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1. Introduction

Frequently, numerical algorithms are based on sequentially solution of linear set of equation
Ax=b, applying small influences of few components of matrix A, which changes to a new
one A". Thus, new equation set is defined, with new matrix A", which has to be solved for
the current numerical iteration. Instead of solving the new equation set, it is beneficial to
evaluate a new inverse matrix A*!, having the evaluations for the previous inverse matrix A-
1. Many control algorithms, on-line decision making and optimization problems reside on
the prompt evaluation of the inverse matrix A, stated as a quadratic nonsingular, e.g.
A.A1=A-1. A=], where I is identity matrix. Currently, for the evaluation of the inverse matrix
A-lthree general types of A factorization are applied: LU factorization, QR - decomposition
and SVD-decomposition to singular values of A.

LU - factorization. It results after the application of Gauss elimination to linear set of
equations Ax=b to obtain a good computational form of A (Fausett, 1999). The factorization
of A is obtained by multiplication of two triangular matrices, upper U and lower L
triangular, related to the initial one by LU=A , or

Ly 0 Off|uy wup gl |a;g dpp dg
by by 01|10 uy upl=|ay ay day|
Ly Iy Ipl| 0 0 Uz |a3 a3 as;

The LU factorization can be applied for the solution of linear set of equations to evaluate the
inverse matrix of A: A-l. The evaluation of A is performed on two steps, for given LU
factorization of A, A=LU (L, U - given):

First: the matrix equation LY=I is solved. The first column of matrix Y is found from the

linear equation system LY(;,1) :|1 0 .. 0|T. The next columns of Y are calculated by

solving this linear equation set with the next columns of matrix I. The solution of this set of
equations is found by sequential substitution from top to down, because the matrix L is a
lower triangular and there is no need to find the inverse L.

Second: Using the solution matrix Y* a new linear matrix equation system is solved U.X=Y".
Because U is upper triangular, each column of X is calculated with the corresponding
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112 MATLAB — A Ubiquitous Tool for the Practical Engineer

column of Y" by substitutions from bottom to top. Thus, no inverse matrix U -1is calculated,
which speeds up the calculations.

The solution X=A-1 is the inverse matrix of the initial one A. Thus, the inverse matrix A-is
found by LU factorization of A and twice solution of triangular linear matrix equation
systems, applying substitution technique.

QR decomposition The QR decomposition of matrix A is defined by the equality A=Q.R,
where R is upper triangular matrix and Q is orthogonal one, Q-7=QT. Both matrices Q and R
are real ones. As the inverse A-! is needed, A-’=R-1.Q-1. Following the orthogonal features of
Q, it is necessary to evaluate only R, which can be done from the linear matrix system
R.Y=I. Because R is upper triangular matrix, the columns of the inverse matrix Y=R-! can be
evaluated with corresponding columns of the identity matrix I by merely substitutions from
bottom to down. Hence, the inverse matrix A1 is found by QR factorization of A, sequential
evaluation of R by substitutions in linear upper triangular matrix system and finally by
multiplication of R-?and QT.

SVD - decomposition to singular values This decomposition is very powerful, because it allows
to be solved system equations when A is singular, and the inverse A1 does not exist in
explicit way (Flannery, 1997). The SVD decomposition, applied to a rectangular MxN matrix
A, represents the last like factorization of three matrices:

A=UW.VT,

where U is MxN orthogonal matrix, W is NxN diagonal matrix with nonnegative
components (singular values) and V7 is a transpose NxN orthogonal matrix V or

UTu=vV1v=] NxN -

The SVD decomposition can always be performed, nevertheless of the singularity of the
initial matrix A. If A is a square NxN matrix, hence all the matrices U, V and W are square
with the same dimensions. Their inverse ones are easy to find because U and V are
orthogonal and their inverses are equal to the transpose ones. W is a diagonal matrix and the
corresponding inverse is also diagonal with components 1/w; , j=1,N. Hence, if matrix A is
decomposed by SVD factorization, A=U.W.VT, then the inverse one is A-1=V.[diag1/w;]. UT.
The problem of the evaluation of the inverse A-! appears if a singular value wj exists, which
tends to zero value. Hence, if matrix A is a singular one, the SVD decomposition easily
estimates this case.

Hence, the peculiarities of LU, QR and SVD factorizations determine the computational
efficiency of the evaluations for finding the inverse matrix A-l. Particularly, the simplest
method, from evaluation point of view, is LU factorization followed by QR decomposition
and SVD factorization. All these methods do not use peculiarities, if matrix A*slightly differs
from the initial matrix A. The inverse of A*has to be evaluated starting with its factorization
and sequentially solution of linear matrix equation systems. Hence, it is worth to find
methods for evaluation of the inverse of A*, which differs from A in few components and A-!
is available. The new matrix A" can contain several modified components a;. Hence, the
utilization of components from the inverse A-! for the evaluation of the new inverse matrix
A™1 can speed up considerably the numerical calculations in different control algorithms and
decreases the evaluation efforts. Relations for utilization of components of A1 for evaluation
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Decomposition Approach for Inverse Matrix Calculation 113

of a corresponding inverse of a modified matrix A" -1 are derived in (Strassen, 1969). The
components of the inverse matrix can be evaluated analytically.

Finding the inverse matrix is related with a lot of calculations. Instead of direct finding an
inverse matrix, it is worth to find analytical relations where lower dimensions inverse
matrices components are available. Here analytical relations for inverse matrix calculation
are derived and the corresponding MATLAB codes are illustrated.

2. Analytical relations among the components of inverse matrix

Initial optimization problem is given in the form

0 |[x X
min l‘xlT xg‘ & ! ‘RlT RZT‘ ! (1)
x |2 0 Qfx, 29}
X, +a,Xy =d
byx, =G
byx, =Gy

where the matrices dimensions are: x; |, v1 Q1 by n, 7 Ri lnyx1 7 1 lngen, 7 4 gt

X2 |n2x1 e |n2xn2 i Ry |n2x1 L) Imoxnz ;b |m1xn1 7 G |m1x1 i by |m2xn2 7 G |m2x1 ’

Q 0 Ry
0 Q R,

Peculiarity of problem (1) is that the connected condition a;x; +a,x, =d distributes a

Q= ;R=

common resource d while the subsystems work with own resources C; and C,. For
simplicity of the writing it can be put

A1 | myxn, Ay | myxn,
Al |(m0+m1+n12)xn1 = bl myxm, ;AZ |(mo+m1+m2)xn2 =0 myxn, ’
1My X1y 2| myxn,
d
D= Cl ;A= |A1 A2| |(m0+m1 +1m, )x(nyxny) (2)

2 (g +my +my )1

2.1 Decomposition of the initial problem by goal coordination

The initial problem (1) can be solved by two manners using hierarchical approach according
to the hierarchical multilevel systems (Mesarovich et al, 1973; Stoilov & Stoilova, 1999): by
goal coordination and by predictive one. Taking into account the substitutions

Q 0
0 Q

R
R,

X1

Q= ;R=| ;A=A A,

jx=

, 3)

Xy
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the solution of (1) can be found in analytical form (Stoilova, 2010) :
7' =-Q'[R-AT(AQ'AT)(AQ 'R+ D) | (4)
or

) ) B ~ =1 ~ ~
¥ =—Qr'Ry + Q' A (A1Q11A1T [t AzQzlAZT) (AlQllRl +AQ Ry + D) @)

-1
xg" =0y Ry + Q' A7 (A1Q AT + 405" A7 ) (AQ1"Ry + A,Q5'R, +D).

It is necessary to be known the matrices A1, A2, Q1, Q2, Ry, Rz for evaluating the solutions (5)
Determination of AQ A"
Applying (3) it is obtained

-1 T
i 0 |la i _
AQ AT :|A1 A2| ' 1 1T :A1Q11A1T +A2Q21A2T- (6)
0 2 AZ
Using (2) it follows
alQl_lairmoxmo alQl_lb;Fmoxml Omoxm2
AlQl_lA{ = lel_la;lexmo lel_lbfmlxm1 Omlxm2 ’ (7)
Omzxm0 Omzxm1 Omzxm2

-1.T -14,T
612Q2 ap Mg X1, Omoxm1 612Q2 b2 mMyXMiy

AQ'A = 0 0 0 . 8)

1M XMy myxny My XMy

1.T -1, T
b2Q2 ap 11y X111 Omzxml b2Q2 b2 My X111y

After substitution of (7) and (8) in (6) AQ A" and (AQ'A")™ can be determined

1T 1T 1T 1T
alQl a +l12Q2 ap moxnt, alQl bl MyX1y aZQZ b2 MyXm,
“1 4T “1 4T “1 AT -1 T 1T
AQTA =AQ1 A + A0 Ay = b:1Q1 41 iy xm, 1Q71 b1y m, 0 )

myxn,

-1.T -14,T
bZQZ ap 11y X111 Omzxm1 b2Q2 b2 My X1y

“1 4T\-1 “1 AT —1 ATy-1
(AQTA" ) =(A1Q01 AT + A0, Ay) =
1T 1T “14,T 1, T
mQr 4y +a,Qy ay o mQ1 b1 myem,  2Q2 b2y em,
1T “14,T
= lel ay 1my X1, lel bl My X1, Omlxm2

-1.T -13,T
bZQZ ap My X1, Omzxm1 b2Q2 b2 My X1,

-1
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The manner of definition of matrix AQ'A” shows that it is a symmetric one.

Determination of AQ 'R +D
Using (2) and (3) it follows

0Q;'Ry +a,Q5' Ry +d
AQ'R+D= b,Q;'R, +C, (11)
b,Q'R, +C,

Determination of (AQATY(AQ 'R + D)
Using (10) and (11), it is obtained

a,Q7'al +a,Q; al a,Q;7'bT a,Q;'b] N -1 -1
1<1 "1 252 72y xmy, 1=1 Y1 myxm, 22 Y2 myxm, ulQl R1 +112Q2 R2 +d
1 AT\-1 -1 1T 13T -1
(AQ7A) (AQ R+D)= b1Q71 8 g b1Q71 b1 o, U — b,Qr R+
1T 13T -1
bZQZ a2mzxmo 0 b2Q2 b2 My X1, b2Q2 R2 +C2

myxny

-1 -1
allmoxmo OLlZmOJcml OLlE‘nnoxmz a1Q1 Rl + azQz Rz +d
-1 2T\-1 -1 _ -1
(AQ A ) (AQ R+D) - OL21mlxmo OL22mlxml O"Z?ﬂﬂlxm2 b1Q1 Rl +C1

-1
OL?«)lmzxmo 0“32711230111 0L33mzxmz b2Q2 R2 +C2
where

017 Oqp O3
(AQ_lAT)_lza:aﬂ Oy o3 (12)

O3 O3 Oz (mg +my +my )x(my+my +m,)

Taking into account the structure of matrix (AQ'A")™" , then 0, =0, a5 =0. The
manner of definition of the inverce matrix o shows that it is a symmetric one.
Consequently, the term (AQ'AT)(AQ'R+D) is

a1 (mQr Ry + 3,05 Ry +d) + 2y (11Q1 'Ry +C)y + 1300 Ry +Cy) 1 (13)
(AQ'ATY N (AQ 'R + D) = oy (11Q1 ' Ry + 3,Q5 ' Ry + d) + a0 (1Q1 ' Ry + Cp) + @5(02Q5 ' Ry + C3)| 11
0
a3 (0;Q7" Ry +a,Q5" Ry + d) + a3 (b1Q7 ' Ry +Cy) + a3 (,Q5' Ry +C)
0

myx1

Determination of AT(AQ'AT)(AQ'R + D)
After a substitution of (2) in (13) it follows
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T T
My, bl XM, 1y XM _ _ _
Tl 0 1XMg T1 2 (AQ 1AT) 1(AQ 1R+D)=
ap 1, X111 1, X114 2 nyxm,
a L s
——
T T ||MoX1My -1 -1 T T ||MoXimy -1 T T||mpxm, -1
‘”1 b1‘ " (@ Q1 R+ Ry +d)+‘ﬂ1 bl‘ N Q) +C1)+‘”1 b1‘ OO (00 Ry +Gy)
—_— —_—
_3_1J myx1 WZ—Z‘ myx1 h myx1
_ 1, X111, mxm mXiny
arq oy a3
— - —
T T||["MoXMy -1 —1 T T ||mpxmy -1 T T |[MMoX11, -1
‘ﬂz bz‘ a (11Q1 Ry +a,Qy Ry +4) +‘ﬂ2 bz‘ 0 (01Q1 Ry +Cy)+|ay by o (0,Q Ry +Cy)
—_— —_—
H%l myx1 - mxl ~—?£" myx1
X1, mxi, M, X1,

Consequently, the term A"(AQ'AT)(AQ 'R+ D) becomes

i Q'R + 1,05 Ry +d |
“ﬁT b{‘ dn Y b1Q1_1R1 +C
Oy Oy O 4
T 1 AT\-1 1 baQy Ry +Cy
A" (AQTA )Y (AQ R+D)=|- ) . z (14)
mQ1 Ry +a,Q; Ry +d
“15 sz‘ R b1Q1_1R1 +Cy
azy 0 oy 4
b,Q, R, +C,

After putting (3) and (14) in (5) the analytical solutions of the initial problem (1) are

”1Q1_1R1 + azQile +d
W =-QrR + QY [af bf[* T2 OB p R, 4Gy (15)
Oy Oy O 1
b,Q; R, +C,
”1Q1_1R1 + azQile +d
= —Q5 R,y + Q5 ‘ag sz‘ Qg1 Qqp Og3 b,0;'R, +C,
oy 0 oy 1
b,Q; R, +C,

Analytical relations (15) are a result of applying a goal coordination for solving the initial
problem (1). They are useful only if the components a; of the inverse matrix (12) are known.
However, if o are not known (the usual case) relations (15) can not be applied.

2.2 Decomposition of the initial problem by predictive coordination

According to the hierarchical approach, the subsystems work independently. The idea of the
predictive coordination is that the coordinator influences to each subsystem by independent
impacts instead of common impact in goal coordination. For the initial problem (1)
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decomposition by goal coordination can not be fully accomplished because of the connected
relation a,x; +a,x, =d . Applying predictive coordination, the connected restriction can be

decomposed to:
X1 =Y1, 02X =Y (16)

observing the condition for resource limitation

Yy1+Y,=d (17)
Coordinator
‘}/Xl(y1) K\XZ(YZ)
Subsystem 1 Subsystem 2

Fig. 1. Hierarchical approach for solving (1)

Applying (16), the initial optimization problem (1) is decomposed to two optimization
subproblems with lower dimensions than the initial one:

min {%x{ Qixq + RlT xl} min {%ngzxz + RZT xz} (18)

h 1=V G 2=V
— -~ -~ -~
My X1l myx1  mgxn, myx1

by y=Cy; by xy=0C,
- — — [

My X1, myxl  myxn, myx1

where

Ay | moxmy Ao | moxny dy | moxl dy | mox1

Al |(m0+m1+m2)xn1: bl My X1y ;A2 |(m0+m1+m2)xn2: 0 my X, Y 1= Cl myx1 1Yy = 0 myxl

MyXny 21 myxn, myx1 2| myx1

and it can be realized

y1+y2=Dory1 +y,=d .

The analytical solution of the first subproblem (18), according to (4), is

=07 [R - AT (AT AN (40T R, +D)].
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The analysis of matrix A1 shows that it has zero rows. Respectively, the square matrix

a mQi'a; Qb 0
AlQilAf = bl Ql |n1xn1 61{ b{ = leila{ leilbf 0
mx(m+l +1,) 0 0 0

(m+1 +1,)xny

has zero rows and columns, which means that the inverse matrix (AQAT)™ does not
exist. However, in the solution of problem (1) takes part a sum of the matrices
(AQ AT, so that the sum matrix (AQA")™ has a full rank. This matrix has a high
dimension and for it can not be used the specific structure A,Q, A" . To use the less rank
of matrices A.Q, A" , the definition of subproblems (18) has to be done by rejecting the
zero rows in matrices A; and A .

Respectively, the subproblems are obtained of the initial problem (1) by additional
modification of the admissible areas, determined by the matrices A1 and A, instead of
direct decomposition. In that manner the modified subproblems will present only the
corresponding meaning components as follows:

n 4 ) 2| = A1 | - Y y
" 1 A 2 n 1 - 2
0 ! b, 2 0 ! C, 2

The modified subproblems (19) have lower dimension in comparison with (18), obtained by
direct decomposition

min {%xlTlel + RlTx1 } ;min {%x%QZJ@ + Rgxz} (19)

K1351:]/_1 I'A_zxzzl/_z

o ! o

bl (mg+mq )xny b2 (mg+my )xn,
- N R )
h Cl (mg+my)x1 i C2 (mg+my)x1

The solutions of (18), obtained in analytical forms using (4), are
x;pf = —Q; I:Ri - A_IT(Ai Qi_l A_iT)_l (Ai Qi_lRi + ?/_z)} =12

After substitution of matrices A; with the corresponding matrix components, it follows

-1 1
mQ1 Ry +

b,Q1'Ry +C4

AT 4,7
;mQr ey aQp by

361(]/1)=—Q1_1 Ry - ’11T blT _ _
‘ ‘ lellblT b1Q11“1T
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It is put
T 1T -1
mQy ey mQp by E}l B_g
myxmy moXxmm, MXmy — MyXxmy
=B = (20)
T 1,T
b,Q1a; bQr by EZL EZE‘

g Xy myxmy - myxmy

where the matrix [ is a symmetric one by definition. Consequently, x;(y;)can be

} . (1)
] . (22)

developed to:

alQilRl + V1
b1Q1_1R1 +CG

Bll B12

xl(y1)=—Q1_1R1+Q1_1[‘alT blT‘Bz Bay
1

Analogically, x,(y,)is

azQile +Y)
1,Q;'R, +C,

Y11 Y12

xz(yz):_Qz_le +Q£1 ‘”g sz‘
Yor Y

where matrix y is a symmetric one by definition, v, =v5,

1
AT 14T

Y11 Y12 1, a4y  a,Q;°by

— — —_—

_ |MoXmy - MmgXmp ) | X Moy X1iy

1T 13T
Yo Y22 | bQuay bQy'by

MyXily — MyXin, X1, R

opt _ opt

If the optimal resources y;" , y," are known, after their substitution in (21)-(22), the solution

of the initial problem (1) can be obtained

t t t t
" =x(yy"), X" =x(y3") -

opt opt

The determination of the optimal resources y;", y,” is done by solution of the coordination

problem.

2.2.1 Determination of the coordination problem
After substitution of relations x;(y;) and x,(y,) in the initial problem (1) and taking into
account the resource constraint (17), the coordination problem becomes

. .1 1
mineo(y)=min | 2] (1)Qum() + RE(00) 333 (12)Q0a02)+ R}

SyEy1+y2:d ’

or
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min{w(y) =wy (Y1) + W, (yz)} (23)

Yyity,=d

where

1 .
wi(yi):ExiT(yi)Qixi(yi)+RiTxi(yi)f i=1,2.
As x;(y;)is inexplicit function, it can be approximated in Mac-Laurin series at point ;=0

X1 (1) nyx1 = X10mx1 + Xt amg Yimpx1r  (24)

where
g o Bu Bul| mQi'R
xo =Qr'Ry+ Qe bf[ " 2T (25)
P Pao|b,Q;'R, +C,
§ B
Xlnlxmo = Q11n1xn1 61{ b{ o (26)
n?c’_‘m nyxm B 21my xmg
1 0 1 1
where x19 is solution of subproblem (19) having zero resource, y1=0.
Analogically, for the second subproblem is valid:
X2 (y2 )nle = x20n2x1 + X2n2xm0 yZmOxl (27)
where
-1
_ . T V|| A@Q2 R
Xy =—Q5'R, +Qzl\a§ sz‘ o 2_1 22 (28)
Y1 Y22/|b,Q; R, +C,
= T11
X2n2xm0 :Q21n2xn2 Elé 9,21; uilk (29)
NyXMy XM, YZlmzme

After substitution of (24) in w1(y1) of (23), it follows:

1
wq(y1)= E(xlTo + ]/1TX1T)Q1(x10 +X3yq) + R1T(x10 +X1yq) =

1 1 1 1
ExlToQﬂw + EX1T0Q1X13/1 + ElexlTQﬂfw + ElexlTleﬂ/l + RlTxIO + RlTXﬂl

The components x7,Q;X;y; and y;X;Qx;, are equal, as they are transposed of
corresponding equal relations. Consequently, the coordination problem becomes
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y1TX1TQ1X1y1 + y1TX1TQ1x10 + y1TX1TR1 (30)

N | =

wy (Y1) =

or

1
wy (Y1) = E%Tﬂhl/l + le”l
where
7= X{Q1X1 h = X{lem + X1TR1

Analogically, for the second subproblem, it follows:

1
w,(Y2) EEygszszzyz +y§X2TQ2x20 +]/§X2TR2 (31)

or

1
Wy (yo) = Eyg%yz + .‘/grz
where
g4 = XzTszz = Xngxzo + XzTRz .

Functions wj(y;) has to be presented in terms of the initial problem (1) by the following
transformations.

Development of q

Relation g is presented like

P11
Ba1

Pu
P

7= X1TQ1X1 :‘5{1 Bgl‘ = ‘B{l Bgl‘ 1_1“11T blT‘

-1 -1({.T T
Q' Q1 ol ¥
I

m 4
by by

or

AT 1.T aT 14T
mQia; Qb Q77 a1 By +a,Q17b1 By

b,Q1'a;  bQ;'b{ b7 a1 Byy + b, Q1 by By

According to the manner of definition of matrix 3 from (20) the following matrix equality is
performed

P

. 32
B 42)

‘71:‘le 551‘ :‘Bfl Bgl‘

-1.T 13T -1
mQr e ;Qy by Byy P12 I 0
—_— —/ || == —= et o]
mMyXMig moxmy ||moxmg  myxmy _ |moxmy - mgxmy (33)
1T -1, T 10 I
b,Qi'a; b,Q'bi|| P P g &

myxmy - myxmy
Xy myxmy ||MXMo  mxim

i.e. an unit matrix is obtained. Consequently, the following equations are performed
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0,Q1 a1 By + Q1 'b{ By =1 myxm, (34)

b1Qy a1 Byy +01Q1 ' b{ By =0, 1 -

After substitution of (34) in (32) it is obtained

E
Moxm,
n=\By Bl T0= By
MgXMy — MyXMy ml‘;mo Mg XM,
as Py is a symmetric and square or
41 =B - (35)
Analogically,
2 ="11 (36)

Development of t;,
In a similar way the relations of r; are developed to the expressions

-1
a,Q7 R
=X (Qixy +Ry) = ‘5{1 Bgl‘ 1_1 L (37)
b,Q; Ry +C4
azQile
1y = X5 (Qoxp +Ry) = ‘Y{l Y2 1 -
b, R, +C,
The coordination problem becomes
. 1 7 T 1 7 T
min g w; (Y1) + Wy (Y,) :Eyl Ti¥1+1n Y +El/2‘72y2 thYs (38)
L4 7 0 n
+ =d I I Y= ; q= = ;
YitYs = ‘ My XMy MoXTM |y x 21, Y Y, q 0 0, 4 )

The coordination problem (38) is a linear-quadratic one and its solution can be found in an
analytical form according to (4) or

Y == [r- AT (A AT A+ )] (39)

Relation (39) is developed additionally to the form

y' =—gi'n + a1 (@ +q2") gt + g3t + d) (40)
vy =g+ qy (g1 + a7 ) (g gh r +d).
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2.2.2 Presenting the resources ' in terms of the initial problem

It is necessary the values of y"* to be presented by the matrices and vectors of the initial
problema;, bi, Qi R;i, Ci, B, 5 i=12. According to (35) and (36), it is performed

g1 =B11 = ‘71_1 = BH (41)

|
42 =71 = 92 =Y11-

After additional transformations it follows

~ ,Q7'R P 2,Q7'R B a,Q;'R
g =g Bnf U lepden v sen Bn[ “T leviiph vml| 22 |ea| (42
b,Q'R, +C, b,Q'R, +C, b,Q5'R, +C,
-1 -1 -1
1 T 1,Q; Ry mQ1 Ry T 1,0, Ry

ygpt =Y1 ‘Y% Y21‘ +Yﬁ ‘Y{l Y21‘

1, -1, a-I\-1| a-1]|aT T
+v11(yi1 +B11) [[311 ‘Bll le‘

+d]-

After substitution of optimal resources y, i=1,2 from (42) in the expressions of x,(y;)

b,Q;'R, +C, b,Q'R, +C, b,Q,'R, +C,

from (21) and x,(y,) from (22) the analytical relations x;(y{"") and x,(y5"), which are
solutions of the initial problem (1) are obtained. To get the explicit analytical form of

relations x;(y;" '), (42) is substituted in (21) and (22) and after transformations follows

(B1i +vm1)” (Bri +v11) " BriBay B +1a) " rivn | (43)

/-1, .~1\-1p-1aT P EREE
B B—1(B-1+ —1)—1 BoiPr1(B11 +v11) Brabx + 13215111(3111“/111) 1Y111Y§1
21P11 P11 T Y11 AnT

B2 —B21B11Bx

xl(yipt) = _Ql_lRl + Ql_l |”1T b1T|

-1 -1
1Q; Ry +a,Q; R, +d
* b,Q; 1R1 +CG
-1
b, R, + G,
1, -1\-1 -1, -1\-1p-1T 1, . -1\-1_-1.T
(Bi1 +v11) (B11 +v11) BB (B +v11)” Y
t 1 L1 | F~—rpT Ap-1 . -1\-1 -1.T =
Y )=-Q Ry +Q; |ay by e N 1o 1\-1 o Yor¥11 (Bi +v11)” Yn¥a +
| | “/21Y1%(B1% +Y1%) ! Y21Y1}(B1% +Y1%) 131%3%1

VY — ”/21”/1%3’51 (44)
alQl_lRl + ’leEIRz +d
b, Q7 lR1 +C
szile +C,

The obtained results in (43) and (44) x;(y'), i=1,2 are after applying the predictive
coordination for solving the initial problem (1). The solutions x{**, i=1,2 from (15) are
obtained by applying goal coordination to the same initial problem. As the solutions
x;(y?), i=12 and x¥, i=1,2 areequal, after equalization of (15) with (43) and (44)
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relations among the components of the inverse matrix oo and the components of the inverse
B and vy are obtained. According to (15) and (43), it follows:

o = (Br i) o2 = (B + 1) Buabz s oas = (B + 1) v
doy = BBt (B +7v11) " 0o =B (Bt +v11) " BriBar +Bao —BaaBriBai
dos = BB (B +711) Yiiv2 (45)
asy = Yovi (B +v11) " O = v v (B +vi)” BB
o lpl N1 1T -1, T
O3z = V2111 (Brn +v11) Y11¥21 + Y22 — Y V112 -
Consequently, after applying the both coordination strategies towards the same initial
problem (1) analytical relations (15) and respectively (43) and (44) are obtained. This allows

to be received analytical relations among the components of the inverse matrices o, § and
v, which were not able to be determined directly because by definition:

-1
;Qq 1‘11T + azQil‘Zg a,Qp 1biF azQilbg

a=|  bQra bQi'; 0 |
b,Q,'a; 0 bQy'hy

-1
1T 1, T aT -1, T
mQy a; a,Qp by a,Qy ay  a,Q5°by

bQ'a BQUb|  [p,Q5'a) b,Q5'b)

-1

B=

Consequently, using (45) the components of the inverse matrix o can be determined when
B and 1y are given. This allows the matrix o to be determined by fewer calculations in
comparison with its direct inverse transformation because the inverse matrices f and vy
have less dimensions. Relations (45) can be applied for calculation of the components o;; of
the inverse matrix o (with large dimension) by finding the inverse matrices § and ¥y
(with fewer dimensions). The computational efficiency for evaluating the inverse matrix
with high dimension using relations (45) is preferable in comparison with its direct
calculation (Stoilova & Stoilov, 2007).

3. Predictive coordination for block-diagonal problem of quadratic
programming with three and more subsystems

Analytical relations for predictive coordination strategy for the case when the subsystems in
the bi-level hierarchy are more than two are developed. The case of bi-level hierarchical
system with three subsystems is considered, figure 2

The initial optimization problem, solved by the hierarchical system is stated as

. Q 0 0™ X
mina I oxy x|0 Q, O0llx,|+|RT RI RI|x, (46)
0 0 Qslxs X3
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(47)

alxlmoxnl + a2x2m0xn2 + a3x3m0xn3 =d

blxlmlxn1 = Cl
bZ x2m2xn2 = C2
b3x3m3xn3 = C3

where the dimensions of the vectors and matrices are appropriately defined

xlnlxl ’ x2n2x1 ’ x3n3x1 ; Rlnlxl ; R2n2x1 , R3n3x1 ’

almoxm , aZmOxnz ;a3m0xn3 ;d myx1 ’

b1m1xn] ’ b2n12xn2 ’ b3m3xn3 ’ Clmlxl ’ C2m2x1 , C3m3x1 ’

c Q 0 0 R,
Czcl rQZO Q2 O/R:R2/
c2 0 0 Q R,
3 (my+my +my +mz)x(ny +ny+1n3)
a; ap a
by 0 0
A=
0 b 0
0 0 by

My +1my +1y +1113 )X (1 +1y +113)

The peculiarity of problem (46), which formalizes the management of hierarchical system
with three subsystems, concerns the existence of local resources Ci, C3, C3, which are used by
each subsystem. According to the coupling constraint (47) additional resources d are
allocated among the subsystems. Problem (46) can be presented in a general form, using the
substitutions

Coordinator
y1 x;(
)
xl(yl) y2 X2(y2) y3 33
Subsystem 1 Subsystem 2 Subsystem 3

Fig. 2. Hierarchical approach with three subsystems for solving initial problem

aq| moxmy Ag | myx1; d
Al _ bl my Xy ; A3 _ 0 my Xny ;D= Cl (48)
(mg +my +my +my )xny 0 myxny (Mg +my +1m, +1m3 ) X1, My XNy C2
0 b3 C3 (mg+mq +my+mz)x1

ma X1y M3 X1,
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A=[|A; A, A

(mg+my +my +mz )x(ny +ny+n3)

Analogically to the previous case with two subsystems, analytical relations for determining
the inverse matrix components by matrices with fewer dimensions are obtained

gy =(B11 + 711 +011) 5 aqp =Byt +v11 +811) BBy (49)

oy =(Ba1 +v11 +811) Ymi¥ar; g =B + 7131 +81) 81dy
Ay = BB (Br + 711 +811) 7 oy = BB (B + 11 +811) BriBa + B —BuB1iBx
Ay = BBt (Bt + vt +811) ¥i1Ya1; Gos = BoBrr (Bri + 711 +811) 8110y
+811) " b

1 -1/n-1 -1
031 =Y21Y11 (511 +Y11 + 511) ; Oap =Yy V11 (P11 v +

5§11y 1, T “1\-15-1sT
O33 = Y211 (1311 + Y11 011) Y11Y21 T ¥: — Y21Y11Y21 ; Oag =Y,Y11 (Bn + Y11 +811) 8110

51y 131 41 4 5711
Oy =00 (Bn + Y11 811) ; Ogp =851077(B1qy +v11 +017) [311 21

-1 1. -1.T | 1
g3 =087 (By 11 + Y11 + 811) Y11Y215 Olag =020 (511 + Y11 + 611) 811821 +0y —821811521

The initial problem can be solved by four or more subsystems. The relations between the

components of the matrix a=(a;) and the matrices with lower sizes f,y,...0 are given
below
a1 = a1 = a3 = =
1 1,1 1 1y-1 -1 5T 1 11, 1T (Bl +- o))
(B +-+org) (Prii +-ton) Pubn (P ++on) rmrm . 1T
W11 0
Gy = Gy = O3 = ;=
-1, o1 ~1\-1 -1, p-1 ~1y-1 1, p-1 1,1
1/ p-1 1 PP (P +ron) T PP (P +eton) ” BBt (Bt +--+ o)™ *{ (50)
PP (P +vonn) T e Ly
B Bor+ B = PubPriiPn Frura 11021
a31 = U3 = 33 = o3; =

1)1 -
yourit (Bid +- -+ o) !

aj =

onor (B ++ o)

1 o1 1\-1

yorn(Bn +ton)
1 5T

*Bri B

Ajy =
1 o1 141
oo (B +tog)
14T
*Bri P

A, o 1\
Yo (Bn +ote) *

1T 1T
*y1nvant ¥~ Yairn

Uiz =
1, 51 1y-1
ono (B +tog) ¥
AT
1o

1y o1 1,1

yourn (B +oton) *
a7

w11 0

al] =

oo (B o)

1T
W11 Wy + Wy

— oy 01 0y

4. Assessment of the calculation efficiency of the analytical results for
determination of inverse matrix components

For simplicity of working the notations for right matrices with lower dimensions are
introduced. In the case of 2 subsystems, the matrices ¢ and d are the corresponding right
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matrices of the inverse matrices fandy. By definition having in mind (46) ¢ and d are

symmetric ones

C11
——
My XMy
€
——
my Xy,

My X1

AT
C1o ;Q1 4
—— —
Myxny MyXMy

Cx» b, Q7 1a1T
— —

My Xmy

my X1
-1.T
d12 ) Qz a
—— ——
My XMy My X11,

dy | 0,010
— %/_J

My X
202 My XM

1, T
a,;Q7 by
%/_/

Mg X1y

b,Q;'by
H_/

myxmy

4

1, T
1,Q; b,
%/_/

my X1,

b,Q5'b;
| —

My XM,

.B=

ry:

Pu
P

Y11
Y21

BlZ = C_l
P2
Y12 — d'l
Y22

Analogically, for 3 subsystems the right matrix is e and the corresponding inverse matrix is &
(e — d); for 4 subsystems - (f — ¢).
An example for computational efficiency of the proposed relations (45) /2 subsystems is
given below with a symmetric matrix AL with dimension from 17x17 to 26x26 which varies
according to variation of dimension m; from 2 to 11, while my is 4 and m;yis 11. Matrix AL is

in the form

____________________________________

The MATLAB's codes are given below:

sexample of inversion of AL

c1=[1 231, 232 2; 324 2;
cio=[ -2 1 -1 2 4 0 -1
7 1 9 1; 7 2 1 3 -8 9
2 1 3 1 1];
C21=C12 7
Cor=[ 1 2 -3 1 0 1
2 3 -4 1 0 2 9 8
1 -4 1 -1 1 5 -6 2
-3 1 -1 4 3 2 1 0
1 1 3 2 1 1
0 2 5 2 1 4 2 1
1 9 -6 1 1 2 6 3
5 8 2 0 5 1 3 5
2 1 -1 -3 0 1
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(dimension 26x26)

12217,

1 0

when m;=11

-5 0 2 1 4 6 -5
4 2 -1 0 2 -1
_1;
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d;;=[3 0 0 -2; 0 -6 2 0; o 2 -2 -1; -2 0 -1 21;
di,=[1 0 2 1 3 -4 2 0 1 -3 1 ;

3-1 0 2-2 -1 0 1 1 0 2;

3 0 1 0 5 37 1 2 =2 0;

2 2 0 1 3 2 1 0 1 -1 171;
dy1=diz';

3 2 1 1 1 -1 -2 -3 0 1 0 ;
7 1 5 2 4 2 3-1 -3 -2 1;
2 1 2 1 2 3 0 1 -2 -4 2;
2 1 4 2 1-1 3 7 -1 2 07
1 -1 2 3-1 0 2 1 4 1 2;
1 -2 3 0 3 2 2 1 -3 -1 1;
o -3-1 1 7 1 1 O 1 2 1;
-2 0-3-2-1 4-3 1 =2 0 2;
-1 1 -2-4 2 1-1 2 0 1 1;
1 o 1 2 0 2 1 1 2 1 51;

d=[d;; dip; dpp dools
$definition of AL

mm=size (cl2);

mO=mm (1) ; Fmy=4
ml=mm(2) ; gm;=11
mm=size (dl2) ;

m2=mm(2) ; Fm,=11
mlO0=zeros (ml,m2);
m20=ml10"';

al=[cll+dll cl2 dlz; c21 c22 ml0; dz1l m20 dz22];

flops (0);
alphal=inv(al); $direct inversion of AL
fl al=flops $flops for direct matrix inversion

Smatrix inversion by hierarchical approach
flops (0);

beta=inv (c);

gama=inv (d) ;

invbetall=inv (beta (1:m0,1:m0)) ;
invgamall=inv (gama (l1:m0,1:m0)) ;
invbetallbeta2lT=invbetall*beta (m0+1:m0+ml,1:m0)"';
invgamallgama2lT=invgamall*gama (m0+1:m0+m2,1:m0) ';
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ff=flops

flops (0);

alphall=inv (invbetall+invgamall) ;
alphal2=alphall*invbetallbeta2lT;
alphal3=alphall*invgamall*gama (m0+1:m0+m2,1:m0) ';

alpha?2l=alphal2’';
alpha22=invbetallbeta2lT'*alphal2+beta (m0+1:m0+ml, mO0+1:m0+ml) -
beta (mO0+1:mO0+ml,1:m0) *invbetallbetallT;
alpha23=invbetallbeta2lT'*alphal3;

alpha3l=alphal3"';

alpha32=alpha23"';
alpha33=invgamallgama2lT'*alphal3+gama (m0+1:m0+m2, m0+1:m0+m2) -
gama (m0+1:m0+m2,1:m0) *invgamallgama2lT;

alpha=[alphall alphal2 alphal3; alpha2l alpha22 alpha23; alpha3l
alpha32 alpha33];

fl nic=flops
f1 full=ff+fl nic $flops using noniterative coordination

al2=inv (alpha) ; $verification

This code has been used for two types of calculations:

1. Direct calculation of a - inversion of matrix AL by built-in MATLAB function INV. The
amount of calculations is presented as a dashed red line in Figure 3.

2. Evaluation of a applying relations (45). The amount of calculation is presented as a
solid blue line in Figure 3.

The comparison of the both manners of calculations shows that the analytical relations are

preferable when the matrix dimension increases. From experimental considerations it is

preferable to hold the relation 3mg < m1 + my, which gives boundaries for the decomposition

of the initial matrix AL. For the initial case of mo=4 m1=2 m>=11 these values are near to

equality of the above relation and that is why the decomposition approach does not lead to

satisfactory result.

Second example A 29x29 symmetric block-diagonal matrix denoted by AL is considered. It

has to be inversed to the matrix a by two manners: direct MATLAB’s inversion and using

relations (45) and (50). This matrix will be calculated by hierarchical approach and

decomposition with 2, 3, and 4 subsystems.

Case 1. The right matrix AL can be inversed to o by the above analytical relations applying

4 subsystems where AL is presented by the matrices c, d, e and fin the manner:

g
E
5
3
E

. entdutentfn L Ci2 | o do L en o fo
,,,,,,,,,,,,, e L0 0 0
AL= | dn . . U w0 . 0 .
_____________ ?21____________]_____}?_____1_____51_____€____f?z_____i_____Q______

f21 : 0 : 0 : 0 i fzz
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m0=3: m3=7 THQ=3 : WI4=7
30-20211-20-3 13-2,1036-114
0-421240-571-4 3511321-14-1-2
2211213101 2144132412

e=]102121511-21 134.1-13121 4
2421324132 021,-1213210
101'52321-11 3131311-2-1-21
1—53:1425—13—2 6 -1 2:1 3-21-31-2
2711111-161-1 14 412-2-1-321-1
010:—23—13121 1-11:11-21131
3-411121-2-113 4 2214012111

Here is assessed the efficiency of usage of relations (50) for finding the inverse matrix o
when the matrices with fewer dimensions ¢, d, e and f are given. The assessment is done by
measurement of “flops” in MATLAB environment. A part of the MATLAB’s codes which
performs relations (50) for inverse matrix calculations and assess the computational

performance are given below

al=[cll+dll+ell cl2

m20 dz22 m40;
flops (0);
alphal=inv(al) ;
fl al=flops
flops (0);
beta=inv(c) ;
gama=inv (d) ;
delta=inv (e) ;

invbetall=inv (beta(l:m0,1:m0));
invgamall=inv (gama (1:m0,1:m0)) ;
invdeltall=inv (delta(l:m0,1:m0));

c22 ml0 m30; d21

invbetallbeta?2lT=invbetall*beta (m0+1:m0+ml,1:m0) ';
invgamallgama2lT=invgamall*gama (mO0+1:m04+m2,1:m0) ';
invdeltalldelta?2lT=invdeltall*delta (mO+1:mO0O+m3,1:m0)"';

ff=flops
flops (0);

alphall=inv (invbetall+invgamall+invdeltall) ;
alphal2=alphall*invbetallbeta2lT;

alphal3=alphall*invgamall*gama (m0+1:m0+m2,1:m0) ';

alphald4=alphall*invdeltalldelta2lT;

alpha2l=alphal2’';

alpha22=invbetallbeta2lT'*alphal2+beta (m0+1:m0+ml, m0+1:m0+ml) -

beta (m0+1:m0+ml,1:m0) *invbetallbetallT;
alpha23=invbetallbeta2lT'*alphal3;
alpha24=alpha2l*invdeltalldelta2lT;

alpha3l=gama (mO0+1:m0+m2,1:m0) *invgamall*alphall;
alpha32=alpha3l*invbetallbetal2lT;

alpha33=invgamallgama2lT'*alphal3+gama (m0+1:m0+m2, m0+1:m0+m2) -

gama (m0+1:m0+m2,1:m0) *invgamallgama2lT;
alpha34=alpha3l*invdeltalldelta2lT;
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alphad4l=delta (m0+1:m0+m3,1:m0) *invdeltall*alphall;
alphad42=alphad4l*invbetallbetallT;
alpha43=alpha4d4l*invgamallgama2lT;
alphad44=alphad4l*invdeltalldelta2lT+delta (m0+1:m0+m3,m0+1:m0+m3) -
delta (mO+1:m0+m3,1:m0) *invdeltalldelta?2lT;

alpha=[alphall alphal? alphal3 alphali;

alpha?l alpha2?2 alpha23 alpha24;
alpha3l alpha32 alpha33 alpha34;
alphadl alpha4? alpha43 alphadd];

fl nic=flops;
f1 full=ff+fl nic

al2=inv (alpha) ;%verification

For direct inversion of AL the flops are 50220 and for using (50) - 16329, figure 4.
Case 2. The same matrix AL is given however o is determined by a different manner - by 3
subsystems:

,,,,,,,,,,, cutduten e i dn o e

_______________ e 0 0

AL= | dn . U - N — 0
e ; 0 : 0 €2

where c and d are the same as in (51) , however the right matrix e is different. It utilizes the
previous matrices e and f:

mo=3 | mz=14
43 -40211-20-31T036-11 4
313124057 1-4321-14-1-3:2
43-5,121310141324712
02121511-2100000700
2 4-2'13241320000000
1011523 21-1100000°00
1-53!1425-1320000000
2714111-161-10000000
010'23-131210000000
3-41,121-2-1130000000
13 4'00000001-13121 4
021,0000000-12713-=2120
e= | 313100000003 11-2-1-=21
6-12,000000013-=21-3T1:2
144100000002 -2-1-32T1 -
1-11,000000011-21131
4 2210 00 0000401-2-111

The calculations in flops for direct inversing of AL are 50220 and using (49) - 23082, figure 4
Case 3. The inverse matrix o is determined by 2 subsystems and AL is in the form

__________ cotdn i en 4 dn
AL 1 L 2 L] 0
d21 0 d22
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where c is the same as in (51) but the right matrix d covers d, e and f from Case 1 or d and e

from Case 2.

The calculations for direct inversing AL are 50232 flops and for using (45) are 37271, figure 4
The results of the experiments of the second example show that if the number of the
subsystems increases, the computational efficiency increases because the matrices’
dimensions decrease. This is in harmony with the multilevel hierarchical idea for

decomposition of the initial problem leading to better efficiency of the
functionality.

x10° Relations flops for invert matrix - dimension m1
4 T T T T
/s
’
’
/I
35+ § x/ 4
4
’
td
/
,/
3- 5 Pl -
.
4%
/,,
825~ » i

formula

2 3 4 5 6 7 8 9 10 11
m matrix dimension (m0=4, m1=var, m2=11)

Fig. 3. Relation flops- m1 matrix dimension

x10" Inverce matrix calculation
55 T T T

direct

25

formula

i i i i i
2 22 24 26 2.8 3 32 3.4 3.6 3.8 4
subsystems number

15 : : :

Fig. 4. Relation flops-subsystems number
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5. Conclusion

The inverse matrix evaluations are decomposed to a set of operations, which does not
consist of calculations of inverse high order matrix. Such decomposition benefits the inverse
calculations when the initial large scale matrix is composed of low order matrices, which
inverses are calculated with less computational efforts. The decomposition approach
benefits the case when an initial matrix is known with its inverse, but few modifications of
its components change it and new inverse has to be calculated. The decomposition approach
for the inverse calculations is assessed and increase of the computational efficiency is
illustrated. The MATLAB implementation of the presented sequence of calculations
(49)-(50) is easy to perform because it results in consequent matrix sum and multiplications,
and low order inverse matrix evaluations.
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is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the
paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that
MATLAB is the a€cebreada€ in the above statement. MATLAB has became a de facto tool for the modern
system engineer. This book is written for both engineering students, as well as for practicing engineers. The
wide range of applications in which MATLAB is the working framework, shows that it is a powerful,
comprehensive and easy-to-use environment for performing technical computations. The book includes
various excellent applications in which MATLAB is employed: from pure algebraic computations to data
acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user
interface design for educational purposes to Simulink embedded systems.
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