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Using MATLAB to Compute Heat  
Transfer in Free Form Extrusion 

Sidonie Costa, Fernando Duarte and José A. Covas 
University of Minho 

Portugal 

1. Introduction 

Rapid Prototyping (RP) is a group of techniques used to quickly fabricate a scale model of a 
part or assembly using three-dimensional computer aided design (CAD) data (Marsan, 
Dutta, 2000). A large number of RP technologies have been developed to manufacture 
polymer, metal, or ceramic parts, without any mould, namely Stereolithography (SL), 
Laminated Object Manufacturing (LOM), Selected Laser Sintering (SLS), Ink-jet Printing 
(3DP) and Fused Deposition Modeling (FDM). 
In Fused Deposition Modelling (developed by Stratasys Inc in U.S.A.), a plastic or wax 
filament is fed through a nozzle and deposited onto the support (Pérez, 2002; Ahn, 2002; 
Ziemian & Crawn, 2001) as a series of 2D slices of a 3D part. The nozzle moves in the X–Y 
plane to create one slice of the part. Then, the support moves vertically (Z direction) so that 
the nozzle deposits a new layer on top of the previous one. Since the filament is extruded as 
a melt, the newly deposited material fuses with the last deposited material. 
Free Form Extrusion (FFE) is a variant of FDM (Figure 1), where the material is melted and 
deposited by an extruder & die (Agarwala, Jamalabad, Langrana, Safari, Whalen & 
Danthord, 1996; Bellini, Shor & Guceri, 2005). FFE enables the use of a wide variety of 
polymer systems (e.g., filled compounds, polymer blends, composites, nanocomposites, 
foams), thus yielding parts with superior performance. Moreover, the adoption of co-
extrusion or sequential extrusion techniques confers the possibility to combine different 
materials for specific properties, such as soft/hard zones or transparent/opaque effects. 
 

 

Fig. 1. Free Form Extrusion (FFE). 
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Due to their characteristics - layer by layer construction using melted materials -  FDM and 
FFE may originate parts with two defects: i) excessive filament deformation upon cooling 
can jeopardize the final dimensional accuracy, ii) poor bonding between adjacent filaments 
reduces the mechanical resistance. Deformation and bonding are mainly controlled by the 
heat transfer, i. e., adequate bonding requires that the filaments remain sufficiently hot 
during enough time to ensure adhesion and, simultaneously, to cool down fast enough to 
avoid excessive deformation due to gravity (and weight of the filaments above them). 
Therefore, it is important to know the evolution in time of the filaments temperature and to 
understand how it is affected by the major process variables. Rodriguez (Rodriguez, 1999) 
studied the cooling of five elliptical filaments stacked vertically using via finite element 
methods and later found a 2D analytical solution for rectangular cross-sections (Thomas & 
Rodriguez, 2000). Yardimci and Guceri (Yardimci & S.I. Guceri, 1996) developed a more 
general 2D heat transfer analysis, also using finite element methods. Li and co-workers (Li, 
Sun, Bellehumeur & Gu, 2003; Sun, Rizvi, Bellehumeur & Gu, 2004) developed an analytical 
1D transient heat transfer model for a single filament, using the Lumped Capacity method.  
Although good agreement with experimental results was reported, the model cannot be 
used for a sequence of filaments, as thermal contacts are ignored.  
The present work expands the above efforts, by proposing a transient heat transfer analysis 
of filament deposition that includes the physical contacts between any filament and its 
neighbours or supporting table. The analytical analysis for one filament is first discussed, 
yielding an expression for the evolution of temperature with deposition time. Then, a 
MatLab code is developed to compute the temperature evolution for the various  filaments 
required to build one part. The usefulness of the results is illustrated with two case studies.  

2. Heat transfer modelling 

During the construction of a part by FDM or FFE, all the filaments are subjected to the same 
heat transfer mechanism but with different boundary conditions, depending on the part 
geometry and deposition sequence (Figure 2).  
 

 

Fig. 2. Example of a sequence of filaments deposition. 

Consider that N is the total number of deposited filaments and that Tr(x,t) is the temperature 
at length x of the r-th filament (r Є {1,…,N}) at instant t. The energy balance for an element 
dx of the r-th filament writes as:  

sup

in  int

Energy in at one face Heat loss by convection with surroundings

Heat loss by conduction with adjacent filaments or with port

Change ernal energy Energy out at opposite face

⎧ −⎪ =⎨
−⎪⎩
= +
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This can be expressed as a differential equation. After some assumptions and simplifications 
(Costa, Duarte & Covas, 2008): 

 ( ) ( )
1 1
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i i i

n n
r

conv r i r E i r i r r
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where P is filament perimeter, ρ is density, C is heat capacity, A is area of the filament cross-

section, hconv is heat transfer coefficient, n is number of contacts with adjacent filaments or 

with the support, λi is fraction of P that in contact with an adjacent filament, TE is 

environment temperature, hi is thermal contact conductance for contact i ( {1,..., }i n∈ ) and 

ir
T is temperature of the adjacent filament or support at contact i ( {1,..., 1}ir N∈ + , ir r≠ , 

T1,…, TN are temperatures of filaments, TN+1 is support temperature). In this expression, 

variables 
ir

a  are defined as (see Figure 3): 
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Fig. 3. Contact areas of a filament (n = 5).  
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equation (1) can be re-written as: 
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Since the coefficients are constants, the characteristic polynomial method can be used to 
yield the solution: 
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In this expression, tr is the instant at which the r-th filament starts to cool down or contact 

with another filament and 0 ( )r r rT T t=  is the temperature of the filament at instant tr. Taking 

k as thermal conductivity, the Biot number can be defined (Bejan, 1993): 

 
( )

1
,...,

nr rb a aA
Bi

P k
=  (6) 

When Bi is lower than 0.1, the filaments are thermally thin, i.e., thermal gradients 
throughout the cross section can be neglected. In this case, Eq. (5) becomes:  

 ( )( )
( )

( )
( )

1

1 1

,...,

00.1 ( ) ,..., ,...,

r rn
r

n n

PL b a a
t t

VC
r r r r r rBi T t T Q a a e Q a a

−
−

ρ≤ ⇒ = − +  (7) 

3. Computer modelling 

Equations (5) and (7) quantify the temperature of a single filament fragment along the 

deposition time. In practice, consecutive filament fragments are deposited during the 

manufacture of a part. Thus, it is convenient to generalize the computations to obtain the 

temperature evolution of each filament fragment at any point x of the part, for different 

deposition techniques and 3D configuration structures. 

3.1 Generalizing the heat transfer computations 

Up-dating the thermal conditions: The boundary conditions must be up-dated as the 
deposition develops. The code activates the physical contacts and redefines the boundary 
conditions for a specific filament position, time and deposition sequence. For all the 
filaments, three variables need to be up-dated: 
- time tr (TCV-1): instant at which the r-th filament starts cooling down, or enters in 

contact with another filament; 
- temperature Tr0 (TCV-2): temperature at tr; 
- -vector ari (TCV-3): in Eq. (3), sets in the contacts for the r-th filament (i∈ {1,...,n}, where 

n is the number of contacts). 
Simultaneous computation of the filaments temperature: During deposition, some filaments are 

reheated when new contacts with hotter filaments arise; simultaneously, the latter cool 

down due to the same contacts. This implies the simultaneous computation of the filaments 

temperature via an iterative procedure. The convergence error was set at ε = 10-3, as a good 

compromise between accuracy and the computation time. 
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Deposition sequence: The deposition sequence defines the thermal conditions TCV-1, TCV-2 
and TCV-3. Three possibilities were taken in: unidirectional and aligned filaments, 
unidirectional and skewed filaments, perpendicular filaments (see Figure 4). In all cases, the 
filaments are deposited continuously under constant speed (no interruptions occur between 
successive layers). 
Some parts with some geometrical features may require the use of a support material, to be 
removed after manufacture. This possibility is considered in the algorithm for unidirectional 
and aligned filaments. 
 

 
                    a)                                      b)                                           c) 

Fig. 4. Deposition sequences: a) unidirectional and aligned filaments; b) unidirectional and 
skewed filaments; c) perpendicular filaments.   

3.2 Computing the temperatures 

The computational flowchart is presented in Figure 5 and a MatLab code was generated. In 
order to visualize the results using another software (Excel, Tecplot...), a document in txt 
format is generated after the computations, that includes all the temperature results along 
deposition time.  

4. MatLab code for one filament layer 

In order to illustrate how the MatLab code “FFE.m” was implemented, the segment dealing 
with the temperature along the deposition time for the first layer of filaments, using one or 
two distinct materials, is presented here. The code has the same logic and structure for the 
remaining layers. 

4.1 Input variables 

Two arguments need to be introduced in this MatLab function: 
- A matrix representing the deposition sequence, containing m rows and n columns, for 

the number of layers and maximum number of filaments in a layer, respectively. Each 
cell is attributed a value of 0, 1, or 2 for the absence of a filament, the presence of a 
filament of material A or of a filament of material B, respectively. An example is given 
in Figure 6. 

- The vertical cross section of the part (along the filament length) where the user wishes 
to know the temperature evolution with time.  

The code includes one initial section where all the variables are defined (Figure 7), namely 
environment and extrusion temperatures, material properties, process conditions, etc. The 
dimensions of all matrixes used are also defined.  
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Fig. 5. General procedure to compute all the temperatures.  
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Fig. 6. Example of deposition sequence and corresponding input matrix.   

 
 
 
 
function FFE(matrix,x) 
 
%____________________________________ STEP 1 ____________________________________ 
%Definition of the vector that contains the number of total filaments in each layer 
matrix_lin = size(matrix,1); 
matrix_col = size(matrix,2); 
vector = zeros(matrix_lin,2); 
contar = 0; 
for i = matrix_lin:-1:1 
   contar = contar + 1; 
   for j = 1:matrix_col 
      if matrix(i,j) ~= 0 
         vector(contar,1) = vector(contar,1) + 1; 
      end 
   end 
end 
%Number of layers 
m = length(vector(:,1)); 
%Number of filaments 
n = 0; 
for j = 1:m 
   if m == 1 
      n = vector(1,1); 
   else 
      if vector(j,2) <= 1 
         n = n + vector(j,1); 
      end 
   end 
end 
 
%____________________________________ STEP 2 ____________________________________ 
%Computation variables 
passo = 0.05;  %Step time 
temp_mais = 15;  %Additional time computation after construction of the part 
erro = 0.001;  %Convergence error 
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%____________________________________ STEP 3 ____________________________________ 
%Definition of the size of the variables 
h = zeros(1,5); lambda = zeros(1,5); a = zeros(n,5); T = zeros (n,5); 
vec_b = zeros(n,5); vec_Q = zeros(n,5); b = zeros(1,n); Q = zeros(1,n); 
T_begin = zeros(1,n); dif = zeros(1,n); Biot = zeros(1,n); save_T = zeros(1,n); 
old_T = zeros(1,n); save_lim = zeros(1,n); viz = zeros(11,n);  
 
 
%____________________________________ STEP 4 ____________________________________ 
 
 
%Process Variables 
T_L = 270;  %Extrusion temperature (ºC) 
T_E = 70;  %Temperature of the envelope (ºC) 
v = 0.02;  %Velocity of the extrusion head (m/sec) 
for lin = 1:n %Temperature of support (ºC) 
   T(lin,1) = T_E; 
end 
 
%Filament dimensions 
w = 0.0003;   %Layer Thickness (meters) 
L = 0.02;   %Length of the filament (meters) 
area = pi * (w/2)^2; %Area of the cross section of filament (meters^2) 
per = pi * w;  %Perimeter of the cross section of filament (meters) 
vol = area*L;  %Volume of the filament 
A_p = per*L;   %Superficial area of the filament 
 
% Material Properties 
 
%Thermal conductivity (W/m.K) 
conductivity(1) = 0.1768; % material A 
conductivity(2) = 0.5; % material B 
%Density (kg/m^3) 
ro(1) = 1050;   % material A 
ro(2) = 1500;   % material B 
%Specific heat (J/kg.K) 
C(1) = 2019.7;   % material A 
C(2) = 2500.7;   % material B 
 
%____________________________________ STEP 5 ____________________________________ 
% Heat transfer coefficient (lost of heat by natural convection)  
h_conv = 45; 
 
%Thermal contact conductances between  
h(1,1) = 200;  % filament and left adjacent filament 
h(1,2) = 200;  % filament and down adjacent filament  
h(1,3) = 200;  % filament and right adjacent filament  
h(1,4) = 200;  % filament and top adjacent filament  
h(1,5) = 10;   % filament and support  
 
%Fraction of perimeter contact between 
lambda(1,1) = 0.2; % filament and left adjacent filament 
lambda(1,2) = 0.25; % filament and down adjacent filament 
lambda(1,3) = 0.2; % filament and right adjacent filament 
lambda(1,4) = 0.25; % filament and top adjacent filament 
lambda(1,5) = 0.25; % filament and support 

 

Fig. 7. Definition of the variables.   

The parameters used in Equation (5) and those necessary to compute variables b and Q  

(in Eq. (3)) must also be defined. Finally, the time increment between two consecutive 

contacts is calculated taking into consideration the type of deposition sequence  

(Figure 8).  
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%____________________________________ STEP 6 ____________________________________ 
%Definition of the parameters influenced by the contacts 
for col = 1:5 
   for lin = 1:n 
      vec_b(lin,col) = h(1,col)*lambda(1,col); 
      vec_Q(lin,col) = vec_b(lin,col)*T(lin,col); 
   end 
end 

%____________________________________ STEP 7 ____________________________________ 
%Definition of the parameters influenced by the material properties 
contar = 0; 
number_filament = 0; 
for i = matrix_lin:-1:1 
   contar = contar + 1; 
   if isodd(contar) == 1 
      for j = 1:matrix_col 
         if matrix(i,j) ~= 0 
            number_filament = number_filament + 1; 
            escalar(number_filament) = -per/(ro(matrix(i,j))*area*C(matrix(i,j))); 
            esc(number_filament) = h_conv/(ro(matrix(i,j))*L*C(matrix(i,j))); 
            kt(number_filament) =  conductivity(matrix(i,j)); 
         end 
      end 
   else 
      for j = matrix_col:-1:1 
         if matrix(i,j) ~= 0 
            number_filament = number_filament + 1; 
            escalar(number_filament) = -per/(ro(matrix(i,j))*area*C(matrix(i,j))); 
            esc(number_filament) = h_conv/(ro(matrix(i,j))*L*C(matrix(i,j))); 
            kt(number_filament) =  conductivity(matrix(i,j)); 
         end 
      end 
   end         
end 
 
%____________________________________ STEP 8 ____________________________________ 
%Definition of the periods of time between two successive contacts 
for i = 1:(n+2) 
   if isodd(i) == 1 
      limite(i,1) = (i*L-x)/v; 
      limite(i,2) = (i*L+x)/v; 
   else 
      limite(i,1) = limite(i-1,2); 
      limite(i,2) = ((i+1)*L-x)/v; 
   end 
end 
for road = 1:n 
   linha = 0; 
   for i = 0:passo:limite(n,2) 
      linha = linha + 1; 
      temp(linha,road) = T_L; 
   end 
end 

 
 

Fig. 8. Definition of the parameters to be used for the computation of temperatures and time 
between two consecutive contacts.   

4.2 Computation of the temperatures for the first filament of the first layer 

Computation of the temperatures starts with the activation of the contact between the first 

filament and the support. Parameters b and Q (equation (3)) are calculated (Figure 9). 
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The temperatures are computed at each time increment; confirmation of the value of Biot 
number (Eq. (6)) is also made: if greater than 0.1, the code devolves a warning message 
(Figure 10). 
 
 

for layer = 1:m 
   if layer == 1   
      for num = 1:vector(layer,1) 
         if num == 1 
%____________________________________ STEP 9 ____________________________________ 
            a(num,5) = 1;  %Activation of the contact with support 
 
%____________________________________ STEP 10 ____________________________________ 
           %Definition of the variables b and Q defined in equation Eq. 7 
            b(num) = h_conv*(1-lambda*a(num,:)') + vec_b(num,:)*a(num,:)'; 
            Q(num) = (h_conv*(1-lambda*a(num,:)')*T_E + 
vec_Q(num,:)*a(num,:)')/b(num); 

 

Fig. 9. Activation of the contacts and computation of b and Q for the first filament.   

 
%____________________________________ STEP 11 ____________________________________     
            p = 0; 
            for t = 0:passo:limite(num,1) 
               p = p+1; abcissa(p) = t;  
            end 
 
%____________________________________ STEP 12 ____________________________________     
           %Computation of the temperatures of the first filament 
            for t = (limite(num,1)+passo):passo:limite_final 
               p = p+1; abcissa(p) = t; 
     temp(p,num)=(T_L-Q(num))*exp(escalar(num)*b(num)*(t-limite(num,1)))  
     +Q(num); 
            end 
           %Saving the last temperature of the period time of cooling down 
            T_begin(num) = temp(p,num); 
 
%____________________________________ STEP 13 ____________________________________     
            %Verification of the value of Biot Number 
            Biot(num) = (vol/A_p)*(b(num)/kt(num)); 
            if Biot(num)>=0.1 
               'WARNING! We cannot use a Lumped System' 
            End 

 

Fig. 10. Computation of the temperatures for the first filament and verification of the value 
of the Biot number. 

4.3 Computation of the temperatures for the remaining filaments of the first layer 

Before proceeding to the remaining filaments of the first layer, the lateral and support 

contacts for each filament being deposited must be defined, as well as for the previous one. 

Consequently, the variable b in expression Eq. (3) is up-dated (Figure 11). 

At this point, only the lateral and support contacts must be defined, since only the first layer 

is being computed. For the remaining layers, other contacts (such as the vertical ones) must 

be considered. Once each filament is deposited, the code checks whether the part has been 

completed. If so, it remains in the same conditions during a pre-defined time, in order to 

reach the equilibrium temperature (Figure 12).  
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%____________________________________ STEP 14 ____________________________________     
  else 
            %Activation of the contacts 
            a(num-1,3) = 1; a(num,1) = 1; a(num,5) = 1; 
 
%____________________________________ STEP 15 ____________________________________     
            %Up-dating of the variable b 
            for j = 1:num 
               b(j) = h_conv*(1-lambda*a(j,:)') + vec_b(j,:)*a(j,:)'; 
            end 

Fig. 11. Activation of the contacts for the current and previous filaments and up-dating of 
variable b. 

 
%____________________________________ STEP 16 ____________________________________     
     if m == 1 
               if num == vector(layer,1)  
                  limite_final = limite(num,2) + temp_mais; 
               else 
                  limite_final = limite(num,2); 
               end 
            else 
               limite_final = limite(num,2); 
            end 
 

 

Fig. 12. Definition of an additional time for the last filament. 

Finally, the temperatures of the remaining filaments are computed. At each time increment, 
the temperatures of the adjacent filaments are saved and parameter Q (Eq. (3) is up-dated. 
The value of the Biot number is checked before the deposition of a new filament (Figure 13). 
 
            for t = (limite(num,1)+passo):passo:limite_final 
               p = p+1; abcissa(p) = t; 
               last = p-1; 
               for j = 1:num 
                  save_T(j) = temp(last,j); 
               end 
 
%____________________________________ STEP 17 ____________________________________ 
               %Iterative process 
               for q = 1:100000 
 
    %Saving contacts and temperatures of adjacent filaments 
                  for j = 1:num 
                     if j == 1  
                        T(j,3) = save_T(j+1); 
                        viz(3,j) = j+1; 
                     end 
                     if j > 1 & j < num 
                        T(j,1) = save_T(j-1); 
                        viz(1,j) = j-1; 
                        T(j,3) = save_T(j+1); 
                        viz(3,j) = j+1; 
                     end 
                     if j == num 
                        T(j,1) = save_T(j-1); 
                        viz(1,j) = j-1; 
                     end 
                     for k = 1:5 
                        if T(j,k) ~= 0 & k ~= 5  
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                           vec_Q(j,k) = vec_b(j,k)*T(j,k); 
                        end 
                     end 
 
                     %Up-dating of the variable Q 
                     Q(j) = (h_conv*(1-lambda*a(j,:)')*T_E + 
vec_Q(j,:)*a(j,:)')/b(j); 
                     old_T(j) = save_T(j); 
                  end 
    %Computation of the temperatures 
                  if num == 2 
                     save_T(1) = (T_begin(1)-Q(1))*exp(escalar(1)*b(1)* 
        (t-limite(1,1)))+Q(1); 
                     save_T(2) = (T_L-Q(2))*exp(escalar(2)*b(2)*(t-
limite(1,1)))+Q(2); 
                     save_lim(1,1) = limite(num,1); 
                     save_lim(1,2) = limite(num,1); 
                  else 
                     for j=1:num-2 
                        save_T(j) = (T_begin(j)-Q(1))*exp(escalar(j)*b(j)* 
        (t-save_limite(1,j)))+Q(j); 
                     end 
                     save_T(num-1) = (T_begin(num-1)-Q(num-1))* 
       exp(escalar(num-1)*b(num-1)*(t-limite(num,1)))+Q(num-
1); 
     save_T(num) = (T_L-Q(num))* 
       exp(escalar(num)*b(num)*(t-limite(num,1)))+ Q(num); 
                     save_lim(1,num-1) = limite(num,1); 
                     save_lim(1,num) = limite(num,1); 
                  end 
                  for j = 1:num 
                     dif(j) = abs(save_T(j)-old_T(j)); 
                  end 
                  try = 1; 
                  stop = 0; 
                  for j = 1:num 
                     if dif(try) < erro  
                        try = try+1; 
                     end 
                     if try == num+1; 
                        stop = 1; 
                     end  
                  end 
                  if stop == 1 
                     for j = 1:num 
                        temp(p,j) = save_T(j); 
                     end 
                     break; 
                  end 
               end 
            end 
            T_begin(num) = temp(p,num); 
            %End of iterative process 
 
%____________________________________ STEP 18 ____________________________________ 
            %Verification of the Biot Number 
            for j=1:num 
               Biot(j) = (vol/A_p)*(b(j)/kt(j)); 
               if Biot(j)>=0.1 
                  'WARNING! We can not use a Lumped System' 
                  j  
                  Biot(j) 
               end 
            end 
         end 
      end 
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   end      
end       
 

 

Fig. 13. Computation of the temperature of the filaments of the first layer and verification of 
the Biot number. 

5. Results 

In order to demonstrate the usefulness of the code developed, two case studies will be 
discussed. The first deals with a part constructed with two distinct materials, while the 
second illustrates the role of the deposition sequence. 

5.1 Case study 1 

Consider the small part with the geometry presented in Figure 14, to be manufactured 
under the processing conditions summarized in Table 1. 
 

 

Fig. 14. Geometry of the part. 

 

Property Value 

Extrusion temperature (ºC) 270 

Environment temperature (ºC) 70 

Extrusion velocity (m/s) 0.025 

Filament length (m) 0.02 

Cross section x (m) 0.01 

Geometric form of cross section circle 

Cross section diameter (m) 0.00035 

Contact ratio 88% 

Heat transfer coefficient (convection) (W/m2ºC) 60 

Thermal contact conductance with filaments (W/m2ºC) 180 

Thermal contact conductance with support  (W/m2ºC) 10 

Thermal conductivity ( W/mºC) materials A / B 0.1768 / 0.5 

Specific heat (J/kgºC) materials A / B 2019.7 / 2500.7 

Density materials A / B 1.05 / 1.5 

Table 1. Processing conditions 
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The production of this part requires the use of a support material. Figure 15 shows the 
deposition sequence and corresponding material matrix, while Figure 16 presents the 
evolution of temperature of every filament with deposition time. As expected, once a new 
filament is deposited, the temperature of the preceding adjacent filaments increases and 
their rate of cooling decreases.  
 

 

Fig. 15. Filaments deposition sequence and corresponding material matrix.  

 

 

Fig. 16. Temperature evolution with time (at x = 0.01 m), for the deposition sequence 
illustrated in Figure 15.  

5.2 Case study 2 
Consider now the parallelepipedic part depicted in Figure 17, to be built using 
unidirectional and aligned and perpendicular sequences, respectively, under the processing 
conditions summarized in Table 2. 
Figures 18 and 19 depict the deposition sequence and corresponding temperatures (this 
required an additional part of the code together with the use of the Tecplot software). At 
each time increment, a 1 mm or a 0.35 mm filament portion was deposited, for 
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unidirectional and aligned and perpendicular filaments, respectively. This lower value is 
related with the lower contact area arising from this deposition mode. Consequently, the 
total computation time was circa 7 minutes for unidirectional and aligned deposition and 
more than two and a half hours for perpendicular filaments for a conventional portable PC.  
As the manufacture is completed (t = 14.4 sec), the average part temperature is 
approximately 120 ºC or 90 ºC depending on the deposition mode. This information is 
relevant for practical purposes, such as evaluating the quality of the adhesion between 
adjacent filaments, or the extent of deformation. 
 

 
 

 

Fig. 17. Geometry of the part and corresponding deposition sequence: top:  unidirectional 
and aligned; bottom: perpendicular. 
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Property Value 

Extrusion temperature (ºC) 270 

Environment temperature (ºC) 70 

Extrusion velocity (m/s) 0.025 

Filament length (m) 0.02 

Geometric form of cross section circle 

Cross section diameter (m) 0.00035 

Contact ratio 88% 

Heat transfer coefficient (convection) (W/m2ºC) 70 

Thermal contact conductance with filaments (W/m2ºC) 200 

Thermal contact conductance with support  (W/m2ºC) 15 

Thermal conductivity ( W/mºC)  0.1768 

Specific heat (J/kgºC)  2019.7 

Density  1.05 

Table 2. Processing conditions 

 

 
                                      t = 0 sec     t = 0.8 sec 

 
                                      t = 1.6 sec     t = 2.4 sec 

 

                                      t = 3.2 sec     t = 4 sec 
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                                      t = 4.8 sec     t = 5.6 sec 

 
 

                                      t = 6.4 sec     t = 7.2 sec 

 
 

 

                                      t = 8 sec     t = 8.8 sec 

 
                                      t = 9.6 sec     t = 10.4 sec 
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                                      t = 11.2 sec     t = 12 sec 

 

                                      t = 12.8 sec     t = 13.6 sec 

 

                                      t = 14.4 sec     t = 16.9 sec 

 
                                         t = 19.4 sec 
 
 

Fig. 18. Deposition sequence of the part of Figure 17 (unidirectional and aligned filaments). 
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                                      t = 0 sec     t = 0.8 sec 

 

 

                                      t = 1.6 sec     t = 2.4 sec 

 

 

                                      t = 3.2 sec     t = 4 sec 

 

 

                                      t = 4.8 sec     t = 7.4 sec 
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                                      t = 9.6 sec     t = 9.9 sec 

 

 

                                      t = 10.7 sec     t = 11.5 sec 

 

 

                                      t = 12.3 sec     t = 13.1 sec 

 

 

                                      t = 13.6 sec     t = 14.4 sec 
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                                      t = 16.9 sec     t = 19.4 sec 

Fig. 19. Deposition sequence of the part of Figure 17 (perpendicular filaments). 

6. Conclusion 

In Free Form Extrusion, FFE, a molten filament is deposited sequentially to produce a 3D 
part without a mould. This layer by layer construction technique may create problems of 
adhesion between adjacent filaments, or create dimensional accuracy problems due to 
excessive deformation of the filaments, if the processing conditions are not adequately set. 
This chapter presented a MatLab code for modelling the heat transfer in FFE, aiming at 
determining the temperature evolution of each filament during the deposition stage. Two 
case studies illustrated the use of the programme. 
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