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Aflatoxin Measurement and Analysis 

Peiwu Li and Qi Zhang et al.* 
Key Laboratory of Biotoxin Analysis of Ministry of Agriculture, 

Key Laboratory of Oil Crops Biology of the Ministry of Agriculture,  
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 

China 

1. Introduction 

Aflatoxin is a group of secondary metabolites produced by fungi Aspergillus species, such as 
A. flavus and A. parasiticus; in particular, A. flavus is common in agriculture. A. bombycis, A. 
ochraceoroseus, A. nomius, and A. pseudotamari are also aflatoxin-producing species, but they 
are encountered much less frequently (Bennett and Klich, 2003). 
Aflatoxin contamination can be occurred very widely. They can be found in over a hundred 
kinds of agro-products and foods,such as peanut, corn, rice, soy sauce, vinegar, plant oil, 
pistachio, tea, Chinese medicinal herb, egg, milk, feed etc,. Also some of them in animal 
organism can be detected. Besides these, aflatoxin can spread and accumulated in 
environment, for example, river and agricultural field.  
Aflatoxins are highly toxic, mutagenic, teratogenic, and carcinogenic compounds, a group 
of difuranocoumarin derivatives, consisted of a coumarin and a double-furan-ring of 
molecule usually. Aflatoxin B1, for example, its toxicity is ten times of potassium cyanide, 
68 times of arsenic and 416 times of melamine. Furthermore, their carcinogenicity is over 
70 times than that of dimethylnitrosamine and 10000 times of Benzene Hexachloride 
(BHC). And International Agency for Research on Cancer (IARC) of the World Health 
Organization (WHO) accepted that aflatoxin should be classified as a Group 1 carcinogen 
in 1987, and then AFB1 is classified as Group 1 (carcinogenic to humans) by the WHO–
IARC in 1993 (Li, Zhang & Zhang, 2009). According to the nearest researches by 
University of Pittsburgh, aflatoxin may play a causative role in 4.6–28.2% of all global 
HCC cases (Liu and Wu, 2010). 
To protect agricultural environment, estimate quality of commercials of agro-products and 
food, and safeguard safety of consumers’ health and lives, over seventy countries setup 
maximum limits in agro-products, and analytical methods for determination of aflatoxin, 
play a great role for monitoring and estimation of  the contaminants.  
There are a variety of well established methodologies reported for analysing aflatoxins in 
many different foodstuffs, such as thin layer chromatography, high-performance liquid 
chromatography, ultra-pressured layer chromatography, immunoaffinity chromatography- 
high-performance liquid chromatography, near infrared spectroscopy and immunoassay 
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methods. We here will not only demonstrate current such analytical methods for aflatoxins, 
but also illuminate tomorrow’s trends on analysis of aflatoxins. To help readers understand 
them well, some basic information of these methods were also presented, including 
principle of developing, choosing and using these methods.  

2. Pretreatment of sample  

2.1 Immunoaffinity or multipurification column 

The immunoaffinity column (IAC) occupies a special place among the immune analytical 
approaches, being used many years as a method of sample purification and concentration in 
the aflatoxin analysis (Scott & Trucksess, 1997). The principle of the IAC is that an antibody 
(polyclonal or monoclonal) recognized the analyte is immobilized onto a solid support such 
as agarose or silica in phosphate buffer, all of which is contained in a small column. 
The clean-up procedures are completed in four steps (Figure 1):  
Condition. The column is initially conditioned with phosphate buffered saline (PBS) and 
reaches room temperature.  
Loading of the sample. The crude sample extract is applied to the IAC containing specific 
antibodies to aflatoxin at slow steady flow rate of 2-3 mL/min. Gravity or vacuum system 
can be used to control flow rate. The aflatoxin binds to the antibody and is retained in the 
IAC. The crude sample extract must be in aqueous solution because organic solvents can 
damage the antibody and can interfere with the antibody-aflatoxin interaction. The binding 
strength of the antibody-aflatoxin will influence recovery of the IAC. The specificity of 
antibody is important to remove the structurally closely compounds which can cause 
interferences in the quantitation of aflatoxin. The capacity of the IAC (the total number of 
antibody sites available for binding aflatoxin) is also important as overloading the column 
will lead to poor recovery (Senyuva & Gilbert, 2010). 
Washing. The column is washed with washing solution (water or phosphate buffered saline) 
to remove impurities. After washing completely, the IAC is blown to dryness by N2 stream. 
 

 

Fig. 1. Scheme of aflatoxin immunoaffinity column for sample pretreatment (clean-up and 
enrichment).  
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Elution. By passing a solvent such as acetonitrile through the IAC, breaking the antibody-
aflatoxin bond, the captured aflatoxin is removed from the antibody and thus eluted from 
the column. The big volume of sample loading and the small volume of solvent eluting 
make the analyte concentrate. The eluate containing aflatoxin is then further developed by 
addition of fluorescence enhancer or directly measured by HPLC method. 
The principle of solid phase extraction (SPE) columns is a variation of chromatographic 
techniques that uses a solid phase and a liquid phase to isolate one, or one type, of analyte 
from a solution. The columns contain different packing materials, ranging from silica gel, C-
18 (octadecylsilane), florisil, phenyl, aminopropyl, ion exchange materials, both anionic and 
cationic, and molecular imprinted polymers (Giraudi et al, 2007; Jornet et al, 2000; Mateo et 
al, 2002; Vatinno et al, 2008; Yu & Lai, 2010; Zambonin et al, 2001). The generally procedure 
is to load the sample into column, retain the analyte, wash away impurities, and then elute 
the analyte. A MycoSep multifunctional cleanup column has been developed for one step 
clean-up of aflatoxin (Figure 2). The MycoSep clean-up column is pushed into a test tube 
(containing the sample), forcing the sample to filter upwards through the packing material 
of the column. The interferences adhere to the chemical packing in the column and the 
purified extract, containing the aflatoxin of interest, passes through a membrane (frit) to the 
surface of the column. The method is rapid, simple and economical due to the fact that the 
clean-up of aflatoxin from the column is a single pass procedure using the extract solvent as 
the eluting solvent. The column has a long shelf-life because it contains no biological 
reagents, and can be stored at room temperature. However, unlike immunoaffinity columns, 
the MycoSep clean-up column cannot concentrate the analyte during the clean-up 
procedure, and also the recovery may vary depending upon the complexity of the food 
samples (Zheng et al, 2006). 
 

 

Fig. 2. Scheme of aflatoxin multifunctional cleanup column for sample pretreatment  
(clean-up).  
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2.2 How to simplify current protocol  

The selection of pretreatment methods for samples depends mainly on two aspects: one is 

the analytical methods adopted, another is samples to be analyzed. The former is more 

importent with great differences according to the kinds of analytical methods. Complexity, 

time consuming and cost are the main factors contributed the popular degree by operators 

and practicability in on-site use. Among these factors complexity degree is most concerned 

for the exposure hazards of aflatoxins. 

Sample pretreatment for instrumental analysis (e.g., HPLC, GC, LC/MS and GC/MS) is 

very tedious, expensive and time consuming, and needs well equipped laboratories to 

accomplish it, e.g., frequently involving in large-scale equipment, large sample volumes, 

extensive extraction or derivatization steps (Tang et al., 2008), complicate clean-up and 

concentration, and multiple centrifugation, etc. While for immunoassay (for instance, 

enzyme-linked immunosorbent assay, ELISA) it is usually easier, cheap and rapid generally 

without derivation but still need clean-up and concentration. How to simplify current 

pretreatment protocol is a question to extend the methods for aflatoxins detecting outside 

the laboratory. As an alternative, lateral-flow immunochromatographic assay combines 

chromatography with immunoassay with less interference due to chromatographic 

separation, offers the advantages of most simple, cheap and time-saving, requiring only a 

simple extraction step (Tanaka et al., 2006) or even no need for extraction (e.g., detection of 

aflatoxin M1 in milk). Therefore, the pretreatment protocol of sample can be simplified by 

adopting suitable analytical methods, e.g., immunochromatographic assay. 

3. Sample analysis 

3.1 High fidelity methods  
3.1.1 HPLC (UPLC) with fluorescence detector  

Since the late 1960's，High Performance Liquid Chromatography (HPLC) had developed, 

HPLC is by far the most reported chromatographic method using a variety of detection 

strategies. It was developed rapidly in recent years, about 80% of the world organic 

compounds (health food efficacy composition, nutritional fortifiers, vitamins, protein etc.) 

use HPLC for separation and determination. The assessment of the quality of foods using 

this method provides an acceptable, accurate, and alternative method to establish guidelines 

and to evaluate the status of aflatoxins in contaminated foods. 

HPLC analysis of aflatoxins 

HPLC have high efficiency, high sensitivity (HPLC-FLD with as  low as 0.1 pg (ng kg-1) 

detecting limit (Herzallah, 2009) and high resolution. And the chromatographic column can 

be used repeatedly. So modern analysis of components relies heavily on HPLC employing 

various adsorbents depending on the physical and chemical structure of different 

components. 

The most commonly found detectors for HPLC are fluorescence detectors (FLD), which rely 

on the presence of a chromophore in the molecules. A number of toxins already have 

natural fluorescence (e.g. aflatoxins) and can be detected directly by HPLC–FLD. 

Determination for aflatoxins by HPLC with fluorescence detections is often the method of 

the choice. The use of the HPLC in determination of aflatoxins and their metabolites showed 

higher levels of accuracy and lower detection limits when using CN activate Solid Phase 
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extraction (SPE-CN) or immunoaffinity column (IAC) combined with application of 

FLD(Brera et al, 2007; Edinboro, & Karnes, 2005; Jaimez & Fente, 2000) 

Chromatography columns were the most important part of the HPLC, normal and reversed-
phase columns were used for separation and purification of toxins depending on their 
polarity. Reversed-phase C18 columns with methanol–water or acetonitrile–water mobile 
phases, is most commonly used for aflatoxins in most laboratories. 
Modern analysis of mycotoxins relies heavily on HPLC employing various adsorbents 
depending on the physical and chemical structure of the mycotoxins. The use of the HPLC 
in determination of aflatoxins and their metabolites showed higher levels of accuracy and 
lower detection limits when using SPE-CN or IAC regardless of the HPLC detectors used. 
Zhao used UPLC for determinations of Aflatoxins B1, B2, G1 and G2 (AFB1, AFB2, AFG1 and 
AFG2), and the detection limits (S/N = 3) for B1, B2, G1 and G2 were 0.32, 0.19, 0.32 and 
0.19μg kg-1, the corresponding quantification limits (S/N = 10) were 1.07, 0.63, 1.07 and 
0.63μg kg-1, respectively (Fu et al, 2008). 

Fluorescence enhancement methods of aflatoxins 

Derivative with a suitable fluorophore can enhance the natural fluorescence of 

aflatoxins,which can improve the fluorescence detection sensitivity. The present needs for 

HPLC fluorescence detection of aflatoxins determination in food and feedstuffs are an 

emphasis on the improvement of the sampling and extraction steps to lead to more accurate 

determinations, and further investigations of non-destructive pre-column or post-column 

derivative methods appears to be a large unexplored field. Some aflatoxins like aflatoxin B1, 

aflatoxin G1, because of its low signal or its easy quenching signals, several derivation 

reagents were used during the detection procedure.  

There are mainly three kinds of derivatizations: TFA, halogen, and its derivatives, metal 

ions (Hg2+), cyclodextrine and its derivatizations. The enhancement mechanisms varies 

with different kinds of derivatizations. 

AFB1 derivative method is mainly based on hydrolysis of the second furan ring in acidic 

solution, and AFB1 is transformed into B2a ,which makes a fluorescent greatly 

enhanced.This mechanism is commonly used by TFA,halogen,and its derivatives (PBPB) 

etc.(Francis et al., 1988; Joshua, 1993; Braga et al, 2005) 

Dr. Ma (2007) had studied on the metal ions (Hg2+) enhancement for aflatoxins and 
proposed the probably mechanism was that AFB1 can be chelated with Hg2+, the propose 
of the complexes fluorescence can be enhanced, the speculate metal complexes electronic 
transition occurred ligand AFB1 to employed by Hg (II), the charge transfer transition metal 
ions, namely ligand-to-metal charge transition (LMCT) transition. LMCT transition with 
high energy, and its absorb is in the UV area, LMCT transition is occurred against bonding σ 
orbital, electronic horizontally inspire with ligand AFB1 oxidation and reduction of metal, 
occurred by electron reaction. Metal ions are two ligand simultaneously electronic warp 
reduction. Speculation that ligand AFB1 is probably in the form of ·L base separation 
formed 2·L or formed new molecular L - L or L - M2+ -L, reactant system rigid structure to 
strengthen or conjugated system increased, fluorescent intensity was greatly enhanced  
(Ma, 2007). 
The main reaction procedure may be described by the next response equations:  

2 2n nL M L M L       
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The proposed mechanism of inclusion allows explaining data previously reported on 
fluorescence emission enhancement for AFB1 in presence of β-cyclodextrines (β-CDs), the 
region of AFB1 exhibiting the most hydrophobic character is constituted by the methoxy 
group and by the portion of the coumarinic and cyclopentanone ring opposite to the 
carbonyl groups. However, the methoxy group alone is probably too small to produce a 
good fitting, displacing all water molecules placed within the β-CD cavity. The hydrophobic 
portion of coumarinic and cyclopentanone rings cannot be included into β-CD for steric 
reasons. β-CDs and AFB1 main composed a Host and guest system in this way β-CD can 
protect AFB1 from come into contact with some reagents which can lead to fluorescence 
signals quenching, and in this way it is consistent with the observed enhancement of AFB1 
fluorescence emission in presence of β-CDs, and this system may explained by Hydropathic 
analysis. The inclusion of the bifuranic system of AFB1 into the β-CD cavity allows for 
fluorescence enhancement due to the protection of the fluorophore from the quenching and 
also in this case a variation in the circular dichroism spectrum. The affinity of AFTs to β-CD 
is rather low, being the calculated binding constants for the AFT: CD complexes around 10-3 
M. Although the enhancement of AFTs native fluorescence, due to inclusion into CDs, has 
already been successfully employed in HPLC analysis for increasing the sensitivity, the low 
affinity of the formed complex cannot lead to a specific chemosensor for mycotoxin 
detection in acomplex matrix such as food (Manetta et al, 2005).  
Derivatisation can also be performed by employing either pre- or post-column. Bromine 
(Br2), TFA (trifluoroacetic acid) are common used for pre-column derivative; Post-column 
reaction with iodide or bromide by an electrochemical cell (Kobra Cell) or addition of 
bromide or pyridinium hydrobromide perbromide (PBPB) (Akiyama et al, 2001; Stroka et al, 
2003) to the mobile phase coupled with fluorescence detection has yielded sensitive 
determinations of aflatoxins: these reactions and others have been extensively reviewed, like 
β-cyclodextrine, is also used for post-column derivatisations. Aghamohammadi showed the 
methods which are based on the enhanced fluorescence of AFB1 by β-CD in 10% (v/v) 
methanol–water solution, For concentrations ranging from 0 to 15 μg kg-1 of AFB1 in 
pistachio samples as prediction set, the values of root mean square difference (RMSD) and 
relative error of prediction (REP) using multiple linear regressions (MLR) were 0.328 and 
4.453%, respectively were observed (Aghamohammadi & Hashemi, 2007). 
AFB and AFG were commonly derivated in most experiment because of its low and easy 
quenching signals. A. Cepeda et al., (1996) was also studied using of cyclodextrin (CD) 
inclusion compounds showed an analytical method based on the incorporation post-column 
of a CD solution that promotes the greatest enhancement of AFB and AFG fluorescence 
(Figure 4). 
From the figure 4 the different chromatograms we can see that with the addition of CD and 
its derivatives AFB1, AFB2 and AFG1, AFG2 were obtained greatly fluorescence 
enhancement. 
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Fig. 3. Comparison of the different chromatograms: (A) without CD; (B) with addition of 10 -
2 M CD; (C) with addition of 10 -2 M DM-CD. Peaks: 1 =AfG2; 2=AfG1; 3=AFB2; 4=AFB1. 

 

 

Fig. 4. Chromatograms of AFM1-free milk (A); milk spiked with AFM1 at 200 ng kg-1 (D); 
mobile phase, acid/acetonitrile/2-propand deicerized water (2: 10: 10.78), flow rate was 1.2 
ml min-1 
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Besides AFB and AFG, fluorescence enhancement for sensitive detection could also be used 
for AFM1 analysis. Anna Chiara Manettaう2005えreported HPLC method with fluorescence 

detection by using pyridinium hydrobromide perbromide as a post-column derivatising 
agent had been developed to determine aflatoxin M1 in milk and cheese. The detection 
limits were 1 ng kg-1 for milk and 5 ng kg-1 for cheese. The calibration curve was linear 
from 0.001 to 0.1 ng injected. The method included a preliminary C18-SPE clean-up and the 
average recoveries of Aflatoxin M1 from milk and cheese, spiked at levels of 25–75 ng kg-1 
and 100–300 ng kg-1, respectively, were 90 and 76%; the precision (RSD) ranged from 1.7 to 
2.6% for milk and from 3.5 to 6.5% for cheese. 
Chromatograms (Figure 5) and the data result showed that use of CD for detect AFM1 can 
significantly improve the detection sensitivity.  

3.1.2 HPLC-MS-MS  

High performance liquid chromatography (HPLC) combined with fluorescence detection is 
proved to be very accurate and has been extensively studied in different materials. 
However, in order to improve detection limits of AFB1 and AFG1, a tedious pre- or post-
column derivatization must be done in conventional HPLC methods (Huang et al, 2009; 
Tassaneeyakul et al, 2004). These problems have been successfully solved in the present 
study by introducing HPLC-MS method. 
As shown in Figure 6, a HPLC-MS system was equipped with an autosampler, the HPLC 
system, the ionization source (which interfaces the LC to the MS) and the mass 
spectrometer. There are various types of ionization sources that can be used as the interface 
between the HPLC and the mass spectrometer. Both electrospray ionization (ESI) and 
atmospheric pressure chemical ionization (APCI) are the two most common ionization 
sources. For both ESI and APCI, the ionization occurs at atmospheric pressure, so these 
sources are often referred to as atmospheric ionization (API). As shown in Figure 7, there are 
several types of mass spectrometers available for interfacing with HPLC. Single quadrupole 
mass spectrometer (Figure 7a) is a common system used for the HPLC-MS, this system can 
provide a mass spectrum for each chromatographic peak that elutes from the LC column 
and is analyzed by the MS system. Time-of-flight (TOF) mass spectrometer (Figure 7b), 
which has the added capability of providing a higher mass resolution spectrum from each 
component that is assayed. The triple quadrupole MS-MS system (Figure 7c) and ion-trap 
mass spectrometer (Figure 7d) are important tools in quantitative analysis and qualitative 
analysis. HPLC-ESI-MS/MS has become the most emerging analytical tool for the 
determination of aflatoxins and their metabolites (Cavaliere et al, 2007; Sulyok et al, 2010; 
Huang et al, 2010). Single quadrupole mass spectrometer (Nonaka et al, 2009)  and ion-trap 
mass spectrometer (Cavaliere et al, 2006) were also used in the determination aflatoxins. LC-
MS provides decisive advantages in performing identification as well as determination of 
analytes at trace levels. 
Matrix effects, however, limit the potential of LC-MS. Molecules originating from the 
sample matrix that coelute with the compounds of interest can interfere with the ionization 
process in the mass spectrometer, causing ionization suppression or enhancement, which is 
the so-called matrix effect (Fan et al, 2011). Ion suppression (or enhancement) might be 
encountered due to matrix components that co-elute with the analyte of interest. If available, 
internal standards can often successfully amend these effects. Other possible strategies 
including the use of matrix matched standards or very careful validation of certain 
toxin/matrix combinations to exactly sample can determine the matrix effect. 
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Fig. 5. The elements of an LC-MS system. (a) Autosampler; (b) HPLC; (c) ionization source; 
(d) Mass spectrometer. 

 

 

Fig. 6. Types of mass spectrometers which can be used in LC-MS. (a) Single quadruple MS; 
(b) Time-of-flight MS; (c) Triple quadrupole MS; (d) Ion-Trap MS 

In general, all aflatoxins exhibit good ESI ionisation efficiency in the positive ion mode 

with abundant protonated molecules [M+H]+ and sodium adduct ions, but practically no 

fragmentation in the full scan spectra (Blesa et al, 2003; Ventura et al., 2004). The 

formation of sodium adduct ions can easily be suppressed by the addition of ammonium 

ions to the mobile phase leading to a better MS sensitivity (Cavaliere et al, 2006). Reports 

about the utility of APCI interfaces are inconsistent and ionisation efficiencies in this 

mode seem to be highly dependent on the aflatoxin subgroup and the APCI interface 

geometry (Abbas et al, 2002). In this respect, only the structurally related sterigmatocystin 

offers strikingly better sensitivity with an APCI interface in the positive ion mode than 

with ESI (Scudamore et al, 1996), and consequently only Abbas et al. applied APCI for the 

detection of AFBs in the low ppb range(Abbas et al., 2002). According to recent 
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investigations, autospheric pressure photoionization (APPI) seems to be a more reliable 

alternative to ESI. Since this interface offers strikingly lower levels of chemical noise and 

ion suppression than ESI it was found to be two to three times more sensitive(Cavaliere et 

al., 2006). The product ion spectra of the protonated aflatoxin species contain a number of 

abundant product ions reflecting bond cleavages and rearrangement reactions of the 

polycyclic ring system along with loss of water, carbon monoxide and carbon 

dioxide(Cavaliere et al., 2006). Despite this favorable fragmentation behaviour, only the 

quantitative single stage of LC-MS can not meet the EU criteria concerning unambiguous 

compound identification in residue analysis(Zllner & Mayer-Helm, 2006). In this respect, 

Cavaliere et al. demonstrated that the QTrap technology opens a new dimension of MS 

analyte confirmation and quantification. Its operation in the quadrupole linear ion trap 

configuration (enhanced product ion scans) produces complete product ions mass spectra 

even close to the LOQ which guarantees accurate analyte quantification simultaneously to 

unambiguous analyte confirmation(Cavaliere et al., 2006). 

Cavaliere et al. compared the calibration curves set up in standard solution and in sample 

matrix and found close similarity of both slopes, proving that the influence of matrix 

components on the analyte signal was negligible and matrix effects could be excluded. 

Alternatively, Edinboro and Karnes infused post-column the aflatoxin analyte into a blank 

sample injection. As they did not find any dips in the baseline they concluded that ion 

suppression was absent in the analyte elution zone(Edinboro & Karnes, 2005).  
Direct comparison of LC/MS and LC-FL revealed in most cases good correlation of 
quantitative results(Blesa, et al., 2003) though LC/MS method robustness and sensitivity 
seem to be inferior to LC-FL. In this context, Vahl and Jorgensen reported large variations 
of the recovery rates in different spices. They attributed this observation to severe matrix 
effects that are not compensated by the applied internal standard AFM1 and by a 
calibration curve set up in standard solution(Vahl & Jrgensen, 1998). Besides, Blesa et al. 
demonstrated in peanut samples that LC/MS is less sensitive than LC-FL(Blesa et al., 
2003) though this can be partly explained by the use of single quadrupole instrumentation 
in the SIM mode that is inferior to a tandem MS and SRM recording(Cavaliere et al., 2006; 
Vahl et al., 1998). 

3.2 Rapid assay methods  
3.2.1 Portable tester  

Due to high toxicity and extensive pollution of aflatoxins, some special portable tester and 

corresponding assay techniques were developed for rapid, sensitive, quantitative and 

convenient on-site determination of aflatoxins. The rapid tester device is based on 

chromatography and fluorescence spectrometric technologies, including clean-up and 

concentration with an immunoaffinity column, derivatization for fluorescence enhance and 

fluorescence excited at 360 nm. Ma et al. (2007) developed a rapid method for detecting 

aflatoxin B1 with an immunoaffinity column and portable rapid tester (Li et al., 2005; Li et 

al, 2006; Ma et al, 2007), which was obtained from Beijing Chinainvent Instrument Tech. Co. 

Ltd. (Beijing, China). Using the assay method developed, the results of showed the linear 

range of the method was 0.3–25 lg/kg, the average recovery was above 90% with CV being 

under 5%, the LOD for AFB1 from peanut and its related products was 0.3 lg/kg, the time 

for whole test process was about 45 min and the cost of detection was lower than other 

instruments and methods. Chiavaro et al. (Chiavaro et al, 2005) detected AFB1 and AFM1 in 
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pig liver with portable tester obtained from VICAM (Watertown, MA, USA). The detection 

limit was 1.0 mg/kg for AFB1 and AFM1. Mean recoveries were 80.7 ± 9.0% for AFB1 spiked 

at 1.0–9.7 mg/kg levels and of 76.7 ± 6.6% for AFM1 spiked at 1.0–5.5 mg/kg levels. 

Considering its low price, portability and reliable quantification, the rapid tester dedicated 

to aflatoxins is suitable to use in the field, particularly in Third World countries. 

Nowadays, the light sources of rapid tester are mainly LED, Xenon light for fluorescence 
assay. Due to the lack of fluorescence intensity, the aflatoxin has to be derived to enhance 
fluorescence using toxic and environmentally unfriendly solvents such as bromine.  
To address this issue, a laser is applied as excitation resource of portable tester. This light 
resource can provide steady light and can induce aflatoxins at ppt level without enhancer 
derivatization. Although the price of laser is higher than LED and Xenon light,  
the advantages of laser resource will make it have more widely applicable and a bright 
future. 

3.2.2 Biosensor  

Immunosensors are designed to improve sensitivity and to simplify determination. There 
are at least four classification of immunoassay at present: optical, electrochemical, 
piezoelectric (PZ) and micromechanical (Raman Suri et al., 2009), all of which depend on 
Abs and sensitive components. Two kinds of immunosensor have been developed for 
determination of aflatoxin (i.e. electrochemical and optical).  
Competitive and non-competitive assays have both been used to develop electrochemical 

immunosensors for determination of aflatoxins. One type of electrochemical immunosensor 

is based on competitive ELISA. In this assay system, specific Ab or Ag (hapten-protein 

conjugate) is immobilized on the electrode, and enzyme conjugate is free. After competitive 

reaction, a different density of enzyme due to different concentration of analyte will bind to 

the electrode. Finally, the binding enzyme density can be shown by current produced from 

the catalytic oxidation reaction of the enzyme with substrates. Many such immunoassays 

have been described for aflatoxins (Ammida et al, 2004; Micheli et al, 2005; Parker & Tothill, 

2009; Tan et al, 2009; Vig, et al, 2009) and they all had high sensitivities (LOD 0.01–0.4 

ng/mL). With a non-competitive immunoassay, the formation of the Ab–Ag complex by a 

simple one-step immunoreaction between the immobilized enzyme-Ab conjugate and 

analytes in sample solution introduced a barrier of direct electrical communication between 

the immobilized enzyme and the electrode surface, so local current variations could be 

detected by the enzyme bioelectrocatalytic oxidation reaction with substrates. Sun et al. (Sun 

et al, 2008) and Liu et al. (Liu et al, 2006) developed such immunoassays for aflatoxin B1, 

whose linear ranges of detection were 0.1–12 ng/mL and 0.5–10 ng/mL, respectively. Using 

no enzyme and substrate, Owino et al. (2007) developed a non-competitive immunoassay 

with an LOD of 100 mg/L for aflatoxin B1 through a variation of electrochemical-impedance 

spectroscopy. 

Optical immunosensors developed for determination of aflatoxins include mainly surface 

plasmon resonance (SPR) and some array devices. SPR, which is a well-known physical 

phenomenon, is surface electromagnetic waves that propagate in a direction parallel to 

the metal/dielectric (or metal/vacuum) interface. Since the wave is on the boundary of 

the metal and the external medium (air or water for example), these oscillations are very 

sensitive to any change of this boundary, such as the adsorption of molecules to the metal 

surface (El-Sherif, 2010). For biomolecular-interaction analysis, SPR sensors are valued for 
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their ability to monitor molecular binding without labels and in real-time (Amarie et al, 

2010). In a SPR of antibody-antigen interaction system, specific antibodies are 

immobilized on a sensitive optical component (i.e. layer of Au on a glass surface). When 

the antibodies capture analytes specifically, SPR occurs through the sensitive component. 

The angle of SPR is increased in line with the increase in the amount of analyte binding to 

the Au. Based on SPR method, immunoassays for aflatoxin B1 have been described by 

Daly et al. (2000) and Wang et al. (Wang & Gan, 2009), and their linear ranges were 3.0–

98.0 ng/mL and 0.3–7.0 ng/mL, respectively. An outstanding characteristic of these 

immunoassays depends on a one-step reaction of Ab and analyte with a non-competitive 

format. To increase the sensitivity of detection, Wang et al. (Wang et al, 2009) developed a 

novel biosensor using long-range surface-plasmon-enhanced fluorescence spectroscopy. 

In this system, the binding of fluorophore-labeled molecules to the sensor surface is 

probed with surface plasmons and the emitted fluorescence light is detected. This 

approach takes advantage of the enhanced intensity of electromagnetic field occurring 

upon the resonant excitation of surface plasmons, which directly increases the 

fluorescence signal. Using this novel sensor, they obtained the lowest reported LOD for 

aflatoxin M1 (0.6 pg/mL). Solid-array sensors often depend on a competitive assay 

format. Specific Abs or Ags are immobilized on a solid surface (e.g., waveguide surface) 

and fluorescence-labeled conjugates are presented in the competitive system. Using an 

indirect competitive procedure, Sapsford et al. (2006) developed such an immunoassay for 

aflatoxin B1 with LODs for AFB1 0.3 ng/mL in buffer, 1.5 ng/g and 5.1 ng/g in corn, and 

0.6 ng/g and 1.4 ng/g in nut products. Array sensor is a good tool for multiple 

compounds. For determination of aflatoxin B1 and ochratoxin A in the same operation, 

Adányi et al. (Adányi et al, 2007) devised a solid-array sensor with a sensitive detection 

range of 0.5–10 ng mL-1 using a competitive detection method. 

3.2.3 Microplate reader  

Microtiter plate and reader-based immunoassays mainly use competitive assays. 
Microtiter plates should have the features of binding proteins uniformly (e.g., Ags or Abs 
against aflatoxins or secondary Abs). 96-well polystyrene is used most commonly (Table 
1). Microtiter readers can report optical absorbance or intensity of chemiluminescence or 
fluorescence, and they often contain data processing software that can build assay 
standard curves and equations and report amounts of analytes. In the past, most 
immunoassays developed were microtiterplate and reader based (Zhang, Li, Zhang, et al, 
2009; Li, Zhang, Zhang, et al., 2009; Guan, Li, Zhang, et al, 2011). Some new materials 
(e.g., magnetic nanoparticles) have been used in aflatoxin-ELISA (Radoi et al, 2008). 
ELISA is the rapid test method most used today. ELISA kits have been commercial and 
used widely for aflatoxins in foods and agricultural products. Chemiluminescence 
immunoassay (CLIA) developed based on ELISA. Generally, chemiluminescence 
immunoassay can reach higher sensitivity than ELISA. With 384-well black polystyrene 
microtiter plates, a secondary Ab labeled with HRP and a luminol-based substrate, 
Magliulo et al. (2005) reported a chemiluminescence immunoassay for aflatoxin M1 in 
milk, that the limit of quantification was 1 ppt, so they thought that the developed 
method was suitable for accurate, sensitive, high-throughput screening of aflatoxin M1 in 
milk samples with a reduction of costs and increased detectability, as compared with 
previously developed immunoassays.  
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Fluorescence labels were also developed in ELISA format for analysis of aflatoxins, which 
is called Time-Resolved Fluoroimmunoassay (TRFIA). The labels used in this assay  
are lanthanide chelates such as Eu, Tb, and Sm. Lanthanide chelate labels offer the 
potentially significant advantage of a strong fluorescence with long decay time. As the 
measurement time is extended, the background noise is substantially reduced when the 
short-lived, non-specific background interference has disappeared. Moreover, the labels 
have a large Stock shift between the excitation and emission wavelength. The advantages 
of lanthanide chelate labels greatly increase the sensitivity of TRFIA. Huang et al. (2009) 
developed a TRFIA method for aflatoxin B1 using Eu3+ chelates as label. The sensitivity 
of the method was 0.02 μg/L and dynamic range of 0.02–100 μg/L. The intra- and inter-
batch coefficient of variation was 3.2 and 7.3%, respectively, and the average recovery rate 
was 88.1%.  
The advantage of microtiter plate-based immunoassays may be that they can be used to 
detect a large number of samples with a 96-well or 384-well plate at one time. These 
methods are used as quantitative or semi-quantitative assays for high through-put screening 
of aflatoxin samples. 
 

Type Label Plate Microplate reader 

ELISA HRP 
Polystyrene, 96 well, 

clear 
Absorbance, 450 nm 

CLIA HRP 
Polystyrene, 96/384 

well, black 
Chemiluminescence, CCD 

TRFIA 
Lanthanide 

chelate 
Polystyrene, 96 well, 

black 
Fluorescence, 613 nm 

Table 1. The parameters of immunoassay based on microplate 

3.2.4 Lateral flow strip  

Lateral flow strip assay is a new immunochromatographic technology combining 
chromatography with immunoassay and has attracted great interest in recent years. 
Nanoparticles are usually selected as the detector reagent, e.g., nanogold (Au) is most 
applied. A lateral flow strip comprises three membrane pads: absorbent pad, conjugate-
release pad, sample pad and a nitrocellulose (NC) membrane, as shown in Figure 8. With 
capillary action, test buffer containing analytes is introduced to the absorbent pad from the 
bottom of the strip. After reaching the Au conjugate-release pad, the Au-labeled Ab can 
bind analytes specifically. The complex is then transferred by the flow to the nitrocellulose 
membrane and reacted with the immobilized Ag for the generation of signals. If the test 
buffer contains analytes, the complex migrates along the membrane and binds to the 
secondary Abs on the control line and no red signal can be observed on the test line. If the 
analyte is absent, some the Au-labeled Abs bind to the immobilized Ag (aflatoxin-protein 
conjugate) on the test line and the rest of the Au-labeled Abs flow to and bind control Abs 
(Li, Zhang, & Zhang, 2009). 
Lateral flow strip assay has many advantages, such as: 

www.intechopen.com



 
Aflatoxins – Detection, Measurement and Control 

 

196 

1. requiring only a sample extraction step before use; 
2. simplicity of procedure with single step, e.g., only adding test solution to the sample 

pad on the strip; 
3. rapid on-site detection within a few minutes (5-15 min); 
4. concentration levels of target analytes can be observed directly with the naked eyes; 
5. user-friendly format no need for skill personnel; 
6. less interference due to chromatographic separation; and 
7. low cost 
Because of these advantages, lateral flow strip assay has become one of the commercial and 

widely-used immunoassays for rapid determination of mycotoxins, such as ochratoxin A 

(Lai et al, 2009; Liu, Tsao, Wang, & Yu, 2008; Wang, Liu, Xu, Zhang, & Wang, 2007; Cho et 

al., 2005), deoxynivalenol (Kolosova, De Saeger, Sibanda, Verheijen, & Van Peteghem, 2007; 

Xu et al., 2010; Kolosova et al., 2008), T-2 Toxin (Molinelli et al., 2008), zearalenone 

(Kolosova, De Saeger, Sibanda, Verheijen, & Van Peteghem, 2007), fumonisin B1 (Wang, 

Quan, Lee, & Kennedy, 2006), aflatoxins (Sun, Zhao, Tang, Zhou, & Chu, 2005; Sheibani, 

Tabrizchi, & Ghaziaskar, 2008) and so on.  

The visual detection limit (VDL), defined as the minimum concentration producing  
the color on the test line significantly different or weaker to that on the test line of 
negative control strip without aflatoxin (Li, Wei, Yang, Li, & Deng, 2009; Zhou et al., 
2009), was used to express the sensitivity of the lateral flow strip assay. The visual 
detection limit of published conventional lateral flow strip assay for aflatoxins are 
summaried in Table 2. 
 

References Aflatoxins VDL a (ng/g) 

(Delmulle, De Saeger, Sibanda, Barna-Vetro,  
& Van Peteghem, 2005) 
(Sun, Zhao, Tang, Zhou, & Chu, 2005) 
(Shim et al., 2007) 
(Zhang, Li, Zhang, Zhang, 2011)  

AFB1 
 
AFB1 
AFB1 
AFB1  
AFB2 
AFG1 
AFG2 

2.0  
 
0.5 
0.1  
0.03  
0.06  
0.12  
0.25  

a The VDLs here were selected out from the original as defined above.  

Table 2. VDLs of published conventional lateral flow strip assay for aflatoxins. 

Challenges in test strip production include adjusting the flow properties of the test strip 
and, as already mentioned, reducing matrix background interference by optimization of 
multiple parameters including (Krska & Molinelli, 2009): 
1. type and pore size of analytical membrane; 
2. type and concentration of blocking agent for blocking membrane binding sites after 

spraying of reagents; 
3. type of buffer, pH range and ionic strength; and 
4. use of surfactants and modifiers for pre or post treatment of test strip materials 
Similar to ELISA, optimization with a selection of reagents (concentrations), materials and 
assay conditions is necessary. 
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Fig. 7. Construction of lateral flow strip, which comprises three pads (from top to bottom): 
absorbent pad, gold-conjugate release pad and sample application pad, and a nitrocellulose 
(NC) membrane. The sample is introduced by capillary action from the bottom of the strip. 
On reaching the gold-labeled antibody pad, the antigen-Ab reaction takes place. The 
binding complex is then transferred by the flow to the NC membrane and then reacted with 
the immobilized antigen to generate signals. Signals generated from the sample without 
aflatoxin (negative sample) and with aflatoxin (positive sample) are shown in panels (Sun, 
Zhao, Tang, Zhou, & Chu, 2005). 

3.3 Other methods 

Besides the above, both of layer chromatography (TLC) and generic fluorospectrophotometry 
are two traditional methods for determination of aflatoxin content. And there are several 
standard methods published previously (http://www.aoac.org/omarev1/2005_08.pdf; Van 
Egmond and Jonker, 2004). Recently they were used by fewer and fewer laboratories with 
occurring of so many modern equipments and protocols. Maybe, lack of automatism and high 
possibility to be harmful to operators and environment are the main reason.They are not 
described with more details here. 

4. New trends 

4.1 Quantitative strip assay  

As description above, lateral flow assays are currently widely used in a wide range. 
However, most of the strip tests developed are qualitative tests (Molinelli, Grossalber, & 
Krska, 2009) with a simple yes/no response to the levels of the target analytes. Although the 
conventional quanlitative analysis may be suitable for verifying certain analyte (e.g., for a 
preganancy test), it is not adequate when the level of an analyte is important (Liu et al., 
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2007), e.g., most clinical decision for illness progression require known concentrations of 
pathogens; the countermeasures for contaminated foods and feeds need be taken according 
to the contamination level. A trend can be seen towards (semi-) quantitative strip tests 
driven by a strong demand from industry (Molinelli, Grossalber, & Krska, 2009). To meet 
the requirement, two kinds of approaches have appeared depending on the need of detector 
or not. With advanced nanotechnologies, a few methods have integrated chromatographic 
separation and electrochemical (Wang, Quan, Lee, & Kennedy, 2006), fluorescence (Sun, 
Zhao, Tang, Zhou, & Chu, 2005) or optical detectors (Sheibani, Tabrizchi, & Ghaziaskar, 
2008) for rapidly quantitative detection. Compared with conventional strips which just 
based on visual judgment, these approaches offer a greater sensitivity and dynamic range as 
well as a better quantitative capability (Kim, Oh, Jeong, Pyo, & Choi, 2003). However, these 
approaches can lead to environmental pollution from heavy metal (e.g., mercury, Hg), or 
may suffer from optical interference (e.g., photobleaching), the rising costs due to the use of 
detector, and the complex software for imaging and analysis (Liu et al., 2007); all of these 
potential problems limit their well application on spot. As detector-free approaches, a one-
step competitive ICA for semiquantitative determination of lipoprotein (a) in plasma is 
developed (Lou, Patel, Ching, & Gordon, 1993), the dose ranges can be simply encoded to 
different numbers of a colored ladder bar that had fully developed color on the assay strip, 
and a pH sensitive dye is used as the end-of-assay indicator. A potential problem could arise 
that the time of end-of-assay with a pH sensitive indicator may vary from people to people 
and cause a disparity in result determination. Subsequently, a dipstick test determined 
microalbuminnuria in patients with hypertension (semi-) quantitively by comparing the 
colored singal with a standard color chart (Gerber, Johnston, & Alderman, 1998) such as 
with pH paper. However, the color indication of the assay is not self-confirmative, and may 
also show an error in matching intensity (Cho & Paek, 2001).  
According to the description above, although problems exist in two kinds of approaches, the 
detector-free methods seem to have more potential on-site application value considering 
convenience, low-cost and no interferences from instrument itself. To overcome the 
disadvantages of published detector-free methods, a novel strategy for detector-free (semi-) 
quantitive strip (DFQ-strip) assay is proposed just like a novel “ruler” for content 
measurement of target analyte. The illustration design of the DFQ-strip was shown in Figure 
9. The DFQ-strip consisted of five parts similar as the traditional ones with three pads 
(sample, conjugate release, and absorbent pads), a NC membrane and a plastic backing 

plate. On NC membrane, three scale lines defined as SL-レ, ロ and ヮ constituted the 
measuring bar which played a role as a ruler. After reaction different number of scale line 
appeared indicating the concentration (range) of analyte, in other words, every scale line’s 
disappearing represented a concentration (expressed as threshold level) playing a role as 
scale on the ruler, while the visual detection limit played a role as an unlined out scale. As a 
detector-free approach, the strategy spurned the traditional method with just one test line 
for one analyte or multi-test line for multianalyte, three scale lines were designed to offer 
multiple dynamic ranges for one analyte. Therefore, compared with the traditional 
qualitative tests, the DFQ-strip assay not only expresses yes/no response but also offer the 
content (range) of target analytes. For a negative sample, three color bands (scale lines) are 
formed in the test zone of DFQ-strip (figure 10a) and the color intensity is graded with the 

weakest color in SL-レ and deepest color in SL-ヮ. For positive samples, with migration, the 
free probe became less and less, which is more and more favorable for the competition of 
analyte. The intensity of the color is inversely proportional to the analyte concentration in 
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sample. Thus, during the competitive reaction, SL-レ will disappear fistly, and then SL-ロ 

and SL-ヮ at last. Consequently, a positive sample, in accordance with the amount of analyte 
in sample, will result in three, two, only one weaker red band or no color mark in test zone 
compared with those of negative control (figure 10b). But, similar as the traditional strip 
assay, in any case, if no red line appears at the control zone, the test result is considered 
invalid (figure 10c). 
 

 

Fig. 8. Illustration of the DFQ-strip design. The DFQ-strip consisted of five parts similar as 
the traditional ones with three pads (sample, conjugate release, and absorbent pads), a NC 
membrane and a plastic backing plate and the differences lay in lines on NC membrane. 
There were four lines, one control line and three scale lines on NC membrane. The 

measuring bar which played the role as a ruler was comprised by SL-レ, SL-ロ and SL-ヮ. 

 

 

Fig. 9. Illustrations of DFQ-strip assay results for negative, positive and invalid. 

A comprehensive model system of DFQ-strip is constructed taking aflatoxin B1 as target 
analyte. The visual detection limit (VDL, unlined out scale) of the DFQ-strip assay was 0.06 
ng/mL, and the threshold levels (scales) for SL-I, II and III were 0.125, 0.5 and 2.0 ng/mL, 
respectively (the data will be published recently). Moreover, all results supported the 
feasibility of the idea with high sensitivity, precision and accuracy, multiple dynamic 
ranges, as well as good (semi-) quantitative capability, stability. Besides, this DFQ-strip 
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assay had good practicability, great application value for toxic or harmful substances (e.g., 
mycotoxins) in-situ monitoring but still posessed the advantages of conventional strips such 
as procedure simplicity, rapid operation, immediate results, low cost, and no requirement 
for skilled technicians or expensive equipment, etc. The strategy is proposed as an 
alternative idea for sensitive, rapid, convenient and (semi-) quantitative detection of analyte 
on site.  

4.2 Green immunoassay  

Aflatoxin standards and their derivate have been considered as high poison. So there is high 
possibility that these compounds using in analytical processes induce second contamination 
of environment. How to reduce or eliminate the use of hazardous substances? For this, 
green immunoassay strategies will be introduced as the below. 
On the one hand, nontoxic surrogates of aflatoxin can be designed in ELISA system. As is 

known, aflatoxin calibration curves must be used for every plate to reduce differences in 

plate-to-plate variability and improve accuracy. Furthermore, the pure toxin, used as the 

calibrator, is hazardous to operators and the environment. According to the reaction 

principle of antibody and hapten, we can design some mater, such as second antibody, 

which can also bind the active area of the specific antibody against aflatoxin. Such 

compounds will act as calibrator and be named as surrogate. 

There are usually four steps for development of a green immunoassay with nontoxic 
surrogates: 

 to prepare specific antibodies (the first antibody) against targets; 

 to produce F(ab')2 fragments of the target antibody 

 to produce anti-idiotype antibodies (the second antibody) to the target; 

 to establish an calibrator curve for detection.  
As an example developed in our laboratory, a green enzyme-linked immunosorbent assay 
(ELISA) to measure aflatoxin M1 (AFM1) in milk was developed and validated with a 
surrogate calibrator curve. Polyclonal anti-idiotype (anti-Id) antibody, used as an AFM1 
surrogate, was generated by immunizing rabbits with F(ab')2 fragments from the anti-AFM1 
monoclonal antibody (mAb). The rabbits exhibited high specificity to the anti-AFM1 mAb, 
and no cross-reactivity to either of the other anti-aflatoxin mAbs or the isotype matched 
mAb was observed. After optimizing the physicochemical factors (pH and ionic strength) 
that influence assay performance, a quantitative conversion formula was developed 
between AFM1 and the anti-Id antibody (y = 31.91x − 8.47, r = 0.9997). The assay was 
applied to analyze AFM1 in spiked milk samples. The IC50 value of the surrogate calibrator 
curve was 2.4 μg mL-1, and the inter-assay and intra-assay variation was less than 10.8%; 
recovery ranged from 85.2 to 110.9%. A reference high-performance liquid chromatography 
method was used to validate the developed method, and a good correlation was obtained  
(y = 0.81x + 9.82, r = 0.9922). 
On the other hand, how can we develop some immunoassay using no target standards? In 

our previous review (Li et al, 2009), noncompetitive immunoassay format was described. 

And this immunoassay’s signal can be found stronger and stronger with increasing of target 

content, which means “no signal, no target”. This kind of noncompetitive immunoassay is 

especially suggested for fast screening of samples without any use of the toxin standards, 

although, when developing this assay, toxin standards will have to be used for evaluation of 

sensitivity. Recently, some noncompetitive immunoassays, such as SPR assay and sandwich 
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assay for other small chemicals were developed.However, there are still no reports for 

analysis of aflatoxins in agro-products or in environment. 

5. Outlook  

Facing so many kinds of current analytical methods for aflatoxin, how can we choose them 
for our sample analysis? 
Actually, each method has its own features. In our opinion, there are three classes of 
analytical methods, (1) High fidelity method, (2) qualitative rapid method and (3) 
quantitative rapid method. 
1. High fidelity method means they have been authorized with high sensitivity, accuracy 

and precision, and especially means traditional chromatographic technology with high 

extent of efficiency and intelligentization. Considering its mature and vive 

methodologies, there has been many standard method set by governments or 

international organizers. Usually, such methods have been using to make impartiality 

data for inspection reports. For analysis of aflatoxin, HPLC with detector of mass or 

fluorescence belongs to high fidelity method. Disadvantageously, these methods 

depend on very expensive instruments which can only be sited on some special room. 

The room also needs to meet some special requirement of environment. Usually, their 

process need to spend so many organic solvent and total cost of sample measurement is 

relatively high. 

2. Qualitative rapid method means it needs few time to finish a test process and it can 
only tell operator “positive” or “negative” data. A typical such method is nanogold 
particle-based immunochromatographic assay. Usually, these methods especially fit for 
screening of a great number of samples or on-site analysis. The main advantage is 
simple, rapid, convenient, detector-free and low-cost for sample analysis. Its main 
disadvantage is lack of content details and it is generally not considered to make data 
for inspection report on agro-products.  

3. Quantitative rapid method means it can be used to get content details with high 
sensitivity; however it has lower accuracy and/or precision than that of high fidelity 
method some time. Here, it especially means quantitative immunoassays including 
ELISA, portable tester-based immunoassay, immunosensor and so on (Li, zhang & 
zhang, 2009). These methods have been considering as important valuable complement 
for high fidelity method (HPLC-MS/FLD). They have attractive features including high 
sensitivity and specificity, simple operating, short time consuming, the possibility of 
analysis of difficult matrices without extensive pre-treatment, and low costs. According 
to the previous discussion, these technologies facing the following challenges,  
1. preparation of more specific antibodies against aflatoxins via inducing of novel 

structural hapten, screening of mAb or rAb, or mending antibody of engineering, 
2. exploring of non-animal antibody preparation techniques, such as development of 

rAb or some simulative antibodies mentioned above, 
3. researches on use of novel labels, such as sensitive nanoparticles (quantum dots, 

gold particle, magnetic beads, etc), 
4. development of noncompetitive immunoassays with one reaction step for faster, 

simpler and more sensitive assay, and 
5. legalization of immunoassay methods. Comparing the amount of immunoassay 

kinds, there are only few methods have been constituted as test standard. In China, 
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for example, there are just some ELISA standards for determination of aflatoxins. 
So, we think legalization of immunoassay methods may become one of important 
tast in the future. 

The second and the third above maybe become the main research trends. And, rationally, 
we predict immunoassay devices such as portable fast tester special for aflatoxins will be 
used in wide fields. 
For analytical works, our aims need to be clear firstly, which means “why the samples need 
to be determination of aflatoxins?” Generally, there are three kinds of aims: (1) For justifying 
only with or without target contaminants; (2) For getting qualitative extent of contamination 
with low or high content of aflatoxin; (3) For quantitative evaluation on contaminant in 
samples. And then, to reach the aim, an appropriate method need to be chosen with the 
principle of saving (time and/or cost) and speed of measurement.  
With developing of analytical technologies, sensitivities of methods will be enhanced. To 
meet requirement of on-site assay, many novel analytical devices, representing 
automatization, minization and high throughput, will be developed and improved. It means 
that tomorrow analytical methods will be of simplification, intelligentization and portability. 
Also, future assay protocols will use fewer and fewer poison chemicals including toxin 
standards and organic solvent. These methods will make great importance on analysis of 
aflatoxin, to protect agricultural environment, to estimate quality of commercials of agro-
products and food, and to safeguard safety of consumers’ health and lives.  
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