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1. Introduction 

During the last two decades, a number of research studies on the design of the excitation 

controller of synchronous generator have been successfully carried out in order to improve 

the damping characteristics of a power system over a wide range of operating points and to 

enhance the dynamic stability of power systems (Kundur, 1994; Noroozi et.al., 2008; 

Shahgholian, 2010). When load is changing, the operation point of a power system is varied; 

especially when there is a large disturbance, such as a three-phase short circuit fault 

condition, there are considerable changes in the operating conditions of the power system. 

Therefore, it is impossible to obtain optimal operating conditions through a fixed excitation 

controller. In (Ghandra et.al., 2008; Hsu & Liu, 1987), self-tuning controllers are introduced 

for improving the damping characteristics of a power system over a wide range of operating 

conditions. Fuzzy logic controllers (FLCs) constitute knowledge-based systems that include 

fuzzy rules and fuzzy membership functions to incorporate human knowledge into their 

knowledge base. Applications in the excitation controller design using the fuzzy set theory 

have been proposed in (Karnavas & Papadopoulos, 2002; Hiyama et. al., 2006; Hassan et. al., 

2001). Most knowledge-based systems rely upon algorithms that are inappropriate to 

implement and require extensive computational time. Artificial neural networks (ANNs) 

and their combination with fuzzy logic for excitation control have also been proposed, 

(Karnavas & Pantos, 2008; Salem et. al., 2000a, Salem et. al., 2000b). A simple structure with 

only one neuron for voltage control is studied in (Malik et. al., 2002; Salem et. al., 2003). The 

synergetic control theory (Jiang, 2009) and other nonlinear control techniques, (Akbari & 

Amooshahi, 2009; Cao et.al., 2004), are also used in the excitation control. 

One of the disadvantages of artificial intelligence methods and nonlinear control techniques 

is the complexity of algorithms required for implementation in a digital control system. For 

testing of these methods is much more convenient and easier to use software package 

Matlab Simulink. So, this chapter presents and compares two methods for the excitation 

control of a synchronous generator which are simulated in Matlab Simulink and compared 

with conventional control structure. The first method is based on the neural network (NN) 

which uses the back-propagation (BP) algorithm to update weights on-line. In addition to 
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the function of voltage control the proposed NN has the function of stabilizing generator 

oscillations. The second method proposes a fuzzy logic controller (FLC) for voltage control 

and the stabilization of generator oscillations. The proposed control algorithms with neural 

networks and a fuzzy controller are tested on a simulation model of synchronous generator 

weakly connected through transmissions lines to an AC network. The simulations are 

carried out by step changes in voltage reference. 

2. Simulation models 

Simulation models of synchronous generator and different control structures are made in 

Matlab Simulink. The generator is connected over transformer and transmission lines to the 

AC network (Fig. 1). 

 

SG

Transmission

 lines

X e
U

AC 

network

Synchronous generator Transformer
 

Fig. 1. Synchronous generator connected to AC network 

2.1 Simulation model of a synchronous generator 

Mathematical model of synchronous generator is represented in dq axis form. Based on that 

it is necessary to perform transformation from abc coordinate system to dq coordinate 

system. Assumption is that voltages are symmetrical in all phases and there is only one 

harmonic of magnetic flux in air gap. Equations are represented in per-unit system and time 

is absolute. 

The synchronous generator under consideration is assumed to have three armature 

windings, one field winding, and damper windings. One damper winding is located along 

the direct axis (D) and another is located along the quadrature axis (Q). Accordingly, the 

basis for the mathematical model of the synchronous generator is a system of voltage 

equations of the generator in the rotating dq coordinate system, where u, i, r, x and Ψ denote 

voltage, current, resistance, reactance and flux, respectively (Kundur, 1994): 

 
1

= d

d d q

s

d
u r i

dt
ω

ω
Ψ

− ⋅ + ⋅ + ⋅Ψ  (1) 

 
1

=
q

q q d

s

d
u r i

dt
ω

ω
Ψ

− ⋅ + ⋅ − ⋅Ψ  (2) 

 
1

=
f

f f f

s

d
u r i

dtω
Ψ

⋅ + ⋅  (3) 
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1

0 = Q

Q Q

s

d
r i

dtω
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The equations defining the relations between fluxes and currents are: 

 =
d d d ad f dD D

x i x i x iΨ ⋅ + ⋅ + ⋅  (6) 

 =
q q q qQ Q

x i x iΨ ⋅ + ⋅  (7) 

 =
f ad d f f fD D

x i x i x iΨ ⋅ + ⋅ + ⋅  (8) 

 =
D dD d fD f D D

x i x i x iΨ ⋅ + ⋅ + ⋅  (9) 

 =
Q qQ q Q Q

x i x iΨ ⋅ + ⋅  (10) 

 

The motion equations are defined as follows: 

 ( )= 1
s

d

dt

δ ω ω− ⋅  (11) 

 ( )1
=

2
m e

d
T T

dt H

ω
⋅ −  (12) 

 

where δ is angular position of the rotor, ω is angular velocity of the rotor, ωs is synchronous 

speed, H is inertia constant, Tm is mechanical torque, and Te is electromagnetic torque. 

The electromagnetic torque of the generator Te is determined by equation: 

 =
e q d d q

T i iΨ ⋅ − Ψ ⋅  (13) 

 

Connection between the synchronous generator and AC network is determined by the 

following equations: 

 = e d

d d e e q sd

s

x di
u i r x i u

dt
ω

ω
⋅ + ⋅ + ⋅ ⋅ +  (14) 

 =
qe

q q e e d sq

s

dix
u i r x i u

dt
ω

ω
⋅ + ⋅ − ⋅ ⋅ +  (15) 

 ( )= sin
sd m

u U δ⋅ −  (16) 

 = cos
sq m

u U δ⋅  (17) 
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transformer and transmission line resistance, xe is transformer and transmission line 

reactance, and Um is AC network voltage. Synchronous generator nominal data and 

simulation model parameters are given in Table 1.  

 

 

Terminal voltage 400 V 

Phase current 120 A 

Power 83 kVA 

Frequency 50 Hz 

Speed 600 r/min 

Power factor 0,8 

Excitation voltage 100 V 

Excitation current 11.8 A 

d-axis synchronous reactance Xd 0.8 p.u. 

q-axis synchronous reactance Xq 0.51 p.u. 

Inertia constant H 1.3 

d-axis transient open-circuit time 

constant Tdo′ 

0.55 s 

d-axis transient reactance Xd’ 0.35 p.u. 

d-axis subtransient reactance Xd'' 0.15 p.u. 

q-axis subtransient reactance Xq'' 0.15 p.u. 

Short-circuit time constant Td'' 0.054 s 

Short-circuit time constant Tq'' 0.054 s 

Transformer and transmission 
line resistance re 

0.05 p.u. 

Transformer and transmission 
line reactance xe 

0.35 p.u. 

 

Table 1. Synchronous generator nominal data and simulation model parameters 

2.2 Conventional control structure 

Conventional control structure (CCS) for the voltage control of a synchronous generator is 

shown in Fig. 3. The structure contains a proportional excitation current controller and, 

subordinate to it, a voltage controller. Simulation model of conventional control structure is 

shown in Fig. 4. 
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Fig. 2. Simulation model of synchronous generator 
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Fig. 3. Conventional control structure 
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Fig. 4. Simulation model of conventional control structure 
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For supplying the generator excitation current, an AC/DC converter is simulated. The 

AC/DC converter includes a three-phase bridge rectifier, a DC link with a detection of DC 

voltage, a braking resistor, and a DC chopper (Fig. 5). 
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Fig. 5. AC/DC converter for supplying generator excitation current (a) and simulation 
model (b) 

2.3 Neural network based control 

The structure of the proposed NN is shown in Fig. 6. The NN has three inputs, six neurons 
in the hidden layer and one neuron in the output layer. The inputs in this NN are the 
voltage reference Uref, the terminal voltage U and the previous output from the NN y(t-1). 
Bringing the previous output to the NN input is a characteristic of dynamic neural 
networks. The function tansig is used as an activation function for the neurons in the hidden 
layer and for the neuron in the output layer. 
The graphical representation of the tansig function and its derivation is shown in Fig. 7. The 
numerical representation of the tansig function and its derivation are given as follows 
(Haykin, 1994): 
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Fig. 6. Structure of the proposed neural network 
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Fig. 7. Tansig activation function and its derivation 

 1
( ) 1

1 cv
v

e
ψ

−
= −

+
 (18) 

 
2

2

2 2

4
( ) (1 )

(1 )

cv

cv

e
v c c

e
ψ ψ

−

−
′ = = ⋅ −

+
 (19) 

The NN uses a simple procedure to update weights on-line and there is no need for any off-
line training. Also, there is no need for an identifier and/or a reference model. The NN is 
trained directly in an on-line mode from the inputs and outputs of the generator and there is 
no need to determine the states of the system. The NN uses a sampled value of the machine 
quantities to compute the error using a modified error function. This error is back-
propagated through the NN to update its weights using the algorithm shown in Fig. 8. 
When the weights are adjusted, the output of the neural network is calculated. 
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Fig. 8. Back-propagation algorithm 
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Training of the NN with the BP algorithm is described in (Haykin, 1994). Inputs and outputs 

of one neuron in the NN can be determined as follows: 

 
1ki kij kj

k

y w x bψ ⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠
∑  (20) 

The BP algorithm is an iterative gradient algorithm designed to minimize the mean square 
error between the actual output and the NN desired output. This is a recursive algorithm 
starting at the output neuron and working back to the hidden layer adjusting the weights 
according to the following equations: 

 ( 1) ( ) ( )
kij kij kij

w t w t w t+ = + Δ  (21) 

 ( ) ( ) ( )
ji j i

w n n y nη δΔ = ⋅ ⋅  (22) 

 ( ) ( ) ( ( ))
j j j j

n e n v nδ φ′= ⋅  (23) 

The error function commonly used in the BP algorithm can be expressed as: 

 ( )21

2
ki ki

t yℑ = −  (24) 

If the neuron is in the output layer, the error function is: 

 
ki ki

ki

t y
y

∂ℑ
= −

∂
 (25) 

If the neuron is in the hidden layer, the error function is recursively calculated as (Haykin, 
1994): 

 
( 1)

1, 1,1,
1 1,

n k

k p k i
pki k p

w
y y

ψ
+

+ +
= +

∂ℑ ∂ℑ ′= ⋅ ⋅
∂ ∂∑  (26) 

If the NN is used for the excitation control of a synchronous generator, it is required that we 
not only change the weights based only on the error between the output and the desired 
output but also based on the change of the error as follows: 

 ( ) ki

ki ki

ki

dy
t y

y dt

∂ℑ
= − −

∂
 (27) 

In this way, the modified error function speeds up the BP algorithm and gives faster 
convergence. Further, the algorithm becomes appropriate for the on-line learning 
implementation. The error function for the NN used for voltage control is expressed as: 

 
1

( )
ref

ki

dU
K U U k

y dt

∂ℑ
= − −

∂
 (28) 

In order to perform the power system stabilization, the active power deviation ΔP and the 
derivation of active power dP/dt are to be imported in the modified error function. The 
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complete modified error function for the excitation control of a synchronous generator is 
given as follows: 

 ( )1 3 2
( )

ref

ki

dU dP
K U U k k P k

y dt dt

∂ℑ ⎡ ⎤ ⎡ ⎤= − − − Δ +⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦
 (29) 

The modified error function is divided into two parts. The first part is used for voltage 

control and the second part for power system stabilization. Parameters K, k1, k2 and k3 are 

given in Table 2. Simulation model of NN control structure is shown in Fig. 9. 

 
 

K 2.5 

k1 0.3 

k2 0.6 

k3 0.25 

Table 2. Parameters of neural network 
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Fig. 9. Simulation model of neural network control structure 

Neural network based controller is realized as S-function in Matlab and is called in every 
simulation step. 

2.4 Fuzzy logic controller 

The detailed structure of the proposed fuzzy logic controller (FLC) is shown in Fig. 10. The 

FLC has two control loops. The first one is the voltage control loop with the function of 
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voltage control and the second one is the damping control loop with the function of a power 

system stabilizer. A fuzzy polar control scheme is applied to these two control loops. 
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Fig. 10. Structure of the fuzzy logic stabilizing controller 

The PD information of the voltage error signal e (k) is utilized to get the voltage state and to 

determine the reference Ifref for the proportional excitation current controller. To eliminate 

the voltage error, an integral part of the controller with parameter Kiv must be added to the 

output of the controller. The damping control signal ustab is derived from the generator 

active power P. The signal a is a measure of generator acceleration and the signal Δω is a 

measure of generator speed deviation. The signals a and Δω are derived from the generator 

active power through filters and the integrator. The damping control signal ustab is added to 

the input of the voltage control loop. 

The fuzzy logic control scheme is applied to the voltage and stabilization control loop 

(Hiyama et. al., 1996). The generator operating point in the phase plane is given by p(k) for 

the corresponding control loop (Fig. 11a): 

 p(k) = (X(k), As·Y(k))  (30) 

where X(k) is e(k) and Y(k) is ed(k) for the voltage control loop, and X(k) is Δω(k) and Y(k) is 

a(k) for the stabilization control loop. Parameter As is the adjustable scaling factor for Y(k). 

Polar information, representing the generator operating point, is determined by the radius 

D(k) and the phase angle Θ(k): 

 2 2( ) ( ) ( ( ))
s

D k X k A Y k= + ⋅  (31) 

 
( )

( ) ( )
( )

s
A Y k

k arctg
X k

⋅
Θ =  (32) 

The phase plane is divided into sectors A and B defined by using two angle membership 

functions N(Θ(k)) and P(Θ(k)) (Fig. 11b). 

The principles of the fuzzy control scheme and the selection of the membership functions 

are described in (Hiyama et. al., 1996). By using the membership functions N(Θ(k)) and 

P(Θ(k)) the output control signals u(k) and ustab(k) for each control loop are given as follows: 
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Fig. 11. Phase plane (a) and angle membership functions (b) 
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Θ + Θ
 (33) 

 
stab max

( ( )) ( ( ))
( ) ( )

( ( )) ( ( ))
s

N k P k
u k G k U

N k P k

Θ − Θ
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Θ + Θ
 (34) 

The radius membership function G (k) is given by: 

G(k) = D(k) / Dr for D(k) ≤ Dr  

G(k) = 1 for D(k) > Dr(35) 

Simulation models of the voltage control loop, stabilization control loop and fuzzy logic 
control structure are presented on the Figs. 12, 13, and 14, respectively. Parameters As, Dr 
and α for the voltage control loop and the damping control loop are given in Tables 3 and 4. 
 

As 0.1 

Dr 1 

Kiv 10 

Umaxv 2 p.u. 

α 90°

Table 3. FLC parameters for voltage control loop 

 

As 0.01 

Dr 0.01 

Umaxs 0.1 p.u. 

α 90° 

Table 4. FLC parameters for damping control loop 
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Fig. 12. Simulation model of voltage control loop 

 

Ustab

1

atan

Quadrant

calculation

a

dw

theta1s

thetas

P(theta)1

N(theta)1

u
2

u
2

sqrt

P_thetas

Goto8

dw

Goto7

a

N_thetas

Gs

theta1s

thetas

Ds

180/pi

G(D)1

[theta1s]

[thetas]

[dw]

[a]

[Ds]

[P_thetas]

[Gs]

[a]

[dw]

[a]

[thetas]

[dw]

0.1

1

2

Ass

3

dw

2

a

1

 

Fig. 13. Simulation model of stabilization control loop 
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Fig. 14. Simulation model of fuzzy logic control structure 

3. Simulation results 

In order to verify the performance of the proposed control structures several simulations 
were carried out. In these experiments, voltage reference is changed in 0.1 s from 1 p.u. to 
0.9 p.u. or 1.1 p.u. and in 1 s back to 1 p.u. at a constant generator active power. 
For the quality analysis of the active power oscillations two numerical criteria are used: the 
integral of absolute error (IAE) and the integral of absolute error derivative (IAED). If the 
response is better, the amount of criteria is smaller. 
Fig. 15 presents active power responses for step changes in voltage reference from 1 p.u. to 
0.9 p.u. and back to 1 p.u. at an active power of 0.5 p.u. The numerical criteria of the 
responses in Fig. 15 are given in Table 5. 
 

 

Fig. 15. Active power responses for step changes in voltage reference 1 p.u.-0.9 p.u.-1 p.u. at 
an active power of 0.5 p.u. 
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 IAE IAED 

CCS 0.389 0.279 

FLC 0.255 0.097 

NN 0.235 0.090 

 

Table 5. Numerical criteria for step changes in voltage reference 1 p.u.-0.9 p.u.-1 p.u. at an 
active power of 0.5 p.u. 

Fig. 16 shows active power responses for step changes in voltage reference from 1 p.u. to 1.1 
p.u. and back to 1 p.u. at an active power of 0.5 p.u. The numerical criteria of the responses 
in Fig. 16 are given in Table 6. 
 

 
 
 

 

 

Fig. 16. Active power responses for step changes in voltage reference 1 p.u.-1.1 p.u.-1 p.u. at 
an active power of 0.5 p.u. 

 

 IAE IAED 

CCS 0.264 0.196 

FLC 0.202 0.092 

NN 0.192 0.091 

 

Table 6. Numerical criteria for step changes in voltage reference 1 p.u.-1.1 p.u.-1 p.u. at an 
active power of 0.5 p.u. 
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Fig. 17 presents active power responses for step changes in voltage reference from 1 p.u. to 
0.9 p.u. and back to 1 p.u. at an active power of 0.8 p.u. The numerical criteria of the 
responses in Fig. 17 are given in Table 7. 

 
 
 
 
 
 

 
 
 
 
 

Fig. 17. Active power responses for step changes in voltage reference 1 p.u.-0.9 p.u.-1 p.u. at 
an active power of 0.8 p.u. 

 
 

 

 IAE IAED 

CCS 0.52 0.373 

FLC 0.248 0.114 

NN 0.219 0.106 

 

Table 7. Numerical criteria for step changes in voltage reference 1 p.u.-0.9 p.u.-1 p.u. at an 
active power of 0.8 p.u. 

Fig. 18 shows active power responses for step changes in voltage reference from 1 p.u. to 1.1 
p.u. and back to 1 p.u. at an active power of 0.8 p.u. The numerical criteria of the responses 
in Fig. 18 are given in Table 8. 
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Fig. 18. Active power responses for step changes in voltage reference 1 p.u.-1.1 p.u.-1 p.u. at 
an active power of 0.8 p.u. 

 

 IAE IAED 

CCS 0.312 0.234 

FLC 0.130 0.097 

NN 0.119 0.090 

Table 8. Numerical criteria for step changes in voltage reference 1 p.u.-1.1 p.u.-1 p.u. at an 
active power of 0.8 p.u. 

Based on the numerical criteria it can be concluded that the neural network-based controller 

with stabilization effect in the criteria function has two to three percent better damping of 

oscillations than the fuzzy logic controller. 

4. Conclusion 

Three different structures for the excitation control of a synchronous generator were 

simulated in Matlab Simulink: the first structure is a conventional control structure which 

includes a PI voltage controller, while the second structure includes a fuzzy logic controller, 

and the third structure includes a neural network-based voltage controller. Performances of 

the proposed algorithms were tested for step changes in voltage reference in the excitation 

system of a synchronous generator, which was connected to an AC network through a 

transformer and a transmission line. 

For the performance analysis of the proposed control structures two numerical criteria were 
used: the integral of absolute error and the integral of absolute error derivative. In the 
comparison with the PI voltage controller neural network-based controller and the fuzzy 
logic controller show a significant damping of oscillations. It is important to emphasize that 

www.intechopen.com



 
Synchronous Generator Advanced Control Strategies Simulation 

 

195 

the stabilizer was not used in the conventional control structure, which would definitely 
reduce the difference between the conventional and the proposed control structures. 
The simulation results show justification for the use of the advanced control structure based 
on neural networks and fuzzy logic in the excitation control system of a synchronous 
generator. Also, using the software package Matlab Simulink allows users to easily test the 
proposed algorithms. 
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