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1. Introduction 

Optical measurements offer the desirable characteristics of being noninvasive and 
nondestructive techniques that are able to analyze in real time objects and phenomena in a 
remote sense.  Science areas that involve optical characterization include physics, biology, 
chemistry and varied fields of engineering.  The use of digital cameras to record objects or a 
specific phenomenon permits the exploitation of the potential of that the associated images 
can be processed to determine one or several parameter or characteristics of what is being 
recorded.  These images need to be processed and securely there will be a model associated 
with the optical metrology that will provide an insight or a comprehensive understanding of 
the image being analyzed.  Matlab® is the suitable platform to implement image processing 
algorithms due to its ability to perform the whole processing techniques and procedures to 
analyze and image.  At the same time it provides a flexible and a fast programming 
language for user constructing algorithms.  In the present chapter we provide some 
fundamentals about image acquisition, filtering and processing, and some applications.  
Some applications are well-know techniques while others offer the state of the art in the 
field under study.  All authors agree that Matlab® is a powerful tool for image processing 
and optical metrology.  
All algorithms and/or sentences used in this chapter are made in such manner so that they 
work in the Matlab® R2007b platform or superior. Matlab® is a trade mark of Mathworks  
Inc., from here on we will refer it as Matlab only. Also the Matlab functions and parameters 
used along the chapter are typed in italics and in apostrophes, respectively.    
Algorithms in present chapter are presented in two formats depending on the algorithm 
extension: 1) Image titles and/or figure captions for low algorithms extension; 2) Subsection 
ends for larger algorithms. 

2. Image processing and acquisition 

In the present section, image and processing acquisition principles in Matlab are established. 

2.1 Image acquisition 
Image acquisition is the initial stage in every vision system for human or artificial image 
data interpretation. Image acquisition is the recording process of a real object, this implies 
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that the vision process totally depends on quality acquisition; this could be an analogical or 
digital. The analogical acquisition process is a representation of the object with several 
techniques like designing, painting, photography, and video. In a similar way, digital 
imaging acquisition is able to represent a real object, however object properties are 
presented in a discrete form. Every object characteristics are mapped from a real plane to a 
digital plane where a group of discrete values (i.e 1, 2, 3, …,) represent position, form, color 
and texture. 

2.1.1 Acquisition and digital image representation 
Image acquisition process in Matlab can be done by the use of either imread or getsnapshot 
functions for stored images or video, respectively. Each function stores the object 
representation in a discrete lxmxn array, where l can be related to color data; m and n 
indexes represent the image spatial coordinates. 
An example of a real image is shown in Figure 1a, and in Figure 1b, the representation in a 
matrix array of the selected area from the image. Digital images are described as a bi-
dimensional f(x,y) function, where x and y represent the spatial coordinates. The f value at 
the (x,y) position point is proportional to the intensity or gray scale of the image. 
In Matlab, a digital image satisfies following conditions: first, spatial and gray scale values 
must be discrete; and second, intensities are sampling at 8 bits (255 values). 
 

 

Fig. 1. a) real color image, and b) matrix of the green color component of the selected area. 

2.1.2 Image discretization 
Image discretization is the process of converting an analogical image to a digital image; this 
process depends on the sampling and quantization stages.  
Correspondence between analogical and digital images is given by the number of pixels 
used. If the number of pixels is enough to satisfy the Nyquist criteria (Oppenheim et al., 
1997), the acquired image is a satisfactory representation of the real object observed. 
Quantization is the process of assigning a color or gray discrete level to each sample. 
Therefore, image discretization quality depends on frequency sampling as in quantization 
levels used. It must be noted that Matlab only reads digital images. Acquisition process can 
be done with scanners, CCD cameras, etc. 

2.2 Thresholding and high contrast image 
Frequently, acquired images under real conditions present a background problem. When 
relevant foreground elements are mixed with low interest background ones. Another 
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problem that hides the desired information is a low contrast image. Therefore, the use of 
algorithms that deals with can be implemented in order to enhance the images. 
Equalization, binarization and thresholding algorithm are alternatives that have proved to 
be successful.  
In the following subsection, a method for the conversion of color images into gray levels is 
presented. Next, by using histogram equalization, a high contrast image from the gray scale 
levels is obtained. Finally, binarization process by establishing a thresholding is described in 
order to get a two color image (black (0) and white (255)) from a gray level scale (Poon & 
Banerjee, 2001). 

2.2.1 Histogram 
Histogram is the graphical representation of pixels gray values distribution. Images can be 
classified according to its histogram as high, medium or low contrast images. A low contrast 
image has a histogram with a low fraction of all possible gray values, around less than 40% 
of the whole scale. A high contrast image has more than 90% of the gray values. 
Color images can also be classified in accordance with its histogram by considering human 
ocular sensitivity to primary colors. This is given by the first component of the YIQ matrix: 

 0.299 0.587 0.114 ,Y R G B= + +  (1) 

Where Y and RGB are the lumma components used in color television systems NTSC (that 
represents a gray scale in the YIQ space) and the primary components, red, green and blue, 
respectively. The histogram transformation for a color image is given by the following pixel 
to pixel operation: 

 ( ) ,gsl k kT r s=  (2) 

where rk and sk are the original pixel intensities in color and gray scale levels (gsl) 
respectively. In figure 2 is shown the image obtained by the use of equation (2) and its 
corresponding histogram, these operations can be done by using the Matlab functions 
rgb2gray and imhist. 
 

 

Fig. 2. a) gsl photography, b) histogram. 

2.2.2 Histogram equalization 
Histogram equalization is the transformation of the intensity values of an image that is 
typically applied to enhance the contrast of the image. As an example, the contrast of the 
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image of the figure 2a, can be handled by applying histogram equalization and it is shown 
in figure 3 with its respective histogram, this operation can be done by using the Matlab 
function histeq. 
 

 

Fig. 3. a) Photography equalization, b) histogram. 

In order to get the discrete values in a gsl, the following equation is used 

 
0

( ) ( 1),
k

j
eq k

j

n
T s L

n=
= −∑  (3) 

where  k = 0,1,2,…, (L-1), L represents the gray level numbers into an image (255 as an 
example), nj is  the frequency of appearance of an specific j-th gray level and n is the total 
number of pixels of the image. 

2.2.3 Thresholding by histogram 
Thresholding is a non-linear operation for image segmentation that consists in the 
conversion of a gsl image into a binary image according to a threshold value. This operation 
is used to separate some regions of the foreground of an image from its background. 
Thresholding operation can be done by using the Matlab function graythresh.  Binarization 
may be considered as an especial case of thresholding as shown in figure 4.  The Matlab 
function that binaries an image is im2bw. 
 

 

Fig. 4. Image binarization by thresholding. 

2.3 Spatial filtering 
In order to reduce noise or enhance some specific characteristics of an image some filters like 
high-pass, low-pass, band-pass or band-stop are used. These filters can be applied in the 
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frequency domain (section 2.4) or in the spatial domain. Spatial domain filtering is described 
in this section. Filtering operations are directly applied to the image (pixel to pixel). The 
mathematical functions applied in the spatial domain are well known as convolution, and 
are described by (Mora-González et al., 2008) 

 

1 1
2 2

1 1
2 2

( , ) * ( , ) ( , ) ( , ),

M N

M Nm n

f x y g x y f m n g x m y n
+ +

+ +=− =−

= − −∑ ∑  (4) 

where f, g,(x,y), (m,n) and MxN are the original image, the convolution mask or matrix, the 
original image coordinates, the coordinates where the convolution is performed, and the 
size of convolution mask, respectively. Equation (4) is applied by doing a homogeneous 
scanning with the convolution mask versus the whole image to be convolved. These filters 
are also known as Finite Impulse Response (FIR) filters because they are applied to a finite 
section of the spatial domain (In this case the finite section is the image). Equation (4) can be 
implemented in Matlab by using nested for loops, also conv2, fspecial or imfilter functions can 
be used too. These kinds of filters are dependent of the convolution mask form as is 
explained in the following two subsections. 

2.3.1 Low-pass filters 
Low-pass filters applied to images have the purpose of image smoothing, by blurring the 
edges into the image and lowering the contrast. The main characteristic of a low-pass 
convolution mask is that all of its elements have positive values. Some commonly used low-
pass filters are: averaging, gaussian, quadratic, triangular and trigonometric. These mask are 
presented in a matrix form like 

 

1,1 1,2 1,

2,1 2,2 2,

,
,1 ,2 ,1 1

1
( , ) ,

N

N
M N

m n
M M M Nm n

w w w

w w w
g m n

w
w w w= =

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑

…
…

# # % #
…

 (5) 

with 

 

( ) ( )

( ) ( )
( ) ( )

2 21 1
2 2

2 21 1
2 2

1 1
2 4 2 4 2

exp ,

1 , ,

cos cos ,

,

M N

M N

M NA A A

A B m n gaussian

A B m B n cuadraticw

B m B n trigonometric

A average

+ +

+ +

+ +

⎧ ⎫⎛ ⎞⎡ ⎤− − + −⎜ ⎟⎪ ⎪⎢ ⎥⎣ ⎦⎝ ⎠⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪− − − −= ⎢ ⎥⎨ ⎬⎣ ⎦
⎪ ⎪

⎡ ⎤ ⎡ ⎤+ − + −⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪⎩ ⎭

 (6) 

where A, B and w are the amplitude, the width function factor and the weight function of 
the spatial filter, respectively. In order to determine the effectiveness of the masks of the 
equations (5) and (6), Magnitude Spectra (MS) are obtained to analyze the low frequencies 
allowed to pass by the filter and high frequencies attenuation. This is expressed as 

 { }( ) 20log ( , ) ,MS g m nω = ℑ  (7) 
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where ω and ℑ are the MS frequency component and the Fourier transform operator, 
respectively.  
In figure 5, the MS of the convolution mask from equations (5) and (6) are shown. Spatial 

gaussian filter behavior is more stable because allows low frequencies to pass and also 

attenuate middle and high frequencies faster than other filters, as can be observed. The mask 

for nine elements is shown in table 1. It must be mentioned that the processing time slow 

down conforming the convolution mask increases. Spatial filtering also has a problem in the 

image edges, because they cannot be convolved and there are (M-1)/2 and (N-1)/2 lost 

information elements in x and y axes, respectively. By using the fspecial function, low-pass 

masks can be generated by applying the ‘gaussian’ or ‘average’ Matlab parameters.  

Another mask types designed for signal processing can be implemented on image 
processing by a two dimensional extension. In figure 6 it is shown three different low-pass 
filters applied in the test image.   
 

 

Fig. 5. MS of equations (5) and (6) masks, with A=1, B=1 and w=1. Matlab code 
representation of equation (7) is: MS=20*log10(abs(fft(g))). 

 

Gaussian Quadratic Trigonometric Average 

.0449 .1221 .0449

.1221 .3319 .1221

.0449 .1221 .0449

⎛ ⎞
⎜ ⎟
⎜ ⎟
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⎝ ⎠

 

0 .1667 0

.1667 .3333 .1667

0 .1667 0

⎛ ⎞
⎜ ⎟
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⎝ ⎠

 

.1011 .1161 .1011

.1161 .1312 .1161

.1011 .1161 .1011

⎛ ⎞
⎜ ⎟
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⎝ ⎠

1 1 1
1

1 1 1
9

1 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Table 1. 3x3 convolution masks g for low-pass filters of equations (5) and (6), with A=1, B=1 
and w=1. 

 

 

Fig. 6. Low-pass 3x3 filters examples applied to figure 1a. Matlab parameters used: a) 
average, b) gaussian and c) disk. 
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2.3.2 High-pass filters 
High frequency components are mostly located in image borders, like fast tone changes and 
marked details. The main purpose of a high-pass filter is to highlight the image details for 
skeletonizing, geometrical orientation, contrast enhancement, and revealing hidden 
characteristics, among many others. One of the most common high-pass spatial filters is the 
high-boost that consists in an interactive subtraction process between the original image and 
low-pass filters. The weighting function for a 3x3 matrix is obtained by 

 
1
9

1
9

9 , 2, 2
.

, 2, 2

C m n
w

m n

⎧ − = =⎪= ⎨ − ≠ ≠⎪⎩
 (8) 

The differential filters are another kind of high-pass filters that get its weighting function 

based on the partial derivates applied to the image. The most usual differential filters are the 

gradient and laplacian, based on the following equations  

 

22

( ( , )) , ,
f f f f

f x y gradient magnitude
x y x y

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞∇ = + ≈ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (9) 

and 

 
2 2

2
2 2

( ( , )) , ,
f f

f x y laplacian
x y

∂ ∂
∇ = +

∂ ∂
 (10) 

if the magnitude of the partial derivatives work with a 3x3 mask, then  

 1,3 2,3 3,3 1,1 2,1 3,1

1
( ) ( )

2

f
w w w w w w

x
κ κ

κ
∂

⎡ ⎤= + ⋅ + − + ⋅ +⎣ ⎦∂ +
 (11) 

and 

 1,1 1,2 1,3 3,1 3,2 3,3

1
( ) ( ) .

2

f
w w w w w w

y
κ κ

κ
∂

⎡ ⎤= + ⋅ + − + ⋅ +⎣ ⎦∂ +
 (12) 

Other used filters based on gradients are the Sobel, Prewitt and Canny. The Sobel spatial 

filter uses the central weight constant k=2 (Pratt, 2001). Meanwhile the Pewwit space filter 

uses k=1. The Canny space filter uses two different thresholds for weak and strong edges 

detection (Canny, 1986). Table 2 shows the nine elements masks of the most utilized high-

pass filters. Figure 7 shows six examples of the application of these functions as high-pass 

filters to figure 1a. It is observed that the Canny filter is the most powerful edge detector 

filter. 

2.4 Mathematical discrete transforms  
Discrete transform analysis has played an important role in digital image processing. 

Several transform types are applicable to digital image processing, but due to their optical 

metrology potential applications, Fourier and Radon transforms are presented in this 

chapter section. 
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2.4.1 Fourier transform 
Discrete Fourier Transform (DFT) represents the change from spatial to frequency domain. 
In convergent optical systems this transform represents the propagated optical perturbation 
from exit pupil to the focal point in a single lens arrangement. Equations (13) and (14) 
represent the DFT pair for the mathematical two dimensional (2D) model (Gonzalez, 2002) 

 { } ( )
1 1

1
( , ) ( , ) ( , )exp 2 ,

M N
vyux

M N
x y

f x y F u v f x y i
MN

π
= =

⎡ ⎤ℑ = = − +⎢ ⎥⎣ ⎦∑∑  (13) 
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Table 2. Some 3x3 convolution masks g for high-pass differential filters (Bow, 2002). 

 

 

Fig. 7. High-pass 3x3 filters examples applied to figure 1a. Matlab parameters and functions 
used: a) ‘canny’, b) ‘sobel’, c) ‘prewitt’, d) laplacian with ‘log’, e) gradient and f) high-boost 
filter. 

and 

 { } ( )1

1 1

( , ) ( , ) ( , )exp 2 ,
M N

vyux
M N

u v

F u v f x y F u v i π−

= =

⎡ ⎤ℑ = = +⎢ ⎥⎣ ⎦∑∑  (14) 
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where (u,v), MxN and ℑ-1 are the Fourier space coordinates, the image size, the inverse 

Fourier transform operator, respectively. Matlab has fft2 and ifft2 special functions for 

equations (13) and (14), respectively, where FFT is the acronyms of Fast Fourier Transform. 

Other functions of Fourier transforms are fft, ifft for one dimension, and fftshift for the 

shifting of the zero-frequency component to spectra center. An important characteristic 

obtained from the Fourier transform is that it gives the frequencies content of the image. 

Due to this property, frequency filter design is a very straight forward task. Low frequencies 

are located into the matrix around the central coordinates, while frequencies gradually 

increase as are spread out from its center in a radial form. This characteristic is ideal for 

frequency filtering (low-pass, high-pass, band-pass, and band-stop). The frequency filtering 

process consists in the multiplication between image Fourier transform with a binary 

circular mask. Figure 8 shows the filtered Fourier spectra and the resulting filtered images 

for a high-pass, low-pass, band-pass and band-stop. 

 

 

Fig. 8. Fourier filtering applied to figure 1a. a)  high-pass, b) low-pass, c) band-pass and d) 
band-stop. Where, circle and ring are masks of 30 and 60 pixels radii. 

2.4.2 Radon transform 
Radon transform applied in pattern recognition or digital image processing may be 

considered as the image’s gsl projection over a given angle with respect to x axis. The 

mathematical model of the Radon transform is (Bracewell, 1995) 

 { } ( )( , ) ( , ) cos sin ,f x y f x y R x y dxdtδ θ θ
∞ ∞

−∞ −∞

ℜ = − −∫ ∫  (15) 

where ℜ, δ, R and θ are the Radon transform operator, the Dirac delta function, the distance 

from the origin to the profile line and the angle of direction of the same line, respectively. 

Each of these parameters can be observed in figure 9, Q is the origin of the profile line to be 

obtained (thick blue bold line). Equation (15) is implemented in Matlab with the special 

function radon.  
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Fig. 9. Radon transform parameters.+ 

3. Optical metrology fundamentals 

Optical metrology is a field of physics that include theoretical and experimental methods to 
estimate physical parameters using the light wavelength as fundamental scale. 

3.1 Optical interferometry 
Optical interferometry is based in the light interference phenomenon to determine different 
physical variables. A typical application is in nondestructive optical testing that requires high 
accuracy. The interferometer is the optical system used by this technique, which allows by 
interfering fringes the estimation of deformation components, shapes, strains or vibrations in 
objects with polished or rough surfaces. According to users’ requirements, different 
configurations of interferometers can be selected to measure displacements components. 

3.1.1 Interference 
Figure 10 shows the schematic of a common optical arrangement used in interferometry 
well known as Michelson interferometer. The beam splitter (BS) splits the incident 
collimated laser light in two wavefronts that propagate in different directions and are 
reflected by the plane mirrors M1 and M2 respectively, and then they are combined with the 
same BS to form an interference pattern that can be observed directly on the screen.  
 

 

Fig. 10. Michelson interferometer. 

The superposition of the two wavefrons at a position (x,y) is expressed by the complex sum: 
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 1 1 2 2( , ) ( , )exp[ ( , )] ( , )exp[ ( , )],= +U x y a x y i x y a x y i x yφ φ  (16) 

where a1(x,y) and a2(x,y) are the amplitudes and its respective phases φ1(x,y) y φ2(x,y). The 
intensity at a point in the interference pattern is determined with the product of 
perturbation U multiplied by its complex conjugated U*, this is 

 *( , ) ( , ) ( , ),I x y U x y U x y= ⋅  (17) 

then, the resulting intensity is given by 

 1 2 1 2( , ) ( , ) ( , ) 2 ( , ) ( , ) cos[ ( , )],= + +I x y I x y I x y I x y I x y x yφ  (18) 

where I1(x,y)=a12(x,y) and I2(x,y)=a12(x,y) are the intensities for each wavefront and φ(x,y)  is 
the phase difference between them, since these propagate along to different paths before the 
interference.  

Due to cosine of equation (18), I(x,y) reaches its maxima when φ(x,y) corresponds to even 

multiples of π (constructive interference) and its minima for odd multiples of π (destructive 
interference) (Gasvik, 2002). In general, optical interferometry is applied to estimate this 
phase difference, which can arise due to geometrical variations or deformations in a testing 
object. In figure 11 are shown two synthetic interference patterns when is replaced a mirror: 
a) with tilt in y and defocus and b) with defocus and coma in the interferometer of figure 10. 
The phase difference involving the geometrical variations of the mirrors is given by 

φ(x,y)=4πΔz/λ, where λ is the wavelength of the illumination source and Δz is the shape 
phase difference introduced by the mirrors. 
 

 

Fig. 11. Fringe patterns of mirrors with: a) tilt in y and defocus, YD; and b) defocus and 
coma, DC. These wavefronts were generated using nested for loops. For these cases N=128 
pixels; C1=0.01 and C2= 0.00001 are the numerical parameter of each aberration. 

Another way to generate fringe patterns is by replacing a mirror of the interferometer for a 
testing object with an optically rough surface that experiments a deformation. In this case, 
the interference fringe pattern is not observed directly on the screen as in the previous 
described case. The superposition of a wavefront reflected by a rough surface (object beam) 
with a regular wavefront (reference beam) as the reflected by a plane mirror in the 

Michelson interferometer causes that I1, I2 and φ of equation (18) vary fast and randomly, 
normally obtaining a speckle pattern. In speckle pattern interferometry the fringe patterns 
are obtained by the correlation of two speckle patterns recorded using a CCD camera placed 
at the screen position of the interferometer for the object before and after a deformation 

Δφ(x,y). Assuming Ii(x,y), If(x,y) are the intensities of the speckle patterns for the initial no-
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deformed state and the final deformed state respectively, the fringe patter can be calculated 
by (Lehmann, 2001) 

 ( , ) ( , ) ,f iI x y I x y−  (19) 

and the phase difference involving the deformation of the object is given by Δφ(x,y)=4πz’/λ, 
where z’ is the displacement of the object in z direction (Waldner, 2000).   

3.1.2 Phase shifting 

In order to determine the phase φ(x,y)  from fringe patterns, is applied a procedure well-
known as phase shifting. For this procedure can be registered several images introducing a 
phase difference which experimentally is achieved with a piezoelectric (PZ) that modifies 
the optical path length of one of the beams. A widely used algorithm to calculate the phase 
employs four consecutive images shifted by π/2 (Huntley, 2001) 

 1 ( , ) ( , )
( , ) tan ,

( , ) ( , )
− ⎡ ⎤−

= ⎢ ⎥−⎣ ⎦
d b

a c

I x y I x y
x y

I x y I x y
φ  (20) 

where Ia(x,y), Ib(x,y), Ic(x,y) and Id(x,y) are the intensities of the shifted images. Due to the 
inverse tangent, in this pattern arise an effect of wrapping in a 2π module; moreover can be 
affected by noise of high frequency in the case of speckle interferograms. If the interest of 
the user is to explore the reduction of speckle noise and phase unwrapping techniques can 
consults references (Sirohi, 1993) and (Ghiglia, 1998). 
In figure 12 are shown the wrapped phases calculated with equation (20) using the fringe 
patterns presented in the section. 

3.2 Image diffraction 
The mathematical representation for a collimated wavefront passing through a convergent 
optical system until the focal point is given by the Fourier transform, as is observed in figure 
13. By setting a diffraction grating in the entrance pupil of a convergent lens, a Fraunhofer 
diffraction pattern is obtained in the focal point (Goodman, 2005), given by 

 
( )

( )
2 2

2
exp

( , ) ( , ) exp ,
f

o f

A j u v
U u v r x y j xu yv dxdy

j f

π
λ π

λλ

∞

−∞

⎡ ⎤⋅ +⎣ ⎦ ⎡ ⎤= ⋅ − +⎣ ⎦∫ ∫  (21) 

 

 

Fig. 12. Calculated wrapped phases for: a) tilt in y and defocus, wpYD; and b) defocus and 
coma, wpDC. 

www.intechopen.com



 
Image Processing for Optical Metrology 

 

535 

where Uo(u, v), r(x, y), A and λ are the complex amplitude distribution of the field in the 
back focal plane of the lens, the grating function, the amplitude of the monochromatic plane 
wave and the illumination wavelength, respectively. The result of equation (21) varies 
depending on the function of the grating. For our purposes, those functions are binary and 
sinusoidal. 
 

 

Fig. 13. Diagram for performing the Fourier transform of a grating with a positive lens. 

3.2.1 Binary grating 
A binary grating can be mathematically represented by a Fourier series expansion of a step 
function (fstep) bounded in the [0,T] interval, see figure 14a. The function is defined by:  

 2

2

, 0
( , ) ,

0,

T

step T

a y
f x y

y T

⎧ < <⎪= ⎨ ≤ ≤⎪⎩
 (22) 

and its Fourier series expansion is given by (Tolstov, 1962) 
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− −
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where T and a are the grating period and the amplitude, respectively. Then the intensity 
profile at the focal plane is calculated from equations (17) and (21), with r(x,y) as vertical 
binary grating of equation (23), giving (Mora-González et al., 2009) 
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here 
22

0
Aa
fh π
λ=  is the zero diffraction order amplitude, 2

fK π
λ= is the scale factor at the focal 

plane and 2
0 T

πω =  is the angular frequency. The binary grating intensity profile presents an 

infinite number of diffraction orders (harmonics) modulated by a sinc function (see figure 
14b). 

3.2.2 Sinusoidal grating 
In order to observe the sinusoidal grating profile, it must be above x axis because negative 

gsl cannot be observed. The equation proposed for the vertical sinusoidal grating is given by 

(see figure 14c) 
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 ( )1 1
sin 02 2

( , ) sin .r x y a yω⎡ ⎤= +⎣ ⎦  (25) 

The intensity profile at the focal plane from equation (21) with r(x,y) as vertical sinusoidal 
grating of equation (25), giving (Mora-González et al., 2009) 

 ( ) [ ] ( )0 02 2 2
sin 1 0 1( , ) , , , ,K KI u v h Ku K v h Ku Kv h Ku K vω ωδ δ δ⎡ ⎤ ⎡ ⎤= + + + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (26) 

where 
2

1
Aa

fh π
λ=  is the ±1 sinusoidal diffraction orders amplitude. The sinusoidal grating 

intensity profile only presents three diffraction orders (see figure 14d), those harmonics are 
characteristic of the Fourier transform of sinusoidal functions. 
 

 

Fig. 14. Functions of a) binary and c) sinusoidal gratings. Fourier spectra of b) binary and d) 
sinusoidal gratings. 

4. Aplications 

As shown in previous sections, Digital Image Processing is a useful tool to obtain improved 
results in Optical Metrology. Applications details are presented in following subsections.   

4.1 Fringe analysis 
Fringe analysis refers to the process of finding the phase associated to physical variables that 
are being estimated. A typical case consists in the interpretation of the fringe patterns that 
can be achieved with phase shifting techniques, when the object under study remains static 
while three or more frames are acquired when the experiment conditions are free of 
environmental perturbations. Another case is when the environmental conditions are not 
met, and then the analysis of a single interferogram is more convenient. In both cases a 
wrapped phase is obtained before the related continuous phase is assessed. 
Phase unwrapping is a numerical technique for retrieving a continuous phase from the 
calculated phase by using the arctangent (atan2) of the sine and cosine functions of the 
phase. In its simplest form, phase unwrapping consists in the addition or subtraction of a 2π 
multiple when a discontinuity bigger than π is found between adjacent pixels (Robinson, 
1993). This approach however is very sensitive to noise, and is said to be path dependent.  It 
means that any error may propagate along the path followed to phase unwrapping.  In this 
study we will review the least square method (Ghiglia, 1998). Basically, it consists in the 
integration of the phase gradient by solving a linear equation system employing a numerical 
technique. Lets assume φx(x,y) and φy(x,y) as the phase differences in the horizontal and 
vertical directions, respectively. These phases are calculated from the wrapped phase φw(x,y) 
as follows: 
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In the above equations p(x,y) is a pupil function equal to one inside of an interferogram field 

and zero otherwise. A discretized Laplacian equation is then obtained from the phase 

differences: 
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This equation represents a linear equations system that can be solved with iterative 

algorithms. In particular, is employed an overrelaxation method (SOR) due to it may be 

easily programmed. The following equation is then iterated until the solution converges: 
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where, d=p(x+1,y)+p(x-1,y)+p(x,y+1)+p(x,y-1), and r is a parameter of the SOR method that 
must be set between the [1,2] range. Figure 15 shows the wrapped phase φw obtained from 
the sine and cosine of the phase and the unwrapped phase φ. A simple iterative algorithm 
that unwraps the phase from the discretized Laplacian is given as: 
 
Algoritm 1.  % Unwraps phase. 
while (q<max)%q is the number of iterations (500 for this case) 
  q=q+1; 
  for i=1:n 
    for j=1:m 
      if p(i,j)==1 
        t=p(i+1,j)+p(i-1,j)+p(i,j+1)+p(i,j-1); 
        g(i,j)=g(i,j)-((t*g(i,j)-g(i+1,j)-g(i-1,j)-g(i,j+1)-g(i,j-1)+L(i,j))*1.95/t);%iterated equation 
      else 
        g(i,j)=0; 
end,end,end,end 
 
A single interferogram with open fringes may also be analyzed for phase recovering (Creath 
& Wyant, 1992). Experimentally an open fringe interferogram can be achieved if a tilt term is 
added to the phase, usually by tilting the reference beam in an interferometer. Equation (18) 
can be modified in order to include a tilt term in the x direction, this is as follows: 
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Fig. 15. a) wrapped and b) unwrapped phase.  

 [ ]( , ) ( , ) ( , )cos ( , ) 2= + +I x y a x y b x y x y txφ π  (31) 

where a(x,y)=I1(x,y)+I2(x,y) is known as the background intensity and b(x,y)=2[I1(x,y)I2(x,y)]½ 
is the modulation or visibility term. The Fourier transform of the expression below can be 
written as: 

 ( , ) ( , ) ( , ) * ( , ).I u v a u v C u t v C u t v= + + + −� �  (32) 

Then the Fourier spectra of an open fringe interferogram contains three terms, ã(u,v) is a 
narrow peak at the center of the Fourier spectra and C(u+t,v) and C*(u-t,v) are shifted 
complex conjugate intensities symmetrically located respect to the origin of the Fourier  
 
 

 

Fig. 16. Process of phase recovery from a single interferogram with closed fringes, as shown 
in algorithm 2. a) Interferogram, b) Fourier spectrum, c) filtered Fourier spectrum,  
d) wrapped phase with tilt, e) wrapped phase without tilt, and f) unwrapped continuous 
phase.  
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domain (Takeda, 1982).  The Fourier procedure to recover the phase consist in isolating 
either C(u,v) or C*(u,v).  Then the inverse transform is taken in order to retrieve the wrapped 
phase from the imaginary and real parts of the filtered spectra.  The last step, as done with 
phase shifting procedures, is to apply a phase unwrapping procedure to recover the 
continuous phase. The complete process of phase recovery from an open fringe 
interferogram is observed in figure 16. 
 
Algoritm 2.  % Phase recovery from a single interferogram 
for i=1:256 
  for j=1:256 
    if sqrt((i-128)^2+(j-128)^2)<126 %creates a function pupil 
      pupil(i,j)=1; 
    else 
      pupil(i,j)=0; 
    end 
    x=(i-128)/128; 
    y=(j-128)/128; 
    phase(i,j)=2*pi*(4*(x^2+y^2)+16*x); 
    g(i,j)=2*pi*16*x; 
    back(i,j)=128*exp(-1*(x^2+y^2)); 
    mod(i,j)=127*exp(-1*(x^2+y^2)); 
    I(i,j)=(back(i,j)+mod(i,j)*cos(phase(i,j)))*pupil(i,j); % Interferogram with closed fringes 
    H(i,j)=exp(-180*((x-0.25)^2+y^2));%Band-Pass filter 
    G(i,j)=1-exp(-1000*(x^2+y^2));%High pass filter 
end,end 
IF=fftshift(fft2(I));%Fourier transform of the interferogram 
IFH=IF.*H.*G; %Filtered Fourier transform 
Ih=ifft2(fftshift(IFH)); %Inverse Filtered Fourier transform 
fw=atan2(imag(Ih),real(Ih)).*pupil;%Wrapped phase with tilt 
fw1=atan2(sin(fw-g),cos(fw-g)).*pupil; %Wrapped phase without tilt 
phase1=(phase-g).*pupil; %Unwrapped phase 

4.2 Wavefront deformation analysis 
Optical metrology applied for the determination of different physical variables has greatly 

contributed with the constant advance of technology at a point that it is becoming a 

powerful measurement alternative for the solution of problems in engineering and sciences. 

4.2.1 Deformation analysis using speckle interferometry 
In this section, is presented a deformation analysis for the estimation of out-of-plane 

displacement components in a simulated model of a cantilever made of aluminum with a 

load applied at its free end. The example corresponds to a typical problem in structural 

mechanics where the Young´s modulus can be determined from the displacement of the 

loaded bar made of an isotropic material. The suggested arrangement for the testing in 

electronic speckle pattern interferometry (ESPI) is shown in figure 17. The laser light beam is 

divided by the beam splitter BS1. One beam is reflected by a mirror attached to a 

piezoelectric PZ (PC controlled), and then is expanded to uniformly illuminate at a small 
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angle respect to the normal of the object surface, and the other beam is coupled into an 

optical fiber to obtain the reference illumination. The light reflected by the object and the 

reference beam introduced with BS2 interfere on the CCD. 

 

 

Fig. 17. Electronic speckle pattern interferometer. 

The object was simulated by considering the following dimensions: 15 cm length and 3 cm 
height with a thickness of 0.5 cm. Using the two intensities Ii(x,y), If(x,y) of the speckle 
patterns generated by ESPI arrangement seen in the CCD image plane before and after 
applying a force of 0.1 N, the correlation fringes using equation (19) is shown in figure 18a 
and in figure 18b is shown the wrapped phase calculated by equation (20). In figure 18c is 
shown the filtered and unwrapped phase using a conventional spatial average filter of 3 x 3 
pixels and an iterative least-squares algorithm. 
 

 

Fig. 18. Deformation analysis of a cantilever with ESPI. a) interference fringe pattern; b) 
wrapped phase and c) unwrapped phase. 

4.3 Wavefront detection 
Optical testing using diffraction gratings as wavefront modulators is another alternative to 
detect wavefront aberrations.  

4.3.1 Grating diffraction 
Diffraction gratings are optical devices commonly used on physics. There are several 
gratings types, but as shown in 3.2 section, sinusoidal gratings only diffracts three harmonic 
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modes, due to this property, sinusoidal gratings have been developed by different 
techniques. According to the method reported by (Mora-González et al., 2009), is possible to 
generate these gratings by laser printing on acetates. In figure 19, are shown different 

increment sizes (Δy) of three sine profiles and the corresponding spectra of equations (25) 

and (26), respectively. It must be pointed that for larger Δy values, the resolution diminishes 
and more diffraction orders emerge.  
 

 

Fig. 19. Sinusoidal gratings generated in Matlab. With a) grating rsin=255*[.5+.5*sin(y)] and 
b) Fourier spectra Isin=fftshift(fft2(rsin)). 

4.3.2 Ronchi test 
The Ronchi test is one of the most non invasive optical tests used in optical workshops, due 
to the simplicity for observing aberrations over the optical surface. The test only needs to 
propagate a convergent aberrated wavefront through a diffraction grating to obtain a 
modulated fringe pattern (ronchigram) (Mora-González et al., 2001, 2003, 2011). In figure 20 
is shown the typical diagram of the Ronchi test using a collimated illumination system. 
In figure 21 are shown the ronchigram before and after circular low-pass filtering and their 
corresponding wrapped phase calculated with equation (20). 
 

 

Fig. 20. Collimated light Ronchi test diagram. Where f is the focus of lenses and r is the 
distance between lens under test and Ronchi grating. 
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Fig. 21. Ronchi test results. a) ronchigram a: ra(x,y); b) frequency filtered ronchigram a and 
applied pupil: raf(x,y); and c) wrapped phase of ronchigrams a, b, c and d: wp(x,y). 

4.4 Bio-metrology 
In the present subsection several functions of Matlab and their applications as blood flow 
measurement and pattern recognition in fingerprint are shown.   

4.4.1 Blood flow measurement 
Laser speckle effect is an interference phenomena that is produced when an optical rough 
surface is illuminated by a laser source that can be observed directly or imaged by using an 
optical system. The resulting intensity well known as speckle pattern is the result of 
multiple interferences produced by the roughness of the object under test. The speckle 
pattern consists in a distribution of brilliant points and dark points. 
By assuming ideal conditions like high coherent light source, unique frequency and perfect 
diffusing surface. It can be proved that the standard deviation of the intensity fluctuations 
from a speckle pattern is equal to the same that the average of the intensity. Speckle pattern 

contrast is defined by the relationship between standard deviation (σ) and the averaged 
intensity (I) (Goodman, 2005): 

 .specklecontrast
I
σ

=     (33) 

If the illuminated surface is static, the contrast observed in the speckle pattern is maximum, 
however, if the surface is moving, the speckle patterns changes completely. This 
phenomenon is known as “decorrelation” and can be observed when light is dispersed by a 
great number of moving dispersers, i. e. moving particles into a fluid. The decorrelation is 
used for fluid velocity quantification considering that a speckle pattern photography taken 
at a finite time is blurred (contrast losing) in flowing areas. Contrast changes depend on 
fluid velocity and photography exposure time (T). By assuming a Lorentzian velocity 

distribution, speckle contrast (σ/<I>) is defined as correlation and exposure time function 
(τc/T).  

 

1

22
1 exp .
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c
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I T

τσ
τ

⎫⎧ ⎡ ⎤⎛ ⎞⎪ ⎪= − −⎢ ⎥⎜ ⎟⎨ ⎬
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (34) 

Correlation time τc is inversely proportional to local velocity of the dispersing particles. The 
following code calculates a contrast image from a speckle image. Local blood flow velocity 
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can be found from image contrast information and equation (34). Figure 22 shown speckle 
images before and after processing. 
 
Algoritm 3.  % Calculation of speckle contrast. 
Im2 = imread('speckle_img.bmp'); % load the bmp image file into the memory. 
Im2 = im2double(Im2); 
windowSize = 5; %define the window size for the filter. 
avgFilter = fspecial('average',windowSize); % generate an averaging filter. 
stdSpeckle = stdfilt(I,ones(windowSize)); %caculates the local standar deviation of image. 
avgSpeckle = imfilter(I,avgFilter,'symmetric'); %calculates the average of each pixel 
ctrSpeckle = stdSpeckle./avgSpeckle; %caculates the speckle contrast image 
 

 

Fig. 22. Blood flow measurement results. a) speckle image of a rat cortex. b) speckle image of 
contrast after processing with the code  of algoritm 3. 

4.4.2 Fingerprint measurement 
Several applications in pattern recognition are also utilized in optical metrology, finger print 
parameters measurements is an example. The present subsection shows a new form for 
fingerprint core determination based in the Radon transform of a fingerprint image, applied 
in x and y axes directions. The core is located by the interception of the extremes (local 
minimum and maximum) of the Radon transforms (Mora-González et al., 2010).  
 

 

Fig. 23. Images for fingerprint core point detection. a) original fingerprint im(x,y), b) 
gradient of original fingerprint im_gradient(x,y), and c) binarized gradient im_binary(x,y) 
and its 0° - 90° Radon transforms. 
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The process for core finding is very simple. First, a high-pass filter with a gradient type 

convolution mask is applied to a fingerprint image in order to enhance the contrast. Next 

the image is skeletonized, and the Radon Transform (RT) is applied in the x and y directions 

to obtain RT90 and RT0 profiles, respectively. Finally, the noise produced from ridges and 

rows in the fingerprint is minimized by a least-squares algorithm. The whole process is 

illustrated in figure 23 by using the following algorithm: 

 
Algoritm 4.  % Fingerprint analysis. 

[im,map]=imread(FileName); %read fingerprint 

im=double(im); %change image format 

[Nx,Ny]=size(im); %image size 

im_gradient=gradient(im); %gradient spatial filter 

level = graythresh(im_gradient); %finding the threshold of gradient 

for x=1:Nx 

  for y=1:Ny 

    if (im_gradient(x,y)>15*level) %fingerprint skeletonization 

      im_binary(x,y)=1; 

    else 

      im_binary(x,y)=0; 

end,end,end 

[RT,xp] = radon(bg,[0 90]); %Radon transform 

leastsq_0=polyfit(xp,RT(:,1),21); %21° polynomial adjustment for 0° Radon transform 

leastsq_90=polyfit(xp,RT(:,2),21); %21° polynomial adjustment for 90° Radon transform 

y_leastsq0=polyval(leastsq_0,xp); %least square approximation of 0° Radon transform 

y_leastsq90=polyval(leastsq_90,xp); %least square approximation of 90° Radon transform  

5. Conclusion 

Mathematical fundamentals for Digital Image Processing and their implementation by 

means of algorithms and Matlab commands were established. It has been demonstrated 

according to some Optical Metrology applications, the Matlab algorithms efficiency. This 

confirms that Matlab is a computational powerful tool. However, optical metrology 

applications are not only limited to the discussed examples in the present chapter. 

Applications of all the proposed algorithms can be extended without any problem from 

deformation analysis by another interferometric techniques (Speckle photography, Moiré, 

etc.) or optical tests (Hartmann, Foucault, etc.), until analysis and pattern recognition in 

medicine (X-Ray images, tomography, etc.), among other branches of science and 

engineering.     
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