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1. Introduction

Vibration is an important aspect of many engineering systems. In most cases, such vibration is
undesirable and requires attenuation or control, which explains the huge quantity of vibration
control techniques that can be found in the literature. Nevertheless, sometimes all this
knowledge is not enough to guarantee the success in this purpose. Model inaccuracies or
parameter uncertainty are unavoidable in all relevant practical application and not only can
they degrade the performance of an otherwise well-designed control system, but they may
also lead to instability and even structural failure.
For these reasons, robustness is of crucial importance in control-system design. Although
always being appreciated, it was not until late 1970s when a theory capable to explicitly
handle the robustness issue in feedback design was developed: the H∞ optimal control theory
(Zames, 1981; Zames & Francis, 1983). This optimization approach is well developed and we
can even find a full Robust Control Toolbox in MATLAB which, in collaboration with the Control
System Toolbox, let us identify worst-case scenarios and generate optimal controllers so that
the stability and good performance of the plant is ensured (Gu et al., 2005).
Obviously, the H∞ optimal control theory shows some disadvantages, like the high level of
mathematical understanding needed to apply them successfully and the fact that it sometimes
leads to potentially very conservative results (Gu et al., 2005). Indeed, even when a solution
via H∞ techniques is eventually found, the process may have been too expensive in terms
of designer’s time and the sensitivity to the uncertainty sources is not analyzed. These
motivations make us think that a straightforward possibilistic methodology for simulating
and analyzing the uncertainty propagation in control system would be a very valuable,
complementary and time saving tool.
This work focuses on how MATLAB can supply suitable tools in order to manage uncertainty
propagation in finite element models of structures from the point of view of fuzzy arithmetic.
More specifically, we will describe a methodology fully programmed in MATLAB in order
to deal with uncertain control systems of vibrating structures and we will illustrate the
application of this approach to a case study.
In order to develop this work we need to integrate two different problems: the calculation of
the dynamic response of a vibrating structure via finite element models and the study of the
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uncertainty propagation via fuzzy arithmetic. Both problems can be solved using MATLAB

code obtaining very good results in terms of accuracy and computational cost.
The motivation behind this work is threefold: firstly, it is meant to show how MATLAB

provides suitable functions and specialized toolboxes in order to study the static or dynamic
response of a controlled structure via finite elements and control theory; secondly, it
demonstrates the suitability of MATLAB to solve uncertainty propagation problems through
fuzzy arithmetic minimizing the computational cost; and thirdly, it illustrates the application
of a Fuzzy Finite Element procedure, which integrates these two tools, with a specific case
study.
The chapter is organized in the following way: Section 1 has summarized the aims and
concerns of the chapter; Section 2 deals with dynamic analysis of structures with active
damping by means of the OpenFEM Toolbox and the Control System Toolbox of MATLAB; Section
3 discusses the different types of uncertainty and how they could be analyzed using fuzzy
arithmetic programmed in MATLAB; Section 4 describes a Fuzzy Finite Element procedure
in MATLAB in order to study the propagation of uncertain parameters in control systems of
structures; Section 5 shows a case study in which the Fuzzy Finite Element procedure is tested;
Section 6 deals with the main conclusions of this work; and finally the acknowledgements and
references included through the text are included.

2. Dynamic analysis and control of structures

2.1 Finite Element analysis and the OpenFEM Toolbox

The study of the dynamic behaviour of a structure can be carried out by means of finite
element analysis. Among all the different possibilities to solve finite elements problems,
in this chapter we focus on the use of a specific toolbox of MATLAB: the OpenFEM Toolbox
(Balmes et al., 2009).
It is an open-source toolbox for finite element analysis within the matrix computing
environment MATLAB. The software is developed in collaboration between Macs and the
SDTools Company and it is distributed under a GNU Lesser General Public License, that is, a
free software license which also allows the user to make modifications in the code. Performing
finite element analysis within a matrix computing environment is of considerable interest,
in particular as regards the ease of new developments, integration of external software,
portability, post-processing, etc. This relatively young software is already quite successful
in the finite element community as it is proven by the about 300 downloads per month
(OpenFEM, 2011).
Though the toolbox architecture includes graphical user interfaces for visualization, analysis
and animation of results, the powerful of this toolbox does not lie in this fact but in the
standard and advanced methods which are implemented. Moreover, the provided functions
are open and can be easily extended to suit particular needs of the user (Balmes et al., 2009),
as it is our case.
Let us consider a vibrating structure. The first step in order to carry out its finite element
analysis consists in discretizing the structure. The mesh nodes, elements which join the nodes,
material properties, element properties and any additional information such as boundary
conditions, loads, etc., are stored in a struct class variable which defines the model of the
multi degree of freedom vibrating structure which is governed by the next set of equations of
motion

Mẍ + Cẋ + Kx = f (1)
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where M, K and C are the mass, the stiffness and the damping matrices, respectively, x the
vector of displacements of all the degrees of freedom of the structure and f a general vector
of forces. Matrices M and K arise from the finite element analysis of the structure whereas C
is usually obtained under the hypothesis of Rayleigh damping.
Both in the state space approach and in the transfer function approach, working with physical
coordinates is not practical because of the usually high number of degrees of freedom. Thus, a
change of variables into modal coordinates is suggested. In addition, in this way the problem
can be restricted to the bandwidth of interest, neglecting the high frequency dynamics of the
system. After the computation of modes via finite element analysis one obtains the natural
frequencies of the modes and the matrix of the mode shapes Φ. After performing the change
of variables x = Φz, where z is the vector of modal coordinates and Φ is normalized in such
a way that the modal mass matrix is the identity matrix, the governing equations in modal
coordinates read

z̈ + 2ξΩż + Ω2z = ΦT f (2)

where Ω and ξ define the diagonal matrices of natural frequencies and damping factors.
Finally, the software also provides several commands related to the definition of the actuators
and sensors or, strictly speaking, the input force influence vector Lu and the sensor influence
vector Ly, both of them required for the definition of either the transfer function or the state
space matrices.
The finite element models which are obtained with this toolbox can be used to solve both
static and dynamic problems, the results of which being ready to be plotted or post-processed
under any other MATLAB toolbox. In this work, we blended these commands which those
corresponding to the Control System Toolbox.

2.2 Active damping and the Control System Toolbox

The Control System Toolbox provides a collection of matrix-based functions, usually expressed
as M-files, for the topic of control engineering. The control systems may be modelled as
transfer functions, zero-pole-gain or even using the state space approach, which allows the
designer to apply classic techniques as well as modern techniques. However, it is not our
purpose to study thoroughly this topic, so we will concentrate on briefly reviewing, as an
example, one of the most common active control techniques of structures (Preumont, 2002):
active damping with collocated piezoelectric pairs via Positive Position Feedback, which, in
the end, will be the case study discussed in Section 5.
The transfer function of the multi degree of freedom vibrating structure obtained via modal
expansion reads

G(ω) =
X(ω)

F(ω)
=

∞

∑
n=1

ΦnΦT
n

ω2
n + 2jωξnωn − ω2

(3)

where Φn, ωn and ξn are the mode shape, the natural frequency and the damping ratio for

the nth mode of vibration, respectively. The same model based upon the first N modes of
vibration leads to the expression

Ĝ(ω) ≈
N

∑
n=1

ΦnΦT
n

ω2
n + 2jωξnωn − ω2

(4)

where the residual term due to the contributions of the truncated nodes has been neglected.
Combining the equations for the surface-bonded actuator and sensor (Dosch et al., 1992;
Sims et al., 2005) and Equation 4 which governs the structural dynamics, we obtain the
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frequency response function between the voltage Va applied to the actuator and the voltage
Vs at the output of the charge amplifier of the sensor

H(ω) =
Vs(ω)

Va(ω)
= kaks

N

∑
n=1

LT
uΦnΦT

n Ly

ω2
n + 2jωξnωn − ω2

(5)

where ks and ka are the sensor gain and the actuator gain, respectively.
As far as the Positive Position Feedback scheme is concerned, it is appropriate for a structure
equipped with strain actuators and sensors (Preumont, 2002). The objective of a Positive
Position Feedback controller is to use a second order filter to improve the roll-off of the control
system, allowing high frequency gain stabilization. The implementation of this control system
is given by the following equations

Mẍ + Cẋ + Kx = Luu
y = LT

u x
v̈ + β f v̇ + Ω2

f v = y

u = −Gv

(6)

where u is the control force acting on the structure through the influence vector Lu, y is the
difference of slope between the ends of the sensor, G = diag(gi) is the positive gain matrix,
and v is the output of the second order filter defined by the matrices β f = diag(2ξ f ω f ) and

Ω2
f = diag(ω2

f ). Note that the fact that the same localization vector (Lu) rules the actuator and

sensors is a consequence of collocation.
The transfer function of the controller (a second order low pass filter) can be written as follows

gD(w) = g
ω2

f

ω2
f + 2jωξ f ω f − ω2

(7)

This compensator has both advantages and drawbacks. On the one hand, the open-loop
transfer function has a roll-off of −40dB/decade, larger in comparison to Direct Velocity
Feedback (−20dB/decade), which may decrease the risk of destabilizing high frequency
dynamics. On the other hand, there is a stability limit which is reached when the open-loop
static gain is equal to 1, this fact being independent of the damping (Preumont, 2002).
Once the open loop transfer functions of the plant and the regulator are defined, they can be
used in the Control System Toolbox as transfer function class variables. Then, the desired active
damping can be obtained by selecting the proper gain g of the regulator. In order to do this,
several techniques can be used such as Bode Diagram Design, Root Locus Design, Nichols
Plot design, etc.
Finally, the Control System Toolbox also provides valuable functions in order to analyze the
stability and performance in terms of stability margins, time responses or the position of the
closed loop poles and zeros in the pole-zero map. They will be used in our Fuzzy Finite
Element methodology as fuzzy outputs in order to analyze the behaviour of the uncertain
control system.

3. Uncertainty and fuzzy arithmetic

In the literature, the use of the term uncertainty is slightly ambiguous. In order to establish the
nomenclature for the ensuing description, the reader is referred to the terminology proposed
in (Oberkampf et al., 2004).
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On the one hand, we will use the term aleatory uncertainty to describe the inherent variation
associated with the physical system or the environment under consideration. These sources
of uncertainty can be represented as randomly distributed quantities, usually in terms
of probability distribution functions. Typical examples of this kind of uncertainty are
manufacturing tolerances, environmental effects, properties of non-uniform materials or any
other identifiable disturbances. On the other hand, epistemic uncertainty derives from some
level of ignorance of the system or the environment in any activity of the modelling process.
In this case, its definition stresses the lack of knowledge as the origin of this uncertainty.
Thus, unlike aleatory uncertainty, a mathematical representation of epistemic uncertainty has
proven to be much more of a challenge since it is subjective and based on some expert opinion
to a certain extent. Typical examples of epistemic uncertainties are some models for boundary
conditions, simplified models for joints, models for material damping or unpredictable model
changes due to ageing, loading, etcetera.
Uncertainty propagation in dynamic systems has been a very frequent topic in the
literature, which has been tackled from two different points of view (De Gersem et al., 2005):
probabilistic and possibilistic approaches. Probabilistic approaches, such as the well-known
Monte Carlo Simulation method, investigate the influence of aleatory uncertainties, this
method being particularly suitable for finite element models with certain uncertainties.
Possibilistic approaches are complementary to probabilistic approaches, since not only are
they able to describe problems of aleatory uncertainties to a certain extent, yet without
statistical interpretation, but they can also handle problems where incomplete information
(epistemic uncertainty) is available. We consider that computationally expensive "brute-force"
probabilistic methods are not worthwhile in most cases, where an intuitive worst-case
scenario provides enough information. Thus, a possibilistic method in terms of fuzzy
arithmetic will be the tool that we develop and propose in order to simulate and analyze
uncertainty propagation in control systems.
Fuzzy arithmetic has been used by various researchers as a technique for propagating
uncertainty or variability through complex engineering models. The origins of this approach
can be found in the theory of Fuzzy Sets (Zadeh, 1965). In contrast to the classical set theory,
the elements of a fuzzy set are assigned a degree of membership to the set, which is referred
to as the membership level µ. The core of the set is defined as the subset of elements for which
µ = 1, whilst the support is the subset for which µ > 0. A fuzzy number is a fuzzy set that is
convex and normal, and whose membership function is piecewise continuous.
The issue of performing mathematical operations on fuzzy numbers instead of on
conventional numbers can be a challenge rather than a trivial problem. In fact, the Fuzzy
Arithmetic processes are usually performed by decomposing the fuzzy numbers into a
number of intervals given by the α-cuts at the α-levels µi, (i = 0, 1, . . . , m) with

µi =
i

m
(8)

Then, a interval analysis via interval arithmetic can be carried out separately to each
membership level µi.
For monotonic problems this process may be trivial, since the maxima or minima of the inputs
will lead to the maxima or minima for the output. Conversely, for non-monotonic problems
this is no longer the case (Sims et al., 2010). In addition, the Standard Fuzzy Arithmetic may
become problematic and lead to different results for the same problem depending on the form
in which the solution procedure is applied, as can be seen in the examples gathered in (Hanss,
2002). In short, the application of Standard Fuzzy Arithmetic usually leads to overestimate
results to a lesser or greater extent and alternative methods must be employed.
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The Transformation Method, introduced in (Hanss, 2002), represents a special implementation
of Fuzzy Arithmetic that avoids the undesired overestimation which usually arises when
Fuzzy Arithmetic is reduced to interval computation. A later efficient implementation
of this method was carried out in (Klimke, 2003), taking advantage of the matrix
computing environment of MATLAB and providing enhanced features such as fast
processing of discretized fuzzy numbers through multi-dimensional arrays, elimination of
recurring permutations, automatic decomposition of models, treatment of single occurrences
of variables through interval arithmetic and a monotonicity test based on automatic
differentiation. Nevertheless, we have to note that the fuzzy parameters are restricted to
convex fuzzy numbers when using the Transformation Method.
Specially relevant for an efficient implementation of the Transformation Method is the
elimination of recurring permutations. The decomposition scheme of this method sometimes
produces recurring points which in the end generate recurring permutations. By removing
these recurring permutations from the evaluation procedure one could save a very valuable
computation time. Indeed, we could even try to reuse as many points for different α-cuts as
possible by selecting only inner points which have already occurred in a higher-level α-cut.
For symmetric triangular membership functions, the obtained discretization is identical to the
original formulation, but for other arbitrarily shaped membership functions, the distribution
of the points is less regular, but of similar density (see Figure 1). However, for the same
number of α-cuts, the less regular distribution of the inner points results in less accurate results
compared to the original formulation.
The number of permutations r by using this efficient implementation of the Transformation
Method is given by the following equation

r = mn + (m + 1)n (9)

where m + 1 is the number of α-cuts and n is the number of fuzzy parameters. As proven in
(Klimke, 2003), the new scheme provides a valuable improvement in terms of computational
cost unless the number of α-cuts is too large compared to the number of fuzzy inputs. If that
was the case, one could disregard the removing of recurring permutations in favour of more
accurate results.

4. Fuzzy Finite Element procedure in MATLAB

The fuzzy theory has led to the development of Fuzzy Finite Element methods as that
described in (De Gersem et al., 2005; De Munck et al., 2008; Moens & Vandepitte, 2005) for
analyzing the propagation of uncertainties in the Frequency Response Functions of a dynamic
system. When using this methodology, the uncertainties in the model parameters can be taken
into account by fuzzy numbers with their shape obtained from experimental data or assumed
from expert knowledge. Then, the numerical procedure for the implementation of these Fuzzy
Finite Element methods consists of a sequence of Interval Finite Element procedures based on
a general strategy for computing the fuzzy result from operations on fuzzy operands, i.e. the
α-sublevel or α-cuts technique.
Figure 1 clarifies this procedure. This technique subdivides the membership range into a
number of α-cuts. At each level, the intersection with the membership function of the input
uncertainties results in an interval. Based on these input intervals for all uncertain parameters,
an interval analysis can be performed obtaining the interval of the output variables at the
considered α-cut. Strictly speaking, the interval analysis for a specific α-cut consists in running
all the finite elements calculations corresponding to all the possible permutations among
input variables at said level and choosing the lower and upper bound of the required output
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Fuzzy inputs Fuzzy outputs

α 1

α 2

α n

αN-1

α N

..
.

..
.

x 1

µ
( 

  
 )

x
1

α 1

α 2

α n

αN-1

α N

..
.

..
.

x 2

µ
( 

  
 )

x
2 α 1

α 2

α n

αN-1

α N

. 
. 
.

. 
. 
.µ

( 
  
 )

y
1

y1

Iterative FE calculations

Deterministic analysis at α N

Interval analysis at α N-1

Interval analysis at α n

Interval analysis at α 2

Interval analysis at α 1

..
.

..
.

Fig. 1. Scheme of the numerical procedure to perform a Fuzzy Finite Element analysis using
four α-cuts.

variables. Note that if µ = 1, the interval analysis degenerates into the deterministic analysis.
Finally, the membership functions of the required output variables are assembled from the
interval results at all sublevels.
The Fuzzy Finite Element analysis is based on the results of a previous deterministic design
of the control system. The control engineer must set the control parameters and gains of the
regulator in order to accomplish all the features required for the active damping in terms of
both stability and performance. After this process, which is usually easier and faster than
other complex control techniques such as those derived from H∞ control, the Fuzzy Finite
Element analysis will simulate the behaviour of the control system when some parameters
are considered uncertain. This method is not a robust designing technique but a possibilistic
method which tests whether the deterministic design is robust enough to keep the closed
loop behaviour of the structure inside the allowable bounds for its stability and performance
features.
The set of calculations which are carried out at each permutation of input values is compound
of these steps:

Step 1: Finite Element calculations via the OpenFEM Toolbox

Step 2: Closed loop simulation of the control system via the Control System Toolbox

Step 3: Analysis of stability and performance via fuzzy variables such as stability margins or
active damping.

The method chosen for carrying out the interval fuzzy arithmetics was the efficient
implementation of the Transformation Method proposed in (Klimke, 2003). Nevertheless, we
have included some modifications which will be introduced in the ensuing.
The first modification lies in the fact that Klimke’s MATLAB script is made under the
assumption that the fuzzy output is the result of evaluating an analytical expression. In our
case, we need to replace the evaluation of such analytical function (inline class) with a list of
MATLAB commands which develops the aforementioned steps. This also allows us to include
the possibility of achieving several fuzzy outputs instead of only one. The second modification
was not necessary but it endows the method with enhance capabilities. It consists on using
cell class arrays instead of double class arrays to define the fuzzy outputs, so an extra field may
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be included where information about each iteration is stored (for instance, the exact value of
the fuzzy inputs at each permutation). Figures 2 and 3 show the MATLAB implementation
of the efficient Transformation Method after modifying the Klimke’s implementation. Note
that the MATLAB implementation of the external function in Figure 3 only shows an example
corresponding to the evaluation of a test function. In our case, this function would contain all
the required commands which carry out the three foregoing calculating steps.
In order to prove the validity of our modified version of the Klimke’s Transformation Method,
a comparative fuzzy analysis was run. We took as a reference one example found in (Klimke,
2003) where the test function f (x1, x2) = cos(πx1)x2 is subjected to the triangular fuzzy inputs

function [fzr]=gtrmrecur_modif(varargin)

% Angel L. Morales, 2011.

% FZR=GTRMRECUR_MODIF(FZ1,FZ2,...,FZN) calls the general transformation

% method implemented by Klimke in 2003 with extended capabilities.

% The function allows N fuzzy numbers in alpha-cut representation.

% An accompanying function called GTRMRECUR_EXTERNAL_FCN is required.

fzin=varargin;

n = nargin;

m = size(fzin{1},1) - 1;

indices.subs = {};

indices.type = ’()’;

fzr = cell(m+1,2);

for k = 1:2

t = (floor((m+2-k)/2)+rem(m+2-k,2))*2-2+k;

for i = 1:n

c = reshape(fzin{i}(end+1-k:-2:1,:)’,t+2-k,1);

c = c(3-k:end);

repvec = t*ones(1,n);

repvec(i) = 1;

x{i} = repmat(shiftdim(c,1-i),repvec);

end

s = k;

z_cell_matrix=gtrmrecur_external_fcn(x);

for j = m+2-k:-2:1

indices.subs(1:n) = {1:s};

w = reshape(subsref(z_cell_matrix,indices),s^n,1);

wc = zeros(size(w));

for cont=1:length(wc) wc(cont)=w{cont}{2}; end;

[none,pos_min]=min(wc); fzr{j,1} = w{pos_min};

[none,pos_max]=max(wc); fzr{j,2} = w{pos_max};

s = s + 2;

end

end

for j = m:-1:1

if fzr{j+1,1}{2}>=fzr{j,1}{2}; fzr{j,1}=fzr{j,1}; else fzr{j,1}=fzr{j+1,1}; end

if fzr{j+1,2}{2}>=fzr{j,2}{2}; fzr{j,2}=fzr{j+1,2}; else fzr{j,2}=fzr{j,2}; end

end

Fig. 2. MATLAB implementation of the efficient Transformation Method after modifying
Klimke’s script.

function [z_cell_matrix]=gtrmrecur_external_fcn(x)

% Angel L. Morales, 2011.

% Z_CELL_MATRIX=GTRMRECUR_EXTERNAL_FCN(FZ1,FZ2,...,FZN) calls the function

% which executes the commands in order to obtain the fuzzy output.

% It is called during the execution of FZR=GTRMRECUR_MODIF(FZ1,FZ2,...,FZN)

func = inline(’cos(pi.*x1).*x2’);

x_vector=cell(size(x));

for cont=1:length(x)

x_vector{cont} = reshape(x{cont},numel(x{cont}),1);

end

iterations=length(x_vector{1});

z_cell=cell(1,2); z_cell_array=cell(1,iterations);

for iteration=1:iterations

x1=double(x_vector{1}(iteration));

x2=double(x_vector{2}(iteration));

z_cell{1}=[x1 x2];

z_cell{2}=feval(func,x_vector{1}(iteration),x_vector{2}(iteration));

z_cell_array{iteration}=z_cell;

end

z_cell_matrix=reshape(z_cell_array,size(x{1}));

Fig. 3. Example of the MATLAB function called by the modified Transformation Method
which contains the commands for the obtention of the fuzzy output
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A Fuzzy Finite Element Method Programmed in MATLAB for the Analysis of Uncertain Control Systems of Structures 9

p̃1 = 〈2.5, 2.5, 2.5〉TFN and p̃2 = 〈3, 2, 2〉TFN, in accordance to the nomenclature proposed
in (Dubois & Prade, 1980). The fuzzy output obtained with the modified version clearly
matched the results obtained with the original version. Nevertheless, an unavoidable loss
of computational efficiency arose.
Our modified version results more time-consuming because of the different way in which the
simulated function is handled, as it can be seen in Table 1. In the original version, the inline
class analytical expression can be executed only once with the array containing all the required
permutations of fuzzy inputs at a time. In the modified version, the expression is evaluated
separately at each permutation as it would be the case when a control system is simulated
with several MATLAB commands. The elapsed time during these operations is called t f cn. As
far as the obtention of the fuzzy output as a cell array instead of as a double array, this fact does
not add any noticeable increase of computational cost but it does lead to heavier variables and
higher memory requirements. The elapsed time during these operations is called tmax. In all
the cases, the loss of efficiency is acceptable with regard to the benefits they provide, specially
considering that the elapsed time in any finite element simulation may be on the order of
seconds and it has much more restrictive memory requirements.

5. A case study of uncertainty propagation

Consider an aluminium plate in free conditions, the dimensions and material properties of
which are detailed in Table 2. The finite element model of this plate was carried out by
means of the OpenFEM Toolbox of MATLAB (Balmes et al., 2009). After defining the mesh,
the matrices of mass (M) and stiffness (K) which define the undamped model were obtained.
The eigenvalue problem can then be solved, the natural frequencies and mode shapes being
shown in Figure 4. The damping matrix (C) is constructed considering a structural damping
of ξi = 0.6% in all the modes.
The piezoelectric actuator and sensor, the properties of which are detailed in Table 3, are
collocated in the centre of the plate. As described in (Dosch et al., 1992; Sims et al., 2005),
the piezoelectric actuator and sensor may be modelled as a beam which provides bending
moments at its ends and measures a voltage proportional to the difference of slope of its ends.
Due to collocation, the localization vectors of actuator (Lu) and sensor (Ly) are identical and
equal to

LT
u = LT

y = (0, . . . ,−1, 0, . . . , 1, 0, . . . , 0) (10)

Original Modified
ttot (s) 0.047 0.344
ttot (%) 100.00 100.00
t f cn (s) 0.016 0.313
t f cn (%) 34.04 90.99

tmax (s) 0.000 0.000
tmax (%) 0.000 0.000
toth (s) 0.031 0.031
toth (%) 65.96 9.01
Weight (bytes) 336 8568

Table 1. Efficiency comparison between the original and the modified Klimke’s
implementation. The total time (ttot), the time for evaluating the analytical expression (t f cn),
the time for calculating the maxima and minima of the output fuzzy number (tmax) and the
time for other calculations (toth) are shown. The weight means the size in bytes of the output
fuzzy variable.
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Width (mm) 300.00
Length (mm) 500.00
Thickness (mm) 3.00
Young’s modulus (GPa) 72.00
Poisson’s coefficient 0.30
Density (kg/m3) 2700.00
Structural damping (%) 0.60

Table 2. Geometries and material properties of the plate.

Width (mm) 40
Length (mm) 100
Thickness (mm) 0.250

d33 (m/V) 0.30·10−9

d31 (m/V) -0.15·10−9

e31 (N/Vm) -7.5
k33 0.7
Young’s modulus (GPa) 50
Maximum traction (MPa) 80
Maximum compression (MPa) 600
Maximum electric Field (V/mm) 2000
Density (kg/m3) 7600
Maximum strain Brittle
Maximum temperature (C) 80°C - 150°C

Table 3. Geometries and material properties of the piezoelectric (Preumont, 2002).

where the non-zero values are placed in the position corresponding to the active rotational
degree of freedom of the nodes in which the piezoelectric is located.
As described in the Section 2.2, a Positive Position Feedback control strategy designed with
the Control System Toolbox of MATLAB is to be used. Figure 5 presents the root locus of the
control system after tuning the second order filter parameters (ξf and ωf) so that the first
flexible mode of vibration become actively damped. After the tuning process (ξf = 0.9 and
ωf = 900 rad/s), the next step consists of selecting the control gain which most approaches

Mode 1

f  = 64.01 Hz1

Mode 2

f  = 66.46 Hz2

Mode 3

f  = 150.29 Hz3

Mode 4

f  = 176.53 Hz4

Mode 5

f  = 183.42 Hz5

Mode 6

f  = 231.02 Hz6

Fig. 4. Mode shapes and natural frequencies for the plate in free conditions.
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the maximum damping of the first vibration mode (ξ1,max). In this particular case, a gain of
g = 0.200 entails a selected damping coefficient of ξ1,sel = 88.30%. Figure 5 also shows the
characteristic stability limit of the Positive Position Feedback control systems and the fact that
only the first and the fifth modal shapes seem to be controllable in the view of the wide loops
going from the poles to the zeros (Preumont, 2002).

100-900 -800 -700 -600 -500 -400 -300 -200 -100 0

Im
a

g
in

a
ry

 p
a

rt

Real part

-100

100

300

500

700

900

1100

1300

1500

1700

1900

1
2

3

4

5

6

g = 0.200

ξ      = 88.30%1,sel

g = 0.257

Stability limit

Fig. 5. Root locus of the control system after tuning the second order filter parameters to the
first flexible mode of vibration (ξf = 0.9 and ωf = 900 rad/s).

In the proposed case study the collocated pair of actuator and sensor are subjected to
uncertainty. More precisely, the position of the centre of both the actuator and sensor
are considered to be uncertain parameters. Additionally, another source of uncertainty
corresponding to the structural damping of the plate is included as this is known to be
uncertain in practice. Thus, we have a total of five different fuzzy numbers: x̃a (position
“x” of the centre of the actuator), ỹa (position “y” of the centre of the actuator), x̃s (position
“x” of the centre of the sensor), ỹs (position “y” of the centre of the sensor) and ξ̃ (structural
damping). The membership functions of these fuzzy parameters, assuming that they are both
symmetric and triangular, can be seen in Figure 6.
After applying the Fuzzy Finite Element algorithm described in Section 4 one can obtain
several fuzzy outputs which describe the stability and performance of the control system. In
fact, it is possible to choose those variables which better fit the effects which one is interested
in. In this particular case, the following are calculated:

G̃ Gain margin.

P̃ Phase margin.

ξ̃1,max Maximum damping coefficient of the first mode.

ξ̃1,sel Selected damping coefficient of the first mode.

The gain margin G̃ is the increase in the system gain when the phase is −180 that will result in
a marginally stable system with intersection of the −1+ j0 point on the Nyquist diagram. The
phase margin P̃ is the amount phase shift of the system at unity magnitude that will result
in a marginally stable system with intersection of the −1 + j0 point on the Nyquist diagram.
The maximum damping coefficient ξ̃1,max is the highest damping achievable in the first mode

loop independently of the selected gain, whilst the selected damping coefficient ξ̃1,sel is the
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Fig. 6. Membership functions of the input fuzzy numbers: (a) coordinates of the centre of the
actuator (x̃a and x̃s), (b) coordinates of the centre of the sensor (ỹa and ỹs) and (c) structural
damping of the plate (ξ̃).

damping that the control systems provides at the value of gain selected in the deterministic
case. Clearly, the gain and phase margins can be used to quantify controller stability, whilst
the damping ratios serve to quantify performance and reliability.
The membership functions of these variables are shown in Figure 7. We observe that the
uncertainty considered may lead to a both better and worse behaviour of the control system
in comparison to the considered deterministic situation.
Another possibility for obtaining a global view of the whole control system lies in plotting
its root locus for different α-sublevels or α-cuts. In particular, we show in Figure 8 the root
locus for two different values of the membership. Although the fourth mode has not been
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gray color).
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specifically analyzed via fuzzy variables, we can note that its zero crosses the imaginary axis
and becomes unstable for some values of the gain. Note that zeros are essentially related to
mode shapes of the structure, which tend to be more sensitive to the parameter uncertainty
than the natural frequencies. This fact warns us that a higher gain level may lead to instability
of the fourth mode when actively damping the first, which can be detected easily by means
of including new fuzzy variables in the analysis such as the maximum real part of the closed
loop poles.
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Fig. 8. Root locus of the control system for two different α-cuts: µ = 1 (black) and µ = 0
(grey).

6. Conclusion

In this chapter we have shown the suitability of the matrix computing environment MATLAB

to solve control problems of structures via finite element analysis and root locus design
and how these two issues have been blended and integrated into a Fuzzy Finite Element
methodology for the analysis and simulation of uncertain control of structures.
The Fuzzy Finite Element procedure has been described. The approach relies on the α-cut
technique which subdivides the membership range into a number of α-levels. The fuzzy
arithmetic is based upon an efficient implementation in MATLAB code for the Transformation
Method. This implementation has been modified and improved with some enhanced features.
This methodology has been shown to be applicable to a realistic case study related to
structural control using a Positive Position Feedback technique and piezoelectric actuators
and sensors. In the light of the obtained results, the proposed procedure may prove useful to
other analysis involving any other control technique or uncertainty source. In addition, the
efficient implementation obtained due to MATLAB programming allows us to achieve high
accuracy results together with low computational costs.
Finally, further research may be carried out in this topic. Firstly, a more efficient
implementation of the Transformation Method can be found when using cell arrays instead
of double arrays or when considering multiple fuzzy outputs. Secondly, the Transformation
Method also allows a sort of sensitivity analysis which should be included in the MATLAB

implementation in order to endow our method with extended capabilities. Thirdly, and
in-depth comparison between this possibilistic methodology and the robust H∞ optimal
control theory must be carried out in order to identify more precisely the situations in which
one method stand out from the other.
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