and 
quantifies the percentage of duplicate samples that are receiving the same narrative 
assessments. These comparisons are done for a randomly-selected 10% of the total sample 
lot. Table 9 shows this direct comparison that, for this dataset, 79% of the replicates returned 
assessments of the same category (23 out of 29); 17% were 1 category different (5 of 29); and 
3% were 2 categories different (1 of 29). Assessment accuracy is expressed using 
discrimination efficiency (DE) (formula 10; Table 4), a value developed during the index 
calibration process, which relies upon, first, specifying magnitudes of physical, chemical, 
and/or hydrologic stressors that are unacceptable, and identifying those sites exhibiting 
those excessive stressor characteristics. The set of sites exhibiting unacceptable stressor 
levels constitute the analytical truth. The proportion of samples for which the biological 
index correctly identifies sites as impaired is DE. This is a performance characteristic that is 
directly suitable for expressing how well an indicator does what it is designed to do, detect 
stressor conditions, but it is not suitable for routine QC analyses. Percent completeness (%C) 
is the proportion of sites (of the total planned) for which valid final assessments were 
obtained. 
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6. Maintenance of data quality 

The purpose of QC is to identify assignable causes of variation (error) so that the quality of 
the outcomes in future processes can be made, on average, less variable (Shewhart, 1939). 
For reducing error rates, it is first and foremost critical to know of the existence of error, and 
second, to know its causes. Once the causes are known, corrective actions can be designed to 
reduce or eliminate them. The procedures described in this chapter for gathering 
information that allow performance and data quality characteristics to be documented need 
to become a routine part of biological monitoring programs. If they are used only when 
“conditions are right”, as part of special studies, or when there are additional resources, 
they are not serving their purpose and could ultimately be counter-productive. The counter-
productivity would arise when monitoring staff begin to view QC samples and analyses as 
activities that are less than routine, and something for which to strive to do their best, that is, 
only when they are being tested. This perspective leads programs to work to meet a 
number, such as 15%, rather than using the information to maintain or improve. 
 

Site 

Replicate 1 Replicate 2
Categorical 
difference Narrative 

Assessment 
category

Narrative 
Assessment 

category

A Poor 3 Poor 3 0 
B Poor 3 Poor 3 0 
C Good 1 Good 1 0 
D Poor 3 Very Poor 4 1 
E Fair 2 Fair 2 0 
F Poor 3 Fair 2 1 
G Poor 3 Poor 3 0 
H Very Poor 4 Very Poor 4 0 
I Very Poor 4 Very Poor 4 0 
J Poor 3 Poor 3 0 
K Poor 3 Poor 3 0 
L Very Poor 4 Very Poor 4 0 
M Very Poor 4 Very Poor 4 0 
N Poor 3 Fair 2 1 
O Poor 3 Poor 3 0 
P Poor 3 Poor 3 0 
Q Poor 3 Very Poor 4 1 
R Poor 3 Poor 3 0 
S Fair 2 Very Poor 4 2 
T Fair 2 Fair 2 0 
U Good 1 Good 1 0 
V Poor 3 Fair 2 1 
W Fair 2 Fair 2 0 
X Poor 3 Poor 3 0 
Y Poor 3 Poor 3 0 
Z Very Poor 4 Very Poor 4 0 

AA Poor 3 Poor 3 0 
BB Fair 2 Fair 2 0 
CC Poor 1 Poor 1 0 

Table 9. Assessment results shown for sample pairs taken from 29 sites, each pair 
representing two adjacent reaches (back to back (see Fig. 4). Assessment categories are 1 – 
good, 2 – fair, 3 – poor, and 4 – very poor. 
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Performance characteristic MQO 

Field sampling precision 
 (multimetric index) 

CV < 10%, for a sampling event 
(field season, watershed, or other strata) 

Field sampling precision  
(multimetric index) 

CI90 ≤ 15 index points, on a 100-point scale 

Field sampling precision  
(multimetric index) 

RPD < 15 

Field sampling completeness Completeness > 98% 

Sorting/subsampling accuracy 
PSE≥90, for ≥ 90% of externally QC’d sort 
residues 

Taxonomic precision 
Median PTD ≤ 15% for overall sample lot; 
samples with PTD ≥ 15% examined for patterns 
of error 

Taxonomic precision 
Median PDE ≤ 5%; samples with PDE ≥ 5% 
should be further examined for patterns of 
error 

Taxonomic completeness 
Median PTC ≥ 90%; samples with PTC ≤ 90% 
should be examined and those taxa not 
meeting targets isolated; mAbs diff ≤ 5% 

Table 10. Key measurement quality objectives (MQO) that could be used to track 
maintenance of data quality at acceptable levels. 

Key to maintaining data quality of known and acceptable levels is establishing performance 
standards based on MQO. Qualitative standards, such as some of the representativeness and 
accuracy factors (Table 3), can be evaluated by comparing SOP and SOP application to the 
goals and objectives of the monitoring program. However, a clear statement of data quality 
expectations, such as that shown in Table 10, will help to ensure consistency of success in 
implementing the procedures. As a program becomes more proficient and consistent in 
meeting the standards, efforts could be undertaken to “tighten up” the standards. With this 
comes necessary budgetary considerations; better precision can always be attained, but 
often at elevated costs. 

7. Comparability analysis and acceptable data quality 

All discussion to this point has been directed toward documenting data quality associated 
with monitoring programs, hopefully with sufficient emphasis that there are no data that 
are right or wrong, but just that they are acceptable or not. If data are acceptable for a 
decision (for example, in the context of biological assessment and monitoring), a defensible 
statement on the ecological condition of a site or an ecological system can be made. If they 
are not acceptable to support that decision, likewise, the decision not to use the data should 
also be defensible. Routine documentation and reporting of data quality within a 
monitoring program provides a statement of intra-programmatic consistency, that is, 
sample to sample comparability even if collected from different temporal or spatial scales. If 
there is an interest in or need to combine datasets from different programs (Figure 5), it is 
imperative for routinely documented performance characteristics be available for each. Lack 
of them will preclude any determination of acceptability for decision making by data users, 
whether scientists, policy-makers, or the public.  
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Fig. 5. Framework for analysis of comparability between or among monitoring datasets or 
protocols. 

8. Conclusion 

If data of unknown quality are used, whether by themselves or in combination with 
others, the assumption is implicit that they are acceptable, and hence, comparable. We 
must acknowledge the risk of incorrect decisions when using such data and be willing 
to communicate those risks to both data users and other decisionmakers. The primary 
message of this chapter is that appropriate and sufficient QC activities should be a 
routine component of any monitoring program, whether it is terrestrial or aquatic, 
focuses on physical, chemical, and/or biological indicators, and, if biological, whether it 
includes macroinvertebrates, algae/diatoms, fish, broad-leaf plants, or other organisms 
groups.  
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