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1. Introduction 

The simulation of physical phenomena in science and engineering has become an important 
tool because it allows studying a wide range of real problems. On the other hand, it allows 
resolving problems that, because of its difficulty, it would be not possible to solve by 
analytical methods. Moreover, simulation is fast and versatile since it permits to vary 
parameters of the problem easily, allowing analyzing the effect of the modification of them 
in the response of the system examined. 
Simulation requires programming, for which there are many different languages. Each of 
them has a particular internal structure that distinguishes it from others. Therefore, 
depending on the problem to be study, it may be advisable to use a specific programming 
language.  
In the scientific-technical context MATLAB has been increasingly used by the great 
advantages that it offers. For example, the instructions are interpreted and not compiled, the 
user to enter commands interactively. The data processing is flexible. They can be read and 
stored in two different formats, ASCII and MATLAB format. ASCII has the advantage that 
the data and results may be used for other programs. However, MATLAB format may be 
faster. On the other hand, many functions and libraries of MATLAB are written MATLAB 
language, enabling the user access to the source files. It is possible to execute instructions of 
the operating system without exiting the program. Moreover, this language is portable in 
platforms as Windows or Apple, commonly employed by the researcher. From the point of 
view of numerical calculation, the use of matrices as basic elements makes it efficient and 
easy to employ, being also possible to perform graphics of curves and surfaces. Finally, the 
operations can be performed with simple and intuitive expressions similar to those used in 
science and engineering. 
MATLAB has been used for many applications in general physics, mathematics, optics, 
electronics, chemistry, biology, medicine, and artificial intelligence, among others. Now we 
want to employ MATLAB to simulate an optical procedure to measure surface roughness. 
Thus, the aim of this paper is the determination of the roughness of a surface from the 
analysis of the speckle pattern obtained in the far field, when the object is illuminated with a 
monochromatic beam perpendicularly to its surface. 
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The surface analysis of materials is of great importance, since many technological problems 
require, previously, the study of the surface state. One of the parameters of any material that 
changes easily with time is the roughness. Indeed, in many sectors, as civil engineering, 
architecture, mechanical engineering, etc. materials of different forms and properties are 
commonly employed, which must meet certain requirements to ensure their use. For this 
reason, the measurement of some surface parameters, as roughness, must be taking into 
consideration.  
There are different methods for determining roughness. One of the most employed is the 
profilometer (see next section). However, this paper deals with an optical method based on 
the speckle interferometry which has some advantages. The methodology is fast, accurate, 
and does not contact the specimen. Above all this we will talk in the next sections 

2. Discretization of the problem. Roughness 

A classic device for measuring surface roughness is the mechanical profilometer which is 
formed by a tiny stylus (with a small ball), and a displacement sensor. The typ moves along 
a straight line parallel to the surface plane and records the displacements in the 
perpendicular direction, tracing out the outline of the surface. If the ball has a diameter bd it 
can not be inserted between two grooves whose distance is less than bd, being only possible 
to detect the topographic level with a distance between grooves greater than bd.  
 

z=h(x,y)

X

bd  

Fig. 1. Classical device for measuring roughness. Observe that when the diameter of the end 
needle bd is greater than the groove, the transducer can not reproduce the high frequencies 
of the surface outline. 

In this article we are interested in using a speckle technique to measure the roughness of a 
surface. From a didactic viewpoint, the explained idea of the profilometer may be employed 
to understand the sampling, when a rough surface is simulated by MATLAB. 
To start let us suppose a one-dimensional rough surface, and then we extend the results to 
the case of two variables. 
The height of the rough surface can also be measured by sampling. With this aim let us 
consider a curve z=h(x) as shown in Fig. (2), aligned on the OX axis. For sampling the 
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function h(x) the X co-ordinate axis is divided into intervals of length u measured with 
respect the origin O resulting in a system of aligned points of co-ordinates 0, u, 2u, 3u,… The 
distance u between two neighbor points, i.e. the sample interval, is called the sampling 
period and its value is chosen depending of the function to be investigated (in our case the 
form of the surface). The distance u between two points may be likened to the ball diameter 
bd of the profilometer.  
 

h(x)

O X
 

Fig. 2. Rough surface represented by z=h(x). If the sampling period is chosen small, the 
discrete function h(xp) is very similar to the actual surface. 

If N samples are taken, they form a string of N integers for which a value zp =h(xp) is given. 
This set of numbers is collecting in a matrix IF of dimension N × 1. The range of variation of 
the index p is 1, 2, 3,..., N, and it represents the element p of the string. Therefore this index p 
is related with the sampling period as follows: x = 0, u, 2u, 3u, ..., (p-1)u. Two neighboring 
elements of the IF matrix contain the values of the surface heights of the grooves of two 
points on the reference plane separated u meters. 
As it will see, when studying the phenomenon of diffraction in the far field, the Fourier 
transformation must be applied. Therefore, we need to study also the sampling in the 
frequency domain. 
When calculating the finite discrete Fourier transform (DFT) of the IF matrix of N elements, 
a new set of N numbers is obtained which is grouped in another matrix FO of dimension 
N × 1. Due to the Fourier transform is performed from the discrete values of IF, the result is 
also discrete. As a result the distance between two points of the transformed numbers in 
frequency domain is also quantified. Denoting by ν (1,2,…N) the index for the matrix FO, 
the row index represents the harmonic components whose  frequencies are α= 0, 1 / (Nu), 2 
/ (Nu), ..., (ν-1) / (Nu). The sampling frequency is defined as fs ≡ 1/u, measured in m-1, and 
represents the number of measures per unit length. By using this expression, spatial 
frequency components may also be written in the form α = 0, fs / N, 2 fs / N, ..., (ν-1) fs/N . 

In general, the matrix element ν of FO represents the harmonic να  in the space of 

frequencies 

 
( )1

Nu
ν

ν
α

−
= . (1) 

Thus there is a correspondence between the index ν = 1, 2, 3, ..., N, and the spatial frequency 
α by means of the factor (fs/N). Obviously, the sampling process implies that some 
information about the sampled function is loosed, because no value between two 
neighboring points is known. However, depending on the physical problem studied, using 
the Shannon theorem, the sample interval can be modified so that the data be enough for 
numerical calculus.  
Taking into account that the expression obtained for representing a point on the OX-axis has 
the form (p-1)u, it seems to be appropriate to change to non-dimensional variables. To do so 
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we divide x for u resulting (x/u)=(p-1), p being 1,2,…,N. This new variable represents the 
distance from the origin O to an arbitrary point on OX (Fig.3), measured in units of the 
sampling period u, and the elements of the matrix IF the surface heights at each point. The 
same idea applies to frequency domain. 
 

q=y/u+1

p=x/u+1N

1

2

3

N

1 2 3

 

Fig. 3. Reference system without dimensions. The numbers represent the co-ordinates of the 
matrix elements. At each point (p,q) we assign the corresponding value of the surface height.    

 

1 2 3

1

2

3

ν=α/(1/Νu)+1

μ=β/(1/Νu)+1

N

N

 

Fig. 4. Space of non-dimensional frequencies. Observe that this grid is initially determined 
by the matrix IF, then it also has NxN elements  
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By setting α(Nu)= α/(1/Nu) =(ν-1) the spatial frequency α is converted in a dimensionless 

number representing the basic unities of measurement in this space. Furthermore, α/(1/Nu) 
is directly the frequency measured in unities of (1/Nu) corresponding to the element ν of the 
matrix FO (Fig.4). 
When generating a rough surface the components of IF are real numbers (Fig.3). However, 
as we will see, the diffraction of a light beam by a surface can introduce phase factors 

resulting in complex numbers in the elements of matrix IF. In any case the resulting N × 1 
string of IF and its fast Fourier transform (FFT), are calculated without difficulty with 
MATLAB. One advantage of the aforementioned procedure is that the sampling distance u 
between two points of IF is not directly involved in the numerical calculation, and then it 
may be considered as a parameter. For this reason the DFT and the FFT of IF, i.e. FO, is 
universal respect to the parameter u, because the components of FO depend only of the non-
dimensional elements of the matrix IF.  
Although with the change of variables introduced the components of IF and FO are 
dimensionless, they have physical meaning. In the present study the p element of IF is a 
measure of the height of the point at position x = (p-1) u. FO may be interpreted in the same 
way. So setting any number to the sampling period u the values obtained for FO show the 
harmonic amplitudes. For example, giving u the arbitrary value 10-4 m, and choosing N = 64, 

we have for the first non-zero frequency components,  α=156.2, 312.5, 468.8,… m-1.  

The above is easily applied to a two-dimensional simulation. For this let us consider two 

coordinates (x,y) of the system OXY (Figs.3,4). For each point of this reference plane is 

assigned a value which corresponds to the surface height at this point. The data are placed 

in a two-dimensional array IF. If the sampling is done with the same number of samples, say 

N, the dimension of the matrix IF is N × N (Fig. 3). Two points of coordinates (xi, yj) and (xk, 

yl) respectively are separated in the matrix IF a distance ((i-j)2+ (k-l)2)1/2 u, and in 

dimensionless co-ordinates ((i-j)2+(k-l)2)1/2. In relation to FO  similar expressions may be 

obtained, but in frequency space. So the spatial frequencies between two points whose 

coordinates are ( ),h kα β  and ( ),l mα β  is ((h-k)2+ (l-m)2)1/2 (1/Nu) in m-1, and without 

dimensions ((h-k)2+ (l-m)2)1/2. 

3. Fraunhofer diffraction with MATLAB 

In this section we are interested in the phenomenon of diffraction of light, given the 
importance to understand the speckle patterns. With this objective let us use the 
experimental lay-out depicted in Fig.(5). A collimated monochromatic laser beam LB of 

wavelength  λ  is directed to a beam splitter BS, which projects the light perpendicularly on 
a diffracting rough sample S located on the OXY plane. The surface has, in principle, a 
variable reflectance R(x,y). This means the different scatters that form the surface may have 
distinct reflection properties. The shape of the radiation beam used determines the geometry 
and the intensity inside of the illuminated area. If we suppose a beam of homogeneous 
intensity, its geometry can be expressed easily (in view of the simulation) as an opaque 
mask M placed on the surface, which has the function to define the illuminated area (Fig. 6). 
Taking into consideration the most cases studied in optics, we will choose a circular mask of 
diameter D. An observation screen is placed parallel to the diffracting surface at a distance 
of z from its plane. The points on the observation plane are specified by means of its x’, y’ 
coordinates, with respect to an O’X’Y’ coordinate system (on the CCD camera). 
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L

BS CCDS

LB

 

Fig. 5. Experimental set-up. L, laser; LB, laser beam; S, rough sample; BS, beam splitter; CCD 
camera. 

 

M

LS

OSRS FFT

X

Y

α

β

z

BS X'

Y'

 

Fig. 6. Steps employed for simulating the rough surface, the aperture, and the speckle 
pattern. RS, rough surface; M, mask; BS, beam splitter; FO, matrix which elements represent 
the Fourier transform of the reflectance R(x,y) on the OX’Y’ reference system. The intensity 

2
OS FO=  can be interpreted also as an angular spectrum ( ),α β . 

Supposing that the scalar diffraction theory applies, the Fresnel-Kirchhoff integral and the 

theories of Rayleigh-Sommerfeld can be used. However, the calculation of the diffraction 

pattern through these theories is not always easy to carry out. Sometimes the procedure may 

be simplified under certain conditions of the problem. So if the linear dimensions of the 

aperture (mask in our case) is much greater than the wavelength, i.e. D>>λ, and the distance 

z between the surface and the observation plane is great enough, the paraxial theories apply. 

In this case, the mathematical expression for the diffracted field depends on the specific 
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dependence between D and z. When expanding the phase term in the Fresnell-Kirchhoff 

integral is not possible to neglect the quadratic terms that appear we speaks of Fresnel 

diffraction. On the contrary, if these terms can not be tacked into consideration we have 

Fraunhofer diffraction. These approximations are the most important cases in the field of the 

classical optics.  

A possible quantitative criterion to be employed in order to use the Fraunhofer 

approximation, or that of Fresnel, is based on taking a circle of diameter D, which only 

includes the regions of interest (in the present case the hole of the mask). Let r be the 

distance from a point on the diffracting surface to the observation point. Let ρ be the 

distance from the centre of the circle to a point inside its circle. If 2πr/λ varies linearly with 

ρ, the diffraction is called Fraunhofer diffraction; if the variation has non-linear terms of 

magnitude comparable with π/2, the diffraction is said Fresnel diffraction. Therefore, for 

Fraunhofer diffraction we obtain z>>D2/(4λ). In short, the diffracting area must be greater 

than λ and the observation of the intensity pattern must be carried out from a large distance 

with respect to the scatter surface. In other circumstances, i.e. if the distance z does not fulfil 

the conditions needed, non-paraxial terms of the phase must be included in the integrand of 

the Fresnell-Kirchhoff integral (higher expansion coefficients).  

Fraunhofer diffraction is related with the Fourier transform which takes an angular 

spectrum of the reflectance (or transmittance) to be considered. From a physical point of 

view it is equivalent to observe the phenomenon in the far field (another possibility is to 

employ a lens and locate the observation plane on its back focal plane). This angular 

spectrum means that the Fraunhofer diffraction gives the behaviour of the field amplitude 

for the directions in space. If we use two variables, the amplitude of the diffracted field done 

through the Fourier transform depends on α and β, which are related with the directions 

( ),x yθ θ  through the following expressions 

 
cos xθ

α
λ

= ,
cos yθ

β
λ

= . (2) 

As we will see in the following section, the proposed method for measuring roughness is 
developed under the supposition that the conditions of the Fraunhofer diffraction apply. 
Therefore, this case must be translated to the context of MATLAB. 
With this aim, the basic results of the preceding section should used.  The elements foij of the 
matrix FO belonging to a row or column represent the complex amplitude of two harmonics 

separated 1/(Nu). Therefore the first angular direction is ( )( )( )1

1
cos 1

2
−

=
= − =x sf N

ν

πθ ν λ , 

which corresponds to the frequency 0=α  and the direction for the least coefficient of FO is 

θx = cos-1[(N-1)λfs/N] corresponding to the higher frequency α= (N-1) fs/N. In the case of non-

dimensional variables we can use for the two axes Nu cos θx/λ, and Nu 

cos yθ /λ, respectively. If the diffraction pattern is observed on a plane screen a distance z 

from the diffusing surface, the spatial frequencies may be related with points on that plane. 

For small angles θ   it can be written: 

 cos 'x x

z

θα
λ λ

= ≈ , (3) 
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and 

cos 'y y

z

θ
β

λ λ
= ≈ . 

Due to the properties of the Fourier transform, the FFT of the reflectance will contain N/2 of 

positive frequencies, and N/2 negative, whose zero spatial frequency occurs at ν =1. In the 

FFT, the independent variable is the frequency, and in the representation with positive and 

negative frequencies its maximum value will be fs/2. Based on a reflectance matrix of NxN 

elements located at the XOY axes associated, practically centred in the middle, we calculate 

FO by means of the FFT, obtaining another matrix from the centre of which the amplitude of 

the null frequency harmonic component is indicated. 

The intensity registered over a direction ( ),α β  is found by computing the square modulus 

of the Fourier transform (FT) of the scattering surface delimited by the mask M, after 

centring the FFT by means of the command C(i,j)=(-1)(i+j). 

4. Speckle pattern generation 

When a laser beam illuminates a rough surface at scale of the wavelength, the diffraction 

pattern consists of a random distribution of intensity called speckle. The apparition of 

speckle may be understood by the fact that the coherent waves falling on the rough surface 

travel a different optical path from the diffusing surface to the observation point. When the 

object is rough, the reflectance is a random function on the aperture, and then the 

corresponding optical paths for the different scatters vary rapidly. As a result, the intensity 

on the observation screen (or space) also varies very quickly from one point to another of its 

surroundings, giving brilliant and dark spots irregular in shape. 

A model of diffusing and non-absorbent surface is proposed, in which the height of the 

scatters with respect to a reference plane are supposed as a random variable, and with a 

gaussian probability density function. A surface of these characteristics is, for example, a 

metal which is not well polished.  We suppose that the rough surface is illuminated by a 

collimated light beam perpendicularly to its plane resulting in a speckle pattern which is 

calculated by means of the FFT (Fig. 7). 

Due to that optical path δ followed by the different points of the wavefront is not the same, 

consequently, neither is the phase 2πδ λ . As we have to count the return path, the path 

length and height h(x,y) of the surface referred to the plane z=0 are related by the expression 

4 ( , )h x yπ λ . Thus, the reflectance will be proportional to the exponential of this phase 

factor, adopting the form 

 ( ) ( )0

4
, , exp ( , )

i
R x y R x y h x y

π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (4) 

where R0(x,y) is the reflection coefficient of the surface, and  ( )4 ( , )ih x yπ λ  is the phase. In 

the simulation presented in this paper we choose R0(x,y)=1. 

By measuring the random height h(x,y) of the sampled points (Fig.8), it would be possible to 

construct the reflectance matrix of N × N elements. Following the nomenclature of the  
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Fig. 7. Three dimensional representation of the intensity of a speckle pattern captured by a 
CCD camera in the laboratory. The values of the intensity over the OZ axis are in the 
interval [0,255]. 

 

 

Fig. 8. Rough surface generated by MATLAB. The plane of the figure (OXY) depicts a plot of 
the surface contour. 
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preceding section we call this array the IF matrix (Fig.9). The elements of IF contain the 
complex reflectance R(x,y) corresponding to each point of the surface, which are separated 
from their neighbors a distance equal to the sampling period u. The area of the delimiting 
mask will be represented by points outside a circle with zero reflectance. 
 

 

Fig. 9. View of the grid chosen on the OXY reference plane for N=64. The colours represent 
the surface heights at each point (pixel).  

Following the same way as in preceding paragraphs, we employ the ratio h/λ as a non-
dimensional variable, which will be very useful when changing the wavelength. In the 
model this variable is equal to a constant multiplied by a random number, which will 
provide information on the roughness in the simulation. We will call in the program this 
constant RU and it represents a roughness modulating factor. Random numbers with 
Gaussian distribution are generated in MATLAB by the command randn. The mathematical 
expression for reflectance is 

 ( ) ( ) ( )( )0

4
, , exp

i
R x y R x y RU rndn N

π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (5) 

where 

 ( )h
RU randn N

λ
= × , (6) 

and the phase  

 ( )4 RU randn N
δ π
λ

= × × . (7) 
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Thus, an element of RUrandn is a number equal to an optical path measured in wavelengths. 
For example, an RU=1 and a randn=2 give rise max(RUrandn)=2, which indicates a 

maximum path difference of 2λ, that is to say, a groove on the reflecting surface with depth 

equal to λ. However with the same randn, but with the modulating factor equal to 0.1, the 
roughness would be a tenth part. Hence the RU factor represents the roughness measured in 
wavelengths. 
To account the transversal geometry of the incident laser beam on the surface,   the rough 
surface is delimited by means of a round mask of diameter D (geometry could be different; 
see section 7.2). The diameter D must be greater than the wavelength and the sampling 
period u.  On the other hand it is supposed that the number of sampled points inside the 
diameter D is large enough, in order be sure that the statistics applies. 

Once that the characteristics of the surface and beam are defined, the diffraction pattern is 

obtained by means of the FFT of the reflectance matrix IF. The registered intensity of the 

diffracted light by the rough surface is proportional to the square modulus of the diffracted 

amplitude, e.g. 
2

FO . 

5. Definitions of roughness 

In this section we try to adapt some definitions of roughness to our specific problem. We 

start the quantitative definition of the average roughness Ra from the mean surface level, as 

the average absolute value of the height, for all the points along a straight line (remember 

the profilometer). Then in a circular matrix of diameter D inside the IF, corresponds 
2 4BDπ  elements. Therefore, the roughness of the sample may be expressed by the 

following formulae 

 

4 ( , )

=
∑
BD

a

h x y

R
BDπ

, (8) 

where the sum is extended to the sampled points within the circle of diameter BD. As 

previously, if we transform this Eq.(8) to non-dimensional variables, we get 

 

( , )
4

4
( )

⋅
= =

∑
∑a BD

BD

h x y

R RU
randn N

BD BD

λ
λ π π

. (9) 

The number of elements G within the beam of diameter D (BD) is less than the N × N 

elements of IF. Say L the length of the square side where the surface is defined. In any 

case BD Lχ= , χ  being a constant ( )1χ ≤ , then it holds 

 ( )21

4
= ×G N Nπχ , (10) 

whose maximum value is 0.8, approximately ( 1)=χ . If N and BD are large enough, and 

surface heights are randomly distributed, the G values are representative and Ra can be 
calculated using G elements.  
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Similarly, the roughness Rq (root mean square) could be expressed as function of BD. In fact, 
considering the usual definition of this parameter, the following formulae may be written 

 

2
( , )

2.=
∑
BD

q

h x y

R
BDπ

, (11) 

and its non-dimensional value 

 

2
2( , )

4 ( )

2= = ⋅
∑ ∑

q BD BD

h x y
randn N

R
RU

BD BD

λ
λ π π

. (12) 

6. Programming using MATLAB 

We will see that the simulated specklegram corresponding to the diffraction of a 
monochromatic radiation by a rough surface is altered by the roughness of the object within 
a certain range, which depends on the wavelength of the beam used. Therefore, by 
analyzing some characteristics of the intensity pattern it would be possible to measure 
roughness. 
To understand the idea let us suppose a flat surface, well polished, delimited by an aperture 
(mask). If a beam strikes on the surface, the delimiting aperture diffracts it resulting in an 
intensity pattern that depends on the geometry of the obstacle.  Now if the surface is 
scratched, the intensity registered changes, although the aperture maintains its geometry. In 
both cases the autoconvolution of the intensity is different, which means that the roughness 
produced on the surface is the cause of the change. Therefore, the convolution of the 
diffraction pattern could be indicative of the degree of surface polish. 
To test the hypothesis, first we constructed a computer model of a rough surface, and 

second we simulate the diffraction of a collimated monochromatic beam by this surface. The 

resulting random intensity, that is, the speckle, is stored in a matrix (FO) and its 

autoconvolution (CO) is performed. Once all data of CO are obtained, the functional 

relationship of the maximum value of the autoconvolution and its relation with the 

roughness is analyzed.  

The program consists of the following steps: 
1. Begin by setting the number of samples N along each axis. 
2. The matrix IF is constructed by using the command RAN = randn (N). 
3. The diameter of the laser beam BD is specified, measured in number of array elements. 
4. A value to the RU is assigned. 
5. The BS array is constructed. The mask is 0 outside the circle and 1 inside. 
6. The matrix RURAN = RU * RAN is introduced, representing the surface heights for 

each pixel on the area NxN. 
7. The matrix hs is defined as hs = RURAN.*BS. It represents the height of the points inside 

the circle (mask M). 
8. The reflectance matrix is obtained. Its expression is ts = exp (4πi RURAN).   
9. The array FO is calculated, which is the FFT of ts. 

10. The intensity of the diffraction pattern is determined ,  
2

FIDI FO= . 

www.intechopen.com



 
Simulation of Rough Surfaces and Analysis of Roughness by MATLAB 

 

403 

11. The autoconvolution CO of FIDI, and its maximum COV is computed.  
12. In order to manipulate the data more easily, the logarithm of COV is given (log(COV)). 
The detailed program may be found in appendix A 

7. Computer results 

7.1 Circular beam 

Figures 10 shows the results of numerical calculations performed with a PC. In order to the 
numerical calculations are easy to obtain the data were N = 64, BD = 6, RU = 0, 0.1, 0.2, 0.3 
0.4 0.5. The successive rows of the figure refer to these values of roughness, respectively. 
The first column of the figure corresponds to the surface height along the diameter of the 
illuminated area. The second column represents the intensity of the diffraction pattern, FIDI, 
and the third one shows the autoconvolution, CO. 
For beginning a surface without roughness was chosen. The first row shows the area under 
study for a perfect mirror, illuminated by a circular beam of diameter BD = 6. The calculated 
diffraction pattern shows the classical Airy disc corresponding to diffraction by a hole. With 
the proposed values N = 64 and BD = 6 is N/BD = 64/6, and as D = BDu, gives Nu = 64D/6. 
The analysis of Figure 4 shows that the first minimum of the Airy disc in the frequency 
space is 24, approximately. From Fig 1 it follows 

( ) ( )1 12 1cos 11 1
0.17

64 64Nu u u u
ν

νθα
λ

− −
= = ≈ = = . 

On the other hand, the first minimum given in the theory of diffraction by a circular hole is 

cos 1 1 1
1.22 1.22 0.20

6Du u u
ν

θα
λ

= ≈ = = . 

Both results agree and differ in a small amount. The difference can be attributed to the small 
number of values chosen. 
The second row refers to the same mirror, but not completely polished, and with a 
coefficient RU = 0.1. The profile shows small heights and valleys. The Airy disk is a little 
blurred, and not as clear as in the previous case. In the third row RU = 0.2 the central disk 
appears deformed and a speckleled. In the fourth and fifth rows the figure is quit different 
with respect to the first one, and the speckles are on all the pattern. In the last row only 
speckle may be seen, and no traces of the Airy disk are present. When the roughness is RU = 
0.5 (bottom row) yields a rough surface with high grooves. The intensity is formed by 
irregular random spots being unknown directly the form of the mask, e.g. the symmetrical 
intensity circle of the Airy function. In summary, diffraction by a specular surface delimited 
by an aperture produces an intensity pattern concentrated around the direction of the 
reflected beam, but if the roughness is increasing, the light is diffracted producing speckle 
which structure is random. 
The third figure of each row (third column) corresponds to autoconvolución (CO), which 
has a maximum at the center (COV). In effect, the values for the logarithm of COV are, 
respectively: logCOV(RU=0.0) = 7.78, logCOV(RU=0.1) = 7.10, logCOV(RU=0.2) = 6.86, 
logCOV(RU=0.3)=6.90, logCOV(RU=0.4)= 6.88, and logCOV(RU=0.5)=6.91. In this calculus 
the logarithm of the autoconvolution hass been used because the maximum value of CO is 
very large. Employing log(COV), the data are easier to manipulate. 
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Fig. 10. Computer results for N = 64, BD = 6, RU = 0, 0.1, 0.2, 0.3 0.4 0.5. The first column 
shows the roughness along the illuminated area. The second represents the intensity of the 
diffraction pattern, FIDI, and the third column is the autoconvolution, CO. The rows 
correspond to the different values of RU. 
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These results show that the values of their maxima are not the same. On the contrary, the 
maximum value for each one depends on the surface roughness. For this reason it seems 
suitable to employ the maximum value of the autoconvolution of the speckle pattern, as a 
possible procedure for measuring the roughness of a surface, if the roughness is smaller 
than the wavelength of light used in the experiment.  
At the same time, COV depends on the diameter of the beam used (BD) also. To see the 
effect in the autoconvolution when the wide of the laser is changed, we computed logCOV 
with N and D for two different number of data and diameters. For example if N= 64, and BD 
= 32, it yields 

logCOV = 12.0, 11.7, 10.7, 9.8, 9.7, 9.7, 

whereas with N = 128 and BD = 32 

logCOV = 12.6, 12.3, 11.3, 10.4, 10.3, 10.3 .  

Therefore the maximum reached by the autoconvolution depends on the number of samples 

N and the beam diameter BD. 

This result is reasonable if we bear in mind the definition of autoconvolution. In fact, 

convolution may be regarded as the overlapping area between two functions (in this case 

the same function) when one is reversed and moves on the other. The result depends on the 

wide and height of the functions involved. Therefore, if the diameter of the beam changes 

the autoconvolution modifies its value too. 

With the aim to apply this result to laboratory experiments, it seems necessary to have more 

values of the autoconvolution in other circumstances. In he same way as explained, the 

following table provide useful data of the logCOV, for N=512 when the diameter D ranges 

from 23 to 23+m (m=1,2,…5). The detailed results for this calculation can be seen in the 

appendix B.   

 

D\RU 0.0 0.1 0.2 0.3 0.4 0.5 

8 10.233 9.231 9.148 9.185 9.078 9.128 

18 12.036 10.867 10.35 10.351 10.348 10.368 

32 13.810 12.558 11.536 11.546 11.548 11.542 

64 15.607 14.294 12.734 12.736 12.740 12.742 

128 17.412 16.037 13.945 13.938 13.941 13.937 

256 19.216 17.838 15.149 15.141 15.145 15.142 

512 21.257 19.881 16.428 16.347 16.347 16.349 

Table 1. Values of the autoconvolution log(COV) for different diameters and roughness 
parameters. The results in yellow do not give information since they are very similar. 

From these results may be inferred that if the area of the illuminated surface is known, 

measuring experimentally the autoconvolution of the speckle pattern, it would be possible 

measuring the roughness of this surface. To conduct laboratory experiments would be 

necessary to build larger tables with more values, for different incident beam intensities.  

By examining the calculations it also follows that for values of RU close to zero, the 

difference between logCOV, corresponding to a BD, and a diameter corresponding to half 

value, is approximately constant and equal to 2, i.e. 
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logCOV’- logCOV=2 => COV’/COV=102, 

 and, in general, 

 

'
( ')

10
( )

N

NCOV N

COV N

⎛ ⎞
⎜ ⎟
⎝ ⎠= . (13) 

This property will be important for ulterior calculations. 

7.2 Square mask 
In the preceding developing calculations, a circular geometry for the beam was supposed. 
However, other possibilities may occur. For instance, when a laser ray is directed onto a 

sample under an angle of incidenceθ , the effective area intersected by the beam has a quasi-
elliptical form. Although an elliptical mask is easy to simulate with MATLAB, this 
paragraph deals with the study of the effect of employing a square aperture. This 
approximation simplifies the program, since there is no need the beam diameter datum. 
Moreover, from the point of view of the results, it has little influence in the final values 
when comparing these values with those obtained for an elliptical mask. 
The simulation gives the results of log(COV) for RU = 0.0, 0.1, ... 0.5, and N = 16, 32, 64, 128, 
256, 512, that appear in the following table: 
 

N\RU 0.0 0.1 0.2 0.3 0.4 0.5 

16 9.63 9.24 8.08 7.52 7.59 7.57 

32 12.04 11.72 10.73 9.49 9.33 9.34 

64 14.45 14.10 13.05 11.47 11.14 11.14

128 16.86 16.51 15.48 13.81 12.95 12.95

256 19.27 18.92 17.89 16.19 14.80 14.75

512 21.67 21.33 20.30 18.57 16.68 16.56

Table 2. Values of the autoconvolution log(COV) for different data and roughness parameter 
RU. The results in green do not give information. 

Figure 11 represents the values of the attached table II. These curves show the dependence 
of log(COV) with the roughness for different values of N, provide that the roughness is less 
than 0.4. Therefore, the trend is maintained even if the aperture is different.  From the figure 
it follows that, except for values marked in green on the table, the dependence of logCOV 
with roughness is approximately parabolic, and can be approximated by the equation 

 2logCOV a b RU= + × . (14) 

As in section 7.1., the difference of the log(COV) for consecutive values of RU, follows 
certain regularity. In fact, if the values of log(COV) for RU=0 are examined (see figure 11), 
we observe that for adjacent values of this variable, the differences between two consecutive 
points (corresponding to double N) are: 2.41, 2.41,2.41, 2.41, 2.40. Taking into consideration 
these differences, the following mathematical relationship is verified: 
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Fig. 11. Values of log(COV) for roughness RU = 0.0, 0.1, ... 0.5. 

 2.41 8'
log ' log 2.41 10 257 2 '/ 2

COV
COV COV N N

COV
− = ⇒ = = ≈ ∀ ≈ . (15) 

Table 3 below relates the difference of logarithms with the ratio N’/N. 
 

N’/N 1 2 4 8 ….. 2n 

logCOV’-logCOV 0 2.41 2×2.41 3×2.41 ….. n×2.41 

Table 3. Logarithmic difference for RU=0 

From these values it yields, 

 log( '/ )'
2

log 2
n N NN

n
N

= ⇒ = , (16) 

therefore, 

2.41/log 2 7.999 8

2.41/log 2 2.41/log 2 8
2.41/log 2 2.41/log 2

log( '/ ) '
log ' log 2.41 log

log 2

log( '/ ) log( '/ ) log( '/ )

' '
( '/ )

'

N N COV
COV COV

COV

N N N N N N

COV COV COV
N N k COV kN kN

COV N N

− = ⇒ =

= ≈

⇒ = ⇒ = ≡ ⇒ = ≈ ,

 

where k is a constant. From the definition of k it follows that 

 2.41
log log log

log 2
k COV N= − . (17) 

Applying this formula for N = 64 we have 
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2.41

log 14.45 log 64 0.01000 0.9772
log 2

k k= − = − ⇒ = , (18) 

therefore,  

 
2.41

log 0.01 log 0.01 8.006log
log 2

COV N N= − + = − + . (19) 

Using this result to the values of N: 32, 64, 256, 512 (RU=0), we btain for log(COV): 12.04, 
14.45, 16.86, 19.27, and 21.68, respectively. These results agree with those of the table II. 
A more general fit for log(COV) considering  and RU can be found, provided that RU ≤ 0.4: 

 2log 0.01000 8.006logCOV N b RU= − + + × . (20) 

To determine the value of b, we choose, for example, N=128 and RU=0.2, which yields 

 215.48 0.01000 8.006log 128 0.2 34.50b b= − + + × ⇒ = −  (21) 

2 2log 0.01000 8.006log 34.50 8.006log 34.50COV N RU N RU⇒ = − + − ≈ − . 

Solving the unknown in Eq. (20) we have 

 
81

log
34.5

N
RU

COV

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. (22) 

The advantage of this formula is that it allows calculating the value of the roughness for 
each N and D. 
To verify the accuracy of these results, we introduce some values of roughness and number 
of samples in Eq.(20).  
For RU=0.1, N=32: 

2log 8.006log 32 34.50 0.1 11.70COV = − × = . 

For RU =0.1, N =512: 

2log 8.006log 512 34.50 0.1 21.35COV = − × = . 

For RU =0.3, N =32: 

2log 8.006log 32 34.50 0.3 8.95COV = − × = . 

For RU =0.3, N =512: 

2log 8.006log 512 34.50 0.3 18.59COV = − × = . 

It may be seen that the differences between these values calculated with the formula (20) 
and those displayed in table II are equal to or less than 0.02, except for the case N = 32, RU = 
0.3, which is 0.15. But as in this case the value of the table does not correspond to the 
difference of logarithms (marked in green), it follows that the equation obtained is suitable 
for the specified intervals. 

www.intechopen.com



 
Simulation of Rough Surfaces and Analysis of Roughness by MATLAB 

 

409 

 

Fig. 12. Values of RU (from 0.0 to 0.5) as a function of N and COV (Eq.(22)). 

 

Fig. 13. Thissurface represents the function log(COV) for differerent values of N and RU (Eq.(21)). 

8. Apendix A 

L=…….? 
BD=…..? 
 

RAN=randn(L); 
colormap(gray) 
 

RU1=0 
RU2=0.1 
RU3=0.2 
RU4=0.3 
RU5=0.4 
RU6=0.5 
 

 for i=1:L 
  for j=1:L 
   if (BD/2)^2<=((i-.5-L/2)^2+(j-.5-L/2)^2) 
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   BS(i,j)=0; 
   else 
   BS(i,j)=(-1)^(i+j); 
   end 
   end 
 end 
 

RURAN1=RU1*RAN; 
  h1=RURAN1.*BS; 
  C1=h1(L/2,:); 
  ts1=BS.*exp(4i*pi*RURAN1); 
  FO1=fft2(ts1); 
  FIDI1=(abs(FO1)).*(abs(FO1)); 
  CO1=conv2(FIDI1,fliplr(flipud(FIDI1))); 
  COV1=conv2(FIDI1,fliplr(flipud(FIDI1)),'valid') 
LCOV1=log10(COV1) 
  RURAN2=RU2*RAN; 
  h2=RURAN2.*BS; 
  C2=h2(L/2,:); 
  ts2=BS.*exp(4i*pi*RURAN2); 
  FO2=fft2(ts2); 
  FIDI2=(abs(FO2)).*(abs(FO2)); 
  CO2=conv2(FIDI2,fliplr(flipud(FIDI2))); 
  COV2=conv2(FIDI2,fliplr(flipud(FIDI2)),'valid') 
LCOV2=log10(COV2) 
  RURAN3=RU3*RAN; 
  h3=RURAN3.*BS; 
  C3=h3(L/2,:); 
  ts3=BS.*exp(4i*pi*RURAN3); 
  FO3=fft2(ts3); 
  FIDI3=(abs(FO3)).*(abs(FO3)); 
  CO3=conv2(FIDI3,fliplr(flipud(FIDI3))); 
  COV3=conv2(FIDI3,fliplr(flipud(FIDI3)),'valid') 
LCOV3=log10(COV3) 
  RURAN4=RU4*RAN; 
  h4=RURAN4.*BS; 
  C4=h4(L/2,:); 
  ts4=BS.*exp(4i*pi*RURAN4); 
  FO4=fft2(ts4); 
  FIDI4=(abs(FO4)).*(abs(FO4)); 
  CO4=conv2(FIDI4,fliplr(flipud(FIDI4))); 
  COV4=conv2(FIDI4,fliplr(flipud(FIDI4)),'valid') 
LCOV4=log10(COV4) 
 

RURAN5=RU5*RAN; 
  h5=RURAN5.*BS; 
  C5=h5(L/2,:); 
  ts5=BS.*exp(4i*pi*RURAN5); 
  FO5=fft2(ts5); 
  FIDI5=(abs(FO5)).*(abs(FO5)); 
  CO5=conv2(FIDI5,fliplr(flipud(FIDI5))); 
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  COV5=conv2(FIDI5,fliplr(flipud(FIDI5)),'valid') 
LCOV5=log10(COV5) 
 

RURAN6=RU6*RAN; 
  h6=RURAN6.*BS; 
  C6=h6(L/2,:); 
  ts6=BS.*exp(4i*pi*RURAN6); 
  FO6=fft2(ts6); 
  FIDI6=(abs(FO6)).*(abs(FO6)); 
  CO6=conv2(FIDI6,fliplr(flipud(FIDI6))); 
  COV6=conv2(FIDI6,fliplr(flipud(FIDI6)),'valid') 
LCOV6=log10(COV6) 
 

subplot(6,3,1) 
plot(C1) 
subplot(6,3,2) 
imagesc(FIDI1) 
subplot(6,3,3) 
imagesc(CO1) 
subplot(6,3,4) 
plot(C2) 
subplot(6,3,5) 
imagesc(FIDI2) 
subplot(6,3,6) 
imagesc(CO2) 
subplot(6,3,7) 
plot(C3) 
subplot(6,3,8) 
imagesc(FIDI3) 
subplot(6,3,9) 
imagesc(CO3) 
subplot(6,3,10) 
plot(C4) 
subplot(6,3,11) 
imagesc(FIDI4) 
subplot(6,3,12) 
imagesc(CO4) 
 

subplot(6,3,13) 
plot(C5) 
subplot(6,3,14) 
imagesc(FIDI5) 
subplot(6,3,15) 
imagesc(CO5) 
 

subplot(6,3,16) 
plot(C6) 
subplot(6,3,17) 
imagesc(FIDI6) 
subplot(6,3,18) 
imagesc(CO6) 
 

return 
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9. Apendix B 
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Fig. 14. N=500; D=8; RU= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. (a) Surface height along the diameter. (b) 
Diffraction pattern. (c) Autoconvolution. 
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Fig. 15. N=500; D=16; RU= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. (a) Surface height along the diameter. (b) 
Speckle pattern. (c) Autoconvolution. 
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Fig. 16. N=500; D=32; RU= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. (a) Surface height along the diameter. (b) 
Speckle pattern. (c) Autoconvolution. 
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Fig. 17. N=500; D=64; RU= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. (a) Surface height along the diameter. (b) 
Speckle pattern. (c) Autoconvolution. 
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Fig. 18. N=500; D=128; RU= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. (a) Surface height along the diameter. 
(b) Speckle pattern. (c) Autoconvolution. 
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Fig. 19. N=500; D=256; RU= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. (a) Surface height along the diameter. 
(b) Speckle pattern. (c) Autoconvolution. 
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Fig. 20. N=500; D=500; RU= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. (a) Surface height along the diameter. 
(b) Speckle pattern. (c) Autoconvolution. 

www.intechopen.com



 
Simulation of Rough Surfaces and Analysis of Roughness by MATLAB 

 

419 

8. References 

Born, M; Wolf, E; (1999) Principles Optics, Cambridge University Press. pp. 412-484. 
Etter, D.M.; (1997) Engineering problem solving with MATLAB. Prentice-Hall. 
Gascón, F.; Salazar, F.; (2006) A simple method to simulate diffraction and speckle patterns 

with a PC, Optik, Vol. 117, pp. 49-57. 
Gascón, F.; Salazar, F.; (2008) Numerical computation of in-plane displacements and their 

detection in the near field by double-exposure objective speckle photography, Opt. 
Commun., Vol. 281, pp- 6097-6106. 

Glio, M.; Musazzi, S.; Perini, U.; Surface measurement by means of speckle wavelength 
decorrelation”,  Opt. Commun. Vol. 28, 1979, pp. 166-170. 

Goodman, J.W.; (1975) Dependence of image speckle contrast on surface roughness. Opt. 
Commun, Vol. 14, pp. 324-327. 

Huntley, J.M.; (1989) Speckle photography fringe analysis: assessment of current algorithms, 
Appl. Opt. Vol. 28, pp. 4316-4322. (See references therein). 

Kreis, T.; (2005) Handbook of Holographic Interferometry. Wiley-VCH, Weinheim, Ch.1, 2. 
Lehmann, P.; Patzelt, S.; Schöne, A.; (1997) Surface roughness measurement by means of 

polychromatic speckle elongation. Appl. Opt. Vol. 36, pp. 2188-2197. 
Leonhardt, K.; Tiziani , H.J.; (1982) Removing ambiguities in surface roughness 

measurement. Optica Acta, Vol. 29, pp. 493-499 
Lipson, S.G.; Lipson, H.; (1995) Tannhauser: Optical Physics. Cambridge University Press, 

Cambridge, p.162. 
Patzelt, S.; Horn, F; Goch, (2006) G; Fast integral optical roughness measurement of specular 

reflecting surfaces in the nanometer range. XVIII Imeko World Congress, Rio de 
Janeiro, Brazil. 

Persson, U.; (2006) Surface roughness measurement on machined surfaces using angular 
speckle correlation. J. Mater. Process. Tech., Vol. 180, pp. 233-238. 

Pearson, U.; (1993) Measurement of surface roughness on rough machined surfaces using 
spectral speckle correlation and image analysis. Wear, Vol. 160, pp. 221-225. 

Pérez Quintián, F., Rebollo, M.A; Nogert, E.N.; Landau M. R.; Gaggioli, N.G.; (1996) 
Relationship between speckle correlation and refraction index variations: 
applications for roughness measurements”, Opt. Eng. Vol 35, , pp. 1175-1178. 

Ruffing, B.; (1986) Application of speckle-correlation methods to surface-roughness 
measurement: a theoretical study, J. Opt. Soc. Am. A, vol. 3, pp. 1297-1304. 

Ruffing, B.; (1987) Non-contacting roughness measurement of technical surfaces by speckle-
correlation method. Doctoral Thesis. University of Karlsruhe. (In german) 

Spagnolo, G.S.; Paoletti, D.; (1996) Digital speckle correlation for on-line real-time 
measurement. Opt. Commun. Vol. 132, pp. 24-28. 

Stratton, J.A.: (1961) Théorie de l´électromagnétisme, Dunod, Paris. p. 531 
Tay, C. J.; Toh, S. L.; Shang, H. M.; Zhang, J.; (1995) Whole-field determination of surface 

roughness by speckle correlation. Appl. Opt, vol. 34, pp. 2324-2335. 
Xiaomei, Xu.; (2009) Non-contact Surface Roughness Measurement Based on Laser 

Technology and Neural Network. Proc. IEEE, International Conference on 
Mechatronics and Automation. Changchun, China. 

Yamaguchi, I.; Kobayashi, K.; Yaroslavsky, L.; (2004) Measurement of surface roughness by 
speckle correlation. Opt. Eng., Vol. 43, pp. 2753-2761. 

www.intechopen.com



 
MATLAB – A Ubiquitous Tool for the Practical Engineer 

 

420 

Yoshimura, T.; Kato, K.; Nakagawa, K.; (1990) Surface-roughness dependence of the 
intensity correlation function under speckle-pattern illumination, J. Opt. Soc. Am. A, 
Vol. 7, pp. 2254-2259. 

Zhao, Gao; Xuezeng, Zhao; (2008) On-Line Surface Roughness Measurement Based on 
Specular Intensity Component of Speckle Patterns. Proc. IEEE 2008, International 
Conference on Information and Automation. Zhangjiajie, China. 

www.intechopen.com



MATLAB - A Ubiquitous Tool for the Practical Engineer

Edited by Prof. Clara Ionescu

ISBN 978-953-307-907-3

Hard cover, 564 pages

Publisher InTech

Published online 13, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

A well-known statement says that the PID controller is the â€œbread and butterâ€  of the control engineer. This

is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the

paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that

MATLAB is the â€œbreadâ€  in the above statement. MATLAB has became a de facto tool for the modern

system engineer. This book is written for both engineering students, as well as for practicing engineers. The

wide range of applications in which MATLAB is the working framework, shows that it is a powerful,

comprehensive and easy-to-use environment for performing technical computations. The book includes

various excellent applications in which MATLAB is employed: from pure algebraic computations to data

acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user

interface design for educational purposes to Simulink embedded systems.
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